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Abstract

This paper looks at stick number of links and knots. We find an upper

bound for n-integer Conway links, and classify all two component links

with stick number of eight or less.

1 Introduction

The knot theory was born at the end of 19th century. It was believed that
some of the atoms of a substance called ether could be represented by knots.
However, this hypothes was incorrect and knot theory was left by chemists.
This is when mathematicians got interested in knots. Knots were classified and
put in the table according to specific notation which I will describe later. And
then in 1980s, it was discovered that DNA molecules have a structures of knots.
Finally knot theory could be applied to synthetic chemistry. Knot theory has
also found some applications in theoretical physics.

2 Background

As the name knot theory suggests, this field of mathematics is talking about
knots. A knot is a knotted loop of string, where the string has no thickness, and
its cross-section is a single point. An example is a trefoil knot shown in Figure
1a below. A link is a set of knotted components all tangled up together, like the
Hopf link shown in Figure 1b. Knots are the subset of links consisting of those
with one component . A crossing of a link is a place where one of the strings
goes over or under another depending on the projection. The crossing number
is the minimum nubmer of crossings of a link L in any projection, denoted by
c[L]. A tangle is just a region in the projection plane surrounded by a circle
such that the knot or link crosses the circle exactly four times.
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(a) (b)

Figure 1. (a) trefoil knot. (b) Hopf link.

A link can be represented using sticks. For example, an unknot can be repre-
sented as a triangle using three sticks. The stick number, denoted by s[L], of
a link L is the minimum number of sticks needed to form L.
Now that we have all these links a question that might arrise is how do we

now which link is which, or is there a method of producing a link. The first time
that the knots were tabulated was done by Peter Guthrie Tait, and he tabulated
the knots with up to ten crossings. Right now knots of up to 16 crossings are
tabulated, according to [5], and for example there are 9988 knots of 13 crossings.
The number of knots with 17 or more crossings is not known. There are different
notations that help us to make or identify a given link. The one that I will be
dealing with in this paper is Conway’s notation, which was invented by John
H. Conway in 1969, see [3]. Before we get to Conway’s notation consider Figure
2 below. We see two tangles, tangle (a) is 0-tangle and tangle (b) is ∞-tangle.

(a) (b)

Figure 2. (a) 0-tangle. (b) ∞-tangle

We can form a tangle with let’s say two crossings, starting with 0-tangle and
twisting the string twice. We would denote this tangle by 2, as in Figure 3a.
It has two crossings and the overcrossing string has a positive slope. If the
overcrossing string had a negative slope we would denote this tangle by -2, as
in Figure 3b.

(a) (b)

Figure 3. (a) 2 tangle. (b) -2 tangle.
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We can add more integers, thus, adding more crossings, for example tangle
denoted by 232. We would start with our tangle in Figure 3a. Then each time
we have another integer we will reflect the tangle about it’s NW-SE axis (in
[3] Conway names it principal diagonal), and then add 3 more twists. We will
repeat this process until we get to last integer, in our case 2. The process is
illustrated in Figure 4.

(a) (b)

Figure 4. Forming 232 tangle. (a) 23 tangle. (b) 232 tangle.

All tangles formed this way are called rational tangles. Now if we connect the
right top with the left top and right bottom with the left bottom of a tangle
we will form a rational link. It is worth mentioning that not all tangles are
formed this way. In [3] Conway describes other ways of obtaining tangles, which
lead to other general links.
Another important idea which I will use later is linking number. In order

to find a linking number, first we have to assign an orientation to the link we
wish to find the linking number of. Then we look at all crossings, and identify
each as +1 or -1, as it is shown in Figure 5. We add all the +1’s and -1’s
corresponding to crossings of different components, and divide the sum by two.
The absolute value of the quotient gives us the linking number. For example,
Hopf link in Figure 1b has linking number 1.

(a) (b)

Figure 5. Linking number.(a) +1. (b) -1.

All the above definitions can be found in any Knot Theory book. During
the REU program we1 invented a move that will help us produce stick repre-
sentations of knots.

Definition 1 The angle α at vertex v in a stick representation of a link L
created by two edges adjecent to vertex v is called a clasp angle, and
0◦ ≤ α ≤ 180◦ .

1the participants of REU at CSUSB, 2001
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Definition 2 Let v be a vertex with clasp angle α, and e be an edge in a stick
representation of a link L, where e is not contained within the angle α, then the
clasp move can be performed on v and e if the plane containing v and e divides
the clasp angle. (see the Figure 6)

(a) (b)

Figure 6. (a) Clasp angle. (b) Clasp move.

The topic of this paper was motivated by a paper written by Eric Fursten-
berg, Jie Li, and Jodi Schneider, titled “Stick Knots”, [4]. Among many different
topics, they considered an upper bound for a stick number using Conway no-
tation. In the paper they defined few ideas that I will restate. A free vertex

is a vertex that is produced by two sticks, one of them forming a crossing with
another stick, as shown in the Figure 7.

Figure 7. Free vertex D.

An n-integer Conway knot is a rational knot which can be expressed in
Conway’s notation with exactly n positive or n negative integers. These are
guaranteed to produce alternating projections. Similairly I defined a n-integer
Conway link being a rational link which can be expressed in Conway notation
with exactly n positive or n negative integers.

The authors of [4] used the idea of the free vertex to prove the following
lemma.

Lemma 1 Given the projection of a stick knot K, if there is at least one free
vertex, the addition of two sticks can change that crossing into three crossings.

Using the above Lemma they found an upper bound of a stick number for
1, 2, and 3-integer Conway knots, which is:

for c[K] ≥ 6, we have s[K] ≤ c[K] + 2 (1)

My goal is to extend the idea of upper bound for a stick number from [4]
to n-integer Conway links. I followed the ideas that were used in their proofs,
and I was able to prove the upper bound of a stick number for 4-integer Con-
way knots. However, the proof becomes very tedious once it comes to prove it
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for 5, 6, up to n-integer Conway links. The reason is that the number of basic
cases that will generate the other knots increases dramatically. For example, the
number of basic cases for 1-integer Conway knots is just one and it is knot 71.
For 2-integer Conway knots the number of generators increases to three, that
is knots 61, 72, and 73. When it comes to 3-integer Conway knots the number
of cases increases to six that is knots 62, 74, 75, 84, 86, and 99. What Diana

2

and I realized is that some of the cases for 3-integer knots are already generated
by the ones that are included as generators. That is, knot 84 and 86 can be
generated from knot 62 and knot 99 can be generated from knot 75. Thus, the
number of cases reduces to 3. A similar reduction can be accomplished with
4-integer knots, and actually this is what I did. However, the number of cases is
still large. For some reason the [4] didn’t consider links. I wondered why. The
reason might be that the free vertex idea was not enough to provide as efficient
upper bounds. That is the link 421 can be made with 7 sticks as shown in [2],
so that would mean that adding 2 sticks increases the number of crossings to 6,
but also increases the number of sticks to nine. This doesn’t satisfy the same
inequality. However, the authors of [4], as well as [2], were not aware of a clasp
move. Using the clasp move I was able to produce links 621, 6

2
2, and 6

2
3 with 8

sticks each. Now using the idea of a free vertex I was able to prove the upper
bound in (1) for 1, 2, and 3-integer Conway links. The question still remains
open as far as n-integer Conway knots and links.

3 Two-component links with s[L]≤8

Not knowing how to get started on general proof of upper bound for a stick
number for knots, I decided to take it one step at a time, and see why authors
of [4] neglected links. According to Theorem 2.1 in [2] the only links that can
be made with eight or fewer sticks are links 021, 2

2
1, 4

2
1, and 5

2
1. The next link in

the table of knots and links in [1] is link 621, and since it cannot be made with
eight sticks the inequality s[K] ≤ c[K] + 2 would not be satisfied. However,
the invention of clasp move shows that there are two more two-component links
that have stick representation equal to eight, and the idea of the linking number
gave me a hint that link 623 might have also eight sticks. If we start with a Hopf
link which has a stick number of 6 then two clasp moves will produce either link
621, 6

2
2, or 6

2
3 depending on how we choose our over and under crossings. The

procedure is presented in the Figure 6 on the next page.

Theorem 1 Links 621, 6
2
2, and 6

2
3 have stick number equal to eight.

Proof: Assume that 621, 6
2
2, and 6

2
3 can be made with 7 sticks. That means that

one of the components must be a triangle and another must be a quadrilateral.
However, none of the combinations of 621 or 6

2
2 will produce a link with 6 al-

ternating crossings and linking number equal to three. When we project into

2Diana Wall participated with me in REU 2001
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one of the sticks of the quadrilateral from 623, the projection will give us two
triangles. We can’t have two triangles with six alternating crossings. Therefore,
the stick number must be eight since it is shown in the Figure 8 below.

(a) (b) (c)

Figure 8. Two-component links with their Conway’s notation.
(a) 621, 6. (b) 6

2
2, 33. (c) 6

2
3, 222.

4 Upper bound of stick number for two-component
links

The following three theorems were motivated by [4]. A base case is a link from
which other links can be generated. For example, if we take a look at one-
integer Conway link 621, its Conway notation is 6. Looking at Figure 8a we can
choose any of the vertices to be a free vertex, and by Lemma1 the addition of
two sticks will increase the crossing number by two, therefore, producing link 821
with Conway notation of 8. The results from previous section are very helpful,
especially the invention of link 623 with 8 sticks. One and two-integer Conway
links have one base case each, 621 and 6

2
2 respectively. When it comes to three-

integer Conway links, the number of base cases increases to four, and they are:
623, 7

2
1, 7

2
3, and 8

2
4, which can be made with 8, 9, 9, and 10 sticks respectively,

as shown in Figures 8c, and 9.

(a) (b) (c)

Figure 9. Two-component links with their Conway’s notation.
(a) 721, 412. (b) 7

2
3, 232. (c) 8

2
4, 323.

Theorem 2 The upper bound for one-integer Conway links with c[K] ≥ 6 is
s[K] ≤ c[K] + 2.

Proof: It was shown in Figure 8a that one-integer link 621 can be made with eight
sticks, and this will be our base case. Any of the vertices can be a free vertex
depending on a projection. So if we choose a free vertex then using Lemma1
we can transform that link into link 821. By repeating this procedure we can
generate all one-integer links.
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Theorem 3 The upper bound for two-integer Conway links with c[K] ≥ 6 is
s[K] ≤ c[K] + 2.

Proof: In Figure 8b we have shown that link 622 can be constructed with eight
sticks. Again this will be our base case. A free vertex can be chosen and by
Lemma1 we can generate link 822 with 10 sticks. Therefore all the two-integer
Conway links can be genereated this way.

Theorem 4 The upper bound for three-integer Conway links with c[K] ≥ 6 is
s[K] ≤ c[K] + 2.

Proof: In Figure 8c and we have shown that link 623 can be constructed with
eight sticks. In Figure 9 we have shown our other three base cases which can
be made with 9, 9, and 10 sticks respectively. Each of the base cases has a free
vertex, and each of our base cases will generate other links. For example, link
623 will generate either link 8

2
3 or 8

2
6, depending where we chose our free vertex

to be. We can generate all three-integer Conway links this way.

The question about the upper bound for any link remains still open. It seems
that the upper bound that I used in Theorems 2, 3, and 4 might be the answer.
But even better question is, can this upper bound be improved.
During the REU program we were using a DrawKnot program, written by

Dr. Rolland Trapp on Maple, to draw links in stick representation. The program
intakes the vertices of the links and outputs pictures such as Figure 8.
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