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Abstract

We develop techniques for embedding complete graphs on mn vertices
into a m× n grid such that minimum grid cutwidth can be obtained.

1 Introduction

A graph G = (V, E) consists of a set V of vertices and a set E of edges connecting
pairs of vertices. A complete graph with n vertices, denoted by Kn, is a graph
in which every vertex is connected to every other vertex by a single edge. To
embed a graph onto a grid, the vertices are arranged so that they form a grid
and edges between vertices are routed so that they follow horizontal and vertical
movements outlined by the grid formation of the vertices. The focus of this
paper is the embedding of the complete graph of mn vertices onto an m × n
grid. In particular, this paper is interested in finding the grid cutwidth of such
a graph embedded in an m× n grid. Initially for any m× n grid, the following
lower bound on the grid cutwidth can be set:

gcw(Km×n) ≥





mn2

4 n even

m(n2−1)
4 n odd.

This lower bounded is derived from the fact that if we divide an m× n grid
as evenly as possible into two parts, there will be, if n is even, mn

2 vertices on
the left which we want to connect to the mn

2 vertices on the right. Thus, m2n2

4
edges must be run to connect the left to the right. Further, since there are m

paths leading from left to right, there must be at least mn2

4 edges running across
one of these m paths. A similar process can be repeated for n odd.

To show that this lower bound can be met in general with any m×n grid, a
general construction for an m× n grid will be used and shown to give the grid
cutwidth previously established by the lower bound. The following are common
terms that will be used in the explanation of the proof:
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Definition: The cutwidth of an embedding of a graph is the maximum number
of edges passing between two adjacent edges.
Definition: The cutwidth of a graph is the minmum cutwidth among all pos-
sible embeddings.
Definition: A horizontal section is a horizontal path that leads between two
adjacent vertices.
Definition: Horizontal cutwidth or hcw is the greatest cutwidth along any
horizontal section.
Definition: A vertical section is a vertical path that leads between two adjacent
vertices.
Definition: Vertical cutwidth or vcw is the greatest cutwidth along any vertical
section.
Definition: Grid cutwidth or gcw is the greatest cutwidth of any section of a
grid.

2 Background

In 1996, Bezrukov[?] discusses the congestion, or grid cutwidth, of the n-cube
embedded on a grid. In this paper, Bezrukov proved that the linear cutwidth
of a cube in n dimensions is given by the following equation:

lcw(Qn) =





2n+2−2
3 if n is even

2n+1−1
3 for h even.

Bezrukov went on to prove the grid cutwidth of a cube in n dimensions was
the following:

gcw(Qn : P2n1 × P2n2 ) = cw(Qn2).

This means that, since a cube in n dimensions has 2n vertices, an n-cube
can be embedded in grids of different sizes by factoring 2n into 2n1 ×2n2 , which
can be thought of as a grid of width 2n1 and length 2n2 . Thus, as indicated by
the equation, the grid cutwidth of a cube in n dimensions is given by the linear
cutwidth of the cube in dimension n2 (n2 ≥ n1).

In 1998, Mario Rocha[?] wrote a paper involving the cutwidth of trees em-
bedded in grids of various sizes. Some results that Rocha was able to prove
were:

For h ≤ 7, the cutwidth is one when T2,h, a Binary tree of height h, is
embedded into a grid with dimensions given by:

n×m =





(2
h+1
2 − 1)× (2

h+1
2 + 1) for h odd

(2
h
2 )× (2

h+2
2 ) for h even.

For all h, the cutwidth is one when T2,h is embedded into a grid with dimen-
sions given by:
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n×m =





(2
h+2
2 − 1)× (2

h+2
2 − 1) for h even

(2
h+1
2 − 1)× (2

h+3
2 − 1) for h odd.

Also in 1998, Sara Hernandez[?] wrote a similar paper discussing the band-
width of binary trees embedded into grids. Hernandez’s main result was the
establishment of the following lower bound for the bandwidth of complete bi-
nary trees embedded into grids with the smallest dimensions:

bw(Th) ≥




((3)2
h
2 − 2)/2h when h is even

(2
h+1
2 − 1)/h when h is odd.

In 1996, Francisco Rios[?] proved that for any complete graph Kn on n
vertices the linear cutwidth is equal to the following:

lcw(Kn) =





n2

4 n even

n2−1
4 n odd.

Rios went on to show that the cyclic cutwidth of a complete graph on n
vertices is:

ccw(Kn) =





lcw(Kn)+2
2

n
2 even

lcw(Kn)+1
2

n
2 odd

lcw(Kn)
2 n odd.

Finally in 2001, Annie Wang[?] worked on the embedding of a complete
graph of 2n vertices into a 2× n grid. Wang found the following result for the
cutwidth of K2×n:

gcw(K2×n) =





n2

2 if n is even

n2−1
2 if n is odd.

While all of these results vary in relevance to the embedding of complete
graphs of mn vertices on to a grid, the ideas and results from all of them are
used in some way throughout this paper.

3 Constructing a Complete m× n grid

3.1 Numbering

All vertices are numbered with two numbers. The first number corresponds to
the row and the second number corresponds to the column. For example, a 2×3
grid would be numbered as follows:
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a11 a13a12

a21 a22 a23
Figure 1

3.2 Connecting Vertices

Vertices within the same row or column are connected with strictly vertical or
horizontal lines.

Figure 2

By convention, these lines will not be drawn in order to simplify the drawing.
Vertices in different rows and columns are connected in one of two ways:

• connected with a path that travels vertically until it reaches the row of the
corresponding vertex of destination and then proceeds horizontally until
it reaches the vertex. (1)

• connected by a path that travels horizontally until it reaches the column
of the vertex of destination and then proceeds vertically until it reaches
the vertex. (2)

Both (1) and (2) are used alternately to connect a vertex to the vertices of
a different row. First (1) is used then (2) is used. For example, Figure 3 shows
how a21 would be connected to the vertices of the first row. Vertices a21 and
a12 are connected with (1); Vertices a21 and a13 are connected with (2); and so
on.

Figure 3
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This alternation patterns distributes the quantity of vertical crossing edges
among all vertical sections as the figure below shows by denoting the cutwidth
that corresponds to each vertical and horizontal section.

5 3 5

3 4

3 4 3

3

3 5 5 5

8 12

8 12 12 8

812

5 5

Figure 4 Figure 5

As it can be seen in the above figures, the vertical cutwidth of a 2× n grids
where n is even alternates n + 1, n− 1, n + 1, . . . , n + 1, n− 1. A similar pattern
can be seen for 2 × n grids where n is odd. In this case the vertical cutwidth
remains n. This can be shown to be generally true by the simplification of the
following algorithm for finding the cutwidth of a vertical section:

When n is even and r is the column

vcw(K2×n) =





2(n−(r−1)
2 + r−1

2 ) + 1 r odd

2(n−r
2 + r

2 − 1) + 1 r even.

When n is odd

vcw(K2×n) =





2(n−(r−1)
2 + r

2 − 1) + 1 r odd

2(n−r
2 + r−1

2 ) + 1 r even.

These simplify to:

vcw(K2×n) =
{

n + 1 r odd
n− 1 r even When n is even.

vcw(K2×n) =
{

n r odd
n r even When n is odd.

This same fact about the cutwidth of 2 × n grids can be extended to the
cutwidth of grids with more than 2 rows. Consider a 3 × 3 grid. The vertical
cutwidth between a11 and a21; a12 and a22; and a13 and a23 are all the same
because n is odd and all can be thought of as being contained within the same
2×n grids. For example, a11 and a21; a12 and a22; and a13 and a23 are contained
within the 2× n grids outlined by a11,a21,a23,a13 and a11,a31,a23,a33.

5



a11 a13a12

a21 a22 a23

a31 a32 a33
Figure 6

The same argument can be made for why the vertical cutwidth between a21 and
a31; a22 and a32; and a23 and a33 are the same. These are contained within the
2 × n grids outlined by a21,a31,a33,a23 and a11,a31, a23,a33. This remains true
as grid size increases. This result will be used in section 5 to find the vertical
cutwidth.

4 Horizontal Cutwidth

First, only the horizontal cutwidth of an m× n grid will be found for all cases
except for the special case m = n such that m and n are both even. In the next
section the vertical cutwidth of an m× n grid will be found. Then in the final
section both the horizontal and vertical cutwidths will be evaluated to yield the
final results for the cutwidth of an m× n grid.

The horizontal cutwidth of a complete graph with m×n vertices embedded
on an m× n grid can be divided into the following cases:

• n even

• n odd.

In each case, it will be shown that the greatest cutwidth is in the center for
2 × n grids. However, this can be extended to m × n grids also because every
row added contributes the same cutwidth that was originally added to the linear
cutwidth of a 2× n grid.

4.1 n even

For this case we must consider the following subcases:

• n
2 even

• n
2 odd.
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4.1.1 n even and n
2 even

By Rios Theorem we expect the the linear cutwidth to occur in the center of a
horizontal side. Therefore, let us first find the cutwidth of this middle section
for the first row of a 2× n grid.

First, we divide the graph into two equal parts with the same number of
vertices on either side.

a11 a12

a21 a22

a1(n-1) a1n(  )n
2
_+1a1 

(  )n
2
_+1a2 a2 (  )n

2
_+2

n
2
_a1 

a2 n2
_

(  )n
2
_-1a1 

(  )n
2
_-1a2 a2(n-1) a2n

a1 (  )n
2
_+2

Figure 8

In the figure above, connecting the shaded vertices on the upper left to the
shaded vertices on the lower right contributes to the cutwidth of this middle
section. Since there are n

4 vertices on the upper left and n
4 vertices on the lower

right, there will be a total of (n
4 )(n

4 ) or n2

16 edges passing through this middle
section. Also in the diagram, connecting the n

4 shaded vertices on the lower left
to the n

4 shaded vertices on the upper right contributes to the cutwidth of this
middle section. So, there will be another n2

16 edges passing through this middle
section. Thus far the cutwidth of this middle section is n2

8 , but connecting the
unshaded vertices in the upper left to the unshaded vertices on the lower right
and connecting the unshaded vertices in the lower left to the unshaded vertices
on the upper right yields another n2

8 . Therefore the total cutwidth excluding
the linear cutwidth is n2

4 . From the shading of the vertices one can also see
that the cutwidth of the second row’s middle section will be the same as the
first row’s. Thus, it is sufficient to consider only the cutwidth of the first row
in trying to find the horizontal cutwidth of a 2×n grid. Now, it is necessary to
check whether the middle has the greatest cutwidth of all horizontal sections.
If we continue to shade our vertices in the same manner as before, the following
algorithm can be derived for the cutwidth of any horizontal section, where r is
the column is the cutwidth between the r column and the r + 1 column:

hcw(K2×n) =





4( r
2

(n−r)
2 ) r even

( r−1
2 )( (n−r)+1

2 ) + ( r+1
2 )( (n−r)+1

2 ) + ( r+1
2 )( (n−r)−1

2 ) + ( r−1
2 )( (n−r)−1

2 ) r odd.

This simplifies to:

hcw(K2×n) =
{

r(n− r) r even
r(n− r) r odd.

Since r(n − r) is maximized where r = n
2 and all rows are identical, the

middle section found before is the horizontal cutwidth of a 2×n grid. Now if we
add a row to our 2×n grid the horizontal cutwidth remains in the middle section
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and, is the cutwidth of the middle section of the first row. This is because every
row in the grid remain identical to each other despite the addition of rows. This
is because every row can be thought as being in (m − 1) 2 × n grids for which
all contribute n2

4 , the cutwidth of a 2 × n grid, to the cutwidth to its middle
section. For example, consider a 3 × 4 grid. As can be seen in Figures 9a and
9b, the first row can be thought of as being in two 2 × 4 grids outlined by the
shaded vertices. Similarly, the second and third row can be thought of as being
in two 2× 4 grids as shown in Figures 9a through 9c.

Figure 9a Figure 9b

Figure 9c

Therefore, the horizontal cutwidth excluding the linear cutwidth of the row
would be (m− 1)n2

4 . Thus, the horizontal cutwidth of an m× n grid such that
n even and n

2 even is:

hcw(Km×n) =
mn2

4
.

4.1.2 n even and n
2 odd

By Rios Theorem we expect the the linear cutwidth to occur in the center of a
horizontal side. Therefore, let us first find the cutwidth of this middle section
for the first row of a 2× n grid.

First, we divide the graph into two equal part with the same number of
vertices on either side.

a11 a12

a21 a22

a1(n-1)

a2(n-1)

a1n

a2n

(  )n
2
_+1a1 

(  )n
2
_+1a2 

a1 (  )n
2
_+2

a2 (  )n
2
_+2

n
2
_a1 

a2 n2
_

(  )n
2
_-1a1 

(  )n
2
_-1a2 

Figure 10

In Figure 10, connecting the shaded vertices on the upper left to the shaded
vertices on the lower right contributes to the cutwidth of this middle section.
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Since there are
n
2−1

2 vertices on the upper left and
n
2 +1

2 vertices on the lower
right, there will be a total of (

n
2−1

2 )(
n
2 +1

2 ) or n2−4
16 edges passing through this

middle section. Also in the figure, connecting the
n
2 +1

2 shaded vertices on the
lower left to the

n
2 +1

2 shaded vertices on the upper right contributes to the
cutwidth of this middle section. So, there will be another n2+4n+4

16 edges passing
through this middle section. Thus far the cutwidth of this middle section is
n2+2n

8 , but connecting the unshaded vertices in the upper left to the unshaded
vertices on the lower right and connecting the unshaded vertices in the lower
left to the unshaded vertices on the upper right yields another n2−2n

8 . Therefore
the total cutwidth excluding the linear cutwidth is n2

4 . From the shading of the
vertices one can also see that the cutwidth of the second row’s middle section
will be the same as the first row’s. Thus, it is sufficient to consider only the
cutwidth of the first row in trying to find the horizontal cutwidth of a 2×n grid.
Now, it is necessary to check whether the middle has the greatest cutwidth of all
horizontal sections. If we continue to shade our vertices in the same manner as
before the following algorithm can be derived for the cutwidth of any horizontal
section, where r is the column to the left of the horizontal section that one wants
the cutwidth of:

hcw(K2×n) =





4( r
2

(n−r)
2 ) r even

( r−1
2 )( (n−r)+1

2 ) + ( r+1
2 )( (n−r)+1

2 ) + ( r+1
2 )( (n−r)−1

2 ) + ( r−1
2 )( (n−r)−1

2 ) r odd.

This simplifies to:

hcw(K2×n) =





r(n− r) r even

r(n− r) r odd.

Since r(n−r) is maximized where r = n
2 and all rows are identical, the result for

the cutwidth of the middle section found before is the horizontal cutwidth of a
2×n grid. Now if we add a row to our 2×n grid the horizontal cutwidth remains
in the middle section and, is the cutwidth of the middle section of the first row.
This is because every row in the grid remain identical to each other despite the
addition of rows. This is because every row can be thought as being in (m− 1)
2 × n grids for which all contribute n2

4 , the cutwidth of a 2 × n grid, to the
cutwidth to its middle section.Therefore, the horizontal cutwidth excluding the
linear cutwidth of the row would be (m− 1)n2

4 . Thus, the horizontal cutwidth
of an m× n grid such that n even and n

2 even is:

hcw(Km×n) =
mn2

4
.

4.2 n odd

Similar to the previous case, we are going to concentrate on the cutwidth of
the middle section, a1( n−1

2 ) to a1( n−1
2 +1). However, this case must be further
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divided into the following cases:

• n+1
2 odd

• n+1
2 even.

4.2.1 n odd and n+1
2 odd

a11 a12

a21 a22

a1(n-1)

a2(n-1)

a1n

a2n

a1 n-1
2

___a1 (   )n-1
2

___-1 a1 (   )n-1
2

___+2a1 (   )n-1
2

___+1

a2 (   )n-1
2

___+2a2 (   )n-1
2

___+1a2 n-1
2

___a2 (   )n-1
2

___-1

Figure 11

In Figure 11 above, connecting the n−1
4 shaded vertices on the

n+1
2 +1

2 upper
left to the shaded vertices on the lower right contributes to the cutwidth of this
middle section. Thus, there will be a total of n−1

4

n+1
2 +1

2 or (n−1)(n+3)
16 edges

passing through this middle section. Connecting the n−1
4 shaded vertices on

the lower left to the
n+1

2 +1

2 shaded vertices on the upper right contributes to
the cutwidth of (n−1)(n+3)

16 to the middle section. Thus far the cutwidth of
this middle section is (n−1)(n+3)

8 . Now, connecting the n−1
4 unshaded vertices

in the upper left to the
n+1

2 −1

2 unshaded vertices on the lower right yields an

additional (n−1)2

16 . Then connecting the n−1
4 unshaded vertices in the lower left

to the
n+1

2 −1

2 unshaded vertices on the upper right also yields another (n−1)2

16 .
Therefore the total cutwidth excluding the linear cutwidth is n2−1

4 . Again we
must consider whether the middle has the greatest cutwidth of all horizontal
sections. If we continue to shade our vertices in the same manner as before the
following algorithm can be derived for the cutwidth of any horizontal section,
where r is the column:

hcw(K2×n) =





2( r−1
2

(n−r)
2 ) r even

2( r
2

(n−r)+1
2 ) + ( r

2
(n−r)−1

2 ) r odd.

This simplifies to:

hcw(K2×n) =





r(n− r) r even

r(n− r) r odd.

The maximum of r(n − r) occurs where r = n−1
2 and since all rows are

identical, the the result found before is the horizontal cutwidth of a 2× n grid.
Again the addition of rows to our 2 × n grid doesn’t move the location of the
horizontal cutwidth. Every row added can be thought of as contributing another
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n2−1
4 to the cutwidth of the middle section. Therefore, the horizontal cutwidth

of an m× n grid such that n even and n+1
2 is even is:

hcw(Km×n) =
m(n2 − 1)

4
.

4.2.2 n odd and n+1
2 even

a11 a12

a21 a22

a1(n-1)

a2(n-1)

a1n

a2n

a1 n-1
2

___a1 (   )n-1
2

___-1 a1 (   )n-1
2

___+2a1 (   )n-1
2

___+1

a2 (   )n-1
2

___+2a2 (   )n-1
2

___+1a2 n-1
2

___a2 (   )n-1
2

___-1

Figure 12

In the diagram above, connecting the
n−1

2 −1

2 shaded vertices on the upper
left to the n+1

4 shaded vertices on the lower right contributes to the cutwidth

of this middle section. Then connecting the
n−1

2 +1

2 shaded vertices on the lower

left to the n+1
4 shaded vertices on the upper right contributes (n+1)2

16 to the
cutwidth of this middle section. Thus far the cutwidth of this middle section is
n2−1

8 . Now connecting the unshaded vertices in the upper left to the unshaded

vertices on the lower right yields an additional (n+1)2

16 . Then connecting the
unshaded vertices in the lower left to the unshaded vertices on the upper right
also yields another (n−1)(n+3)

16 . Therefore the total cutwidth excluding the linear
cutwidth is n2−1

4 . Now we must consider whether the middle has the greatest
cutwidth of all horizontal sections. If we continue to shade our vertices in the
same manner as before the following algorithm can be derived for the cutwidth
of any horizontal section, where r is the column:

hcw(K2×n) =





2( r−1
2

(n−r)
2 + r+1

2
n−r

2 ) r even

2( r
2

(n−r)+1
2 ) + ( r

2
(n−r)−1

2 ) r odd.

This simplifies to:

hcw(K2×n) =





r(n− r) r even

r(n− r) r odd.

Since the maximum of r(n− r) is where r = n−1
2 and all rows are identical,

the result found before is the horizontal cutwidth of a 2 × n grid. Again the
addition rows to our 2×n grid doesn’t change. Since every row can be thought
as being in (m − 1) 2 × n grids for which all contribute n2−1

4 to the cutwidth
of its middle section, the horizontal cutwidth excluding the linear cutwidth of
the row would be (m− 1)n2−1

4 . Thus, the horizontal cutwidth of an m× n grid
such that n even and n+1

2 is odd is:
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hcw(Km×n) =
m(n2 − 1)

4
.

4.3 Conclusion

The horizontal cutwidth of a grid is:

hcw(Km×n) =





mn2

4 n even

m(n2−1)
4 n odd.

5 Vertical Cutwidth

In finding the vertical cutwidth of a complete graph on m×n vertices embedded
in an m× n grid let us consider the following cases:

• m even and n even m 6= n

• m even and n odd

• m odd and n even

• m odd and n odd.

5.1 m even and n even and m 6= n

For this case consider a 4× 6 grid. By Rios Theorem it is known that the linear
cutwidth of a vertical side of the grid will occur in the middle section and it will
be m2

4 . Therefore, the final cutwidth of the middle will be m2

4 +x such that x is
the quantity of lines that pass across this middle section from the points either
directly above or below the middle. The value of x can be found by summing
the amount of edges needed to connect the vertices above and below the vertical
section to every other column on the opposing side of the grid.

Figure 13
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Thus, there are m
2 vertices above the middle section in the first column to

which we want to connect the m
2

n
2 vertices below the middle section. Therefore,

there must be m
2

m
2

n
2 edges passing across this middle section. The same process

is repeated to connect the m
2 vertices below the middle section in the first column

to the m
2

n
2 vertices above. This yields another m2n

8 thereby creating a cutwidth,
excluding the linear cutwidth, of m2n

4 . However, m2n
4 is just the cutwidth of the

middle. The question of whether this is the vertical cutwidth along any vertical
side. Therefore, it is necessary to show that all cutwidths above or below the
middle are less than or equal to it, because it has already been shown that
the vertical sections remain the same or alternate with the greatest value first.
By Rios Theorem we know that the linear cutwidth decreases as one proceeds
from the middle. Thus, it is not necessary to consider the linear cutwidth if we
can show that the number added to the linear cutwidth also decreases as one
proceeds from the middle. Further, since construction of the grid is symmetric
about the center of the grid it is only necessary to show that the cutwidth
decrease as one proceeds up from the middle (the cutwidth below will mirror
the cutwidth above).

Now, if we consider the cutwidth of the section just above the middle, we
know that within this column there are m

2 − 1 vertices above the section and
m
2 + 1 vertices below the section. Connecting the vertices above and below the
section to every other row of vertices on the other side is what contributes to
the cutwidth on the section. So, connecting the n

2 − 1 vertices above to every

other row of vertices below yields (m
2 − 1)(m

2 + 1)(n
2 ) or (m2−4)n

8 .

Figure 14

Then a similar process is done for the vertices below the section. The m
2 +1

vertices below the section are connect to every other row of vertices above the
section, which also yields (m

2 −1)(m
2 +1)(n

2 ) or (m2−4)n
8 . Therefore, making the

cutwidth of the section, excluding the linear cutwidth, (m2−4)n
4 .

Now we know that the vertical cutwidth of the middle vertical section is m2n
4

and the vertical cutwidth of the section just above it is (m2−4)n
4 . The (m2−4)n

4 is
clearly less than m2n

4 because (m2−4) < m2. Further, as one proceeds up the 4
in (m2 − 4) will continually increase. Thereby, decreasing the vertical cutwidth
as one proceeds up. Therefore, the vertical cutwidth is achieved in the middle
section, the cutwidth of an m×n grid such that m and n are even and not equal
is:
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vcw(Km×n) =
m2(n + 1)

4

5.2 m even and n odd

For this case consider a 4× 5 grid. Again Rios Theorem tells us that the linear
cutwidth of the vertical section of the grid will occur in the middle and will
be m2

4 . The contribution of the rest of the grid to this cutwidth can be found
in a similar manner as before. There are m

2 vertices above the middle in the
first column to which we want to connect m

2
n−1

2 vertices below the middle.
Therefore, there must be m

2
m
2

n−1
2 edges passing through the middle section.

Figure 15

The same process is repeated for the vertices below the middle. The m
2

vertices below the middle in the first column are connected to the m
2

n−1
2 vertices

above the vertical. These two cutwidths summed together give a final cutwidth,
excluding the linear cutwidth, of m2(n−1)

4 .
Again it is necessary to show that is the vertical cutwidth occurs in the

middle. Similar to the previous case, the cutwidth of the section just above the
middle is found to be 2m+2

2
m−2

2
n−1

2 or m2−4)(n−1)
4 .

Figure 16

Now we know that the vertical cutwidth of the middle vertical section is
m2(n−1)

4 and the vertical cutwidth of the section just above it is (m2−4)(n−1)
4 .

The (m2−4)(n−1)
4 is clearly less than m2(n−1)

4 because (m2−4) < m2. Further, as

14



one proceeds up the 4 in (m2−4) will continually increase. Thereby, decreasing
the vertical cutwidth as one proceeds up. Therefore, since the vertical cutwidth
is achieved in the middle section, the cutwidth of an m× n grid such that m is
even and n is odd:

vcw(Km×n) =
m2n

4
.

5.3 m odd and n even

For this case consider a 3× 4 grid. By Rios Theorem the linear cutwidth of the
vertical section of the grid will occur in the middle section and will be m2−1

4 .
The contribution of the rest of the grid to this cutwidth can be found in a
similar manner as before. Since there are m−1

2 vertices above the middle in the
first column to which we want to connect m+1

2
n
2 vertices below the middle there

must be m−1
2

m+1
2

n
2 edges passing through the middle section.

Figure 17

The same process is repeated for the vertices below the middle in the first
column. The m+1

2 vertices below the middle are connected to the m−1
2

n
2 vertices

above the vertical. These two cutwidths summed together give a final cutwidth,
excluding the linear cutwidth, of (m2−1)n

4 . Again it is necessary to show that
is the greatest cutwidth along the vertical side. Similar to the previous case,
the cutwidth of the section just above the middle is found to be 2m−3

2
m+3

2
n
2 or

m2−9)n
4 .

Figure 18

Now we know that the vertical cutwidth of the middle vertical section is
(m2−1)n

4 and the vertical cutwidth of the section just above it is (m2−9)n
4 . The

15



(m2−9)n
4 is clearly less than (m2−1)n

4 because (m2 − 9) < (m2 − 1). Further, as
one proceeds up the 9 in (m2 − 9) will continually increase, thereby, decreasing
the vertical cutwidth as one proceeds up. Therefore since the greatest cutwidth
is achieved in the middle section and the cutwidth of all vertical sides are the
same, the cutwidth of an m× n grid such that m is even and n is odd:

vcw(Km×n) =
(m2 − 1)(n + 1)

4
.

5.4 m odd and n odd

For this case consider a 3 × 5 grid. By Rios Theorem the linear cutwidth of
the vertical section of the grid will occur in the middle and will be m2−1

4 . The
contribution of the rest of the grid to this cutwidth can be found in a similar
manner as before. Since there are m−1

2 vertices above the middle in the first
column to which we want to connect m+1

2
n−1

2 vertices below the middle there
must be m−1

2
m+1

2
n−1

2 edges passing through the middle section.

Figure 19

The same process is repeated for the vertices below the middle in the first
column. The m+1

2 vertices below the middle are connected to the m−1
2

n−1
2

vertices above the section. These two cutwidths summed together give a final
cutwidth, excluding the linear cutwidth, of (m2−1)(n−1)

4 . Again it is necessary
to show that is the vertical cutwidth. Similar to the previous case, the cutwidth
of the section just above the middle is found to be 2m−3

2
m+3

2
n−1

2 or m2−9)(n−1)
4 .

Figure 20

Now we know that the vertical cutwidth of the middle vertical section is
(m2−1)(n−1)

4 and the cutwidth of the section just above it is (m2−9)(n−1)
4 . The

(m2−9)(n−1)
4 is clearly less than (m2−1)(n−1)

4 because (m2 − 9) < (m2 − 1). Fur-
ther, as one proceeds up the 9 in (m2 − 9) will continually increase. Thereby,

16



decreasing the vertical cutwidth as one proceeds up. Therefore since the great-
est cutwidth is achieved in the middle section and the cutwidths of all vertical
sections are the same, the vertical cutwidth of an m × n grid such that m is
even and n is odd:

vcw(Km×n) =
(m2 − 1)n

4
.

5.5 Conclusion

The vertical cutwidth of a grid is:

vcw(Km×n) =





m2(n+1)
4 m and n even, m 6= n

m2n
4 m even and n odd

(m2−1)(n+1)
4 m odd and n even

(m2−1)n
4 m odd and n odd.

6 m and n Even and m = n

For this particular case the normal manner of constructing the grid will not
yield the smallest cutwidth for the grid. To construct the grid with the smallest
cutwidth, the first row is connected to the second with the standard (1) then
(2) pattern as used before. However, the second row is connected to the first
by (2) then (1) in alternation. For example, in a 3 × 4 grid the first two rows
would be connected as shown in Figure 21.

Figure 21

The first and third rows would be connected as shown in Figure 22.

Figure 22

With this technique of construction m and n even with m = n can be divided
into the following two cases:

• m and n even and m = n and m multiple of four

• m and n even and m 6= n and m not a multiple of four.
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6.1 m and n even and m = n and m multiple of four

Like previous cases, we are first going to consider a 2 × n grid and then the
2×n grid can be extended to the m×n grid. First, we are going to develop an
algorithm for finding the cutwidth of the first row.

Figure 23a Figure 23b

Figure 23c Figure 23d

From the Figures 23a-23d above, the following algorithm can be derived:

hcw(K2×n) =





2( r−1
2 )(n−r+1

2 ) + 2( r+1
2 )(n−r−1

2 ) r odd

4( r
2 )(n−r

2 ) r even.

This simplifies to:

hcw(K2×n) =





r(n− r)− 1 r odd

r(n− r) r even.

The equation r(n−r) is maximized when r = n
2 . However, n

2 is even. So, for
our odd portion of the equation the closest odd integer would be n+2

2 or n−2
2 .

Thus, the greatest that the even portion could be is n2

4 and the greatest that
the odd portion could be is n2

4 − 2. Therefore, the cutwidth of the first row is
n2

4 .
A similar process is repeated for the second row, which yields:

hcw(K2×n) =





2( r−1
2 )(n−r−1

2 ) + 2( r+1
2 )(n−r+1

2 ) r odd

4( r
2 )(n−r

2 ) r even.

This simplifies to:

hcw(K2×n) =





r(n− r) + 1 r odd

r(n− r) r even.

The equation r(n − r) is maximized when r = n
2 . However, n

2 is even. So
again, for our odd portion of the equation the closest odd integer would be n+2

2

or n−2
2 . Thus, the greatest that the even portion could be is n2

4 and the greatest
that the odd portion could be is n2

4 . Therefore, the greatest cutwidth on the
second row is n2

4 .

18



Since the cutwidth of both the first and second rows is n2

4 , the horizontal
cutwidth of K2×n is n2

4 . This result for K2×n can now be applied to Km×n by
multiplying n2

4 by (m−1), the number of 2×n grids that any row in a m×n is
contained within. Thus, with the addition of the linear cutwidth, the horizontal
cutwidth of a Km×n is:

hcw(Km×n) =
mn2

4
.

Now we are going to discover the vertical cutwidth of an m× n grid by first
considering the vertical cutwidth of a 2 × n grid. If we analyze the Figures
24a-24d below, we see than the connecting of the vertices between the dashed
lines to the shaded vertices contributes to the cutwidth of the vertical section
between the dashed lines.

Figure 24a Figure 24b

Figure 24c Figure 24d

From this the following algorithm can be derived for the cutwidth each ver-
tical section:

vcw(Km×n) =





2( r−1
2 ) + (n−r−1

2 ) + (n−r+1
2 ) r odd

( r−2
2 ) + ( r

2 ) + 2(n−r
2 ) r even.

This simplifies to:

vcw(Km×n) =





n− 1 r odd

n− 1 r even.

Therefore, since the vertical cutwidth stays the same for all vertical sections,
the vertical cutwidth of a 2 × n grid, excluding linear cutwidth, is n − 1. This
can now be used to find the vertical cutwidth of an m× n grid by multiplying
n − 1 by m2

4 , the number of 2 × n grids that the middle vertical section is
contained within. This yields the following for the vertical cutwidth of a m× n
grid, including linear cutwidth:

vcw(Km×n) =
mn2

4
.

Thus, since the vertical and horizontal cutwidths are the same, the grid
cutwidth of a m×n grid where m = n, mn is a multiple of four, and both even
is the following:

gcw(Km×n) =
mn2

4
.
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6.2 m and n even and m = n and m not a multiple of four

As with previous cases, we are first going to consider a 2× n grid and then the
2×n grid can be extended to the m×n grid. First, we are going to develop an
algorithm for finding the cutwidth of the first row.

Figure 25a Figure 25b

Figure 25c Figure 25d

From Figures 25a-25c above, the following algorithm can be derived:

hcw(K2×n) =





2( r−1
2 )(n−r+1

2 ) + 2( r+1
2 )(n−r−1

2 ) r odd

4( r
2 )(n−r

2 ) r even.

This simplifies to:

hcw(K2×n) =





r(n− r)− 1 r odd

r(n− r) r even.

The equation r(n− r) is maximized when r = n
2 . However, n

2 is odd. So, for
our even portion of the equation the closest even integer would be n+2

2 or n−2
2 .

Thus, the greatest that the even portion could be is n2

4 −1 and the greatest that
the odd portion could be is n2

4 − 1. Therefore, the cutwidth of the first row is
n2

4 − 1 and can be thought of as being located in the middle.
A similar process is repeated for the second row, which yields:

hcw(K2×n) =





2( r−1
2 )(n−r−1

2 ) + 2( r+1
2 )(n−r+1

2 ) r odd

4( r
2 )(n−r

2 ) r even.

This simplifies to:

hcw(K2×n) =





r(n− r) + 1 r odd

r(n− r) r even.

The equation r(n − r) is maximized when r = n
2 . However, n

2 is odd. So
again, for our even portion of the equation the closest even integer would be
n+2

2 or n−2
2 . Thus, the greatest that the even portion could be is n2

4 − 1 and
the greatest that the odd portion could be is n2

4 + 1. Therefore, the greatest
cutwidth is on the second row and is n2

4 + 1.

20



Since the cutwidth of the first is less than the second, n2

4 + 1 is the horizon-
tal cutwidth of K2×n. This result for K2×n can now be applied to Km×n by
multiplying n2

4 by (m−1), the number of 2×n grids that any row in a m×n is
contained within. Thus, with the addition of the linear cutwidth, the horizontal
cutwidth of a Km×n is:

hcw(Km×n) =
m(n2 + 4)

4
.

Now we are going to discover the vertical cutwidth of an m × n grid by
first considering the vertical cutwidth of a 2× n grid. If we analyze the figures
below, we see that the connecting of the vertices between the dashed lines to
the shaded vertices contributes to the cutwidth of the vertical section between
the dashed lines.

Figure 26a Figure 26b

Figure 26c Figure 26d

From this the following algorithm can be derived for the cutwidth of each
vertical section:

vcw(Km×n) =





2( r−1
2 ) + (n−r−1

2 ) + (n−r+1
2 ) r odd

( r−2
2 ) + ( r

2 ) + 2(n−r
2 ) r even.

This simplifies to:

vcw(Km×n) =





n− 1 r odd

n− 1 r even.

Therefore, since the vertical cutwidth stays the same for all vertical sections,
the vertical cutwidth of a 2 × n grid, excluding linear cutwidth, is n − 1. This
can now be used to find the vertical cutwidth of an m× n grid by multiplying
n − 1 by m2

4 , the number of 2 × n grids that the middle vertical section is
contained within. This yields the following for the vertical cutwidth of a m× n
grid, including linear cutwidth:

vcw(Km×n) =
mn2

4
.

Thus, since the horizontal cutwidth is greater than the vertical, the grid
cutwidth for this grid is m(n2+4)

4 . However, m(n2+4)
4 is much greater than the

expected mn2

4 by the lower bound. Thus, this arrangement of vertices in not
optimal.

21



Now lets see if it is possible to obtain the optimal case. To do this, let us
first sum the quantity of edges that pass through the middle sections of the
bottom portion of the grid. Since the bottom middle section was found to be
(m−1)(n2+4)

4 and every middle section is two less than the section that proceed
it, the sum of the quantity of edges that pass through the middle sections of the
bottom portion of the grid would look as follows:
[
(m− 1)(n2 + 4)

4

]
+

[
(m− 1)(n2 + 4)

4
− 2

]
+

[
(m− 1)(n2 + 4)

4
− 4

]
+. . .+

[
(m− 1)(n2 + 4)

4
− (2

n

2
− 2)

]

= m
2

(m−1)(n2+4)
4 −∑n

2
i=1(2i− 2)

= (m2−m)(n2+4)
8 − n2−2n

4 .

Ideally, the cut of all horizontal middle sections would be (m−1)n2

4 . So, let

us now find the quantity of edges we have in excess of having (m−1)n2

4 edges
per row for these middle sections in the bottom portion of the grid. This can
be done by subtracting m

2
(m−1)n2

4 edges from the total amount of edges, which
yields n

2
n
2 − n.

Note that n
2

n
2 is odd, because n

2 is odd, and n is even. Therefore, n
2

n
2 − n is

odd. Since the amount of vertices that need to be moved to the upper portion
of the graph is odd it is impossible to make all horizontal sections (m−1)n2

4 . This

is because across the middle vertical sections the cut is (m−1)n2

4 . Thus, since
every edge rerouted so that is doesn’t run across a middle horizontal section in
the lower half increases one vertical section by one and decreases another by
one. Thus, another edge must be changed in order to restore all middle vertical
sections to (m−1)n2

4 . Therefore, if we are going to retain the (m−1)n2

4 along the
middle vertical section, we must change an even number of edges. Thus, it is
impossible to obtain a grid cutwidth of mn2

4 .
Since it is impossible to obtain a grid cutwidth of mn2

4 , the next possible

chose to obtain is mn2

4 + 1 or (m−1)n2

4 + 1 without the linear cutwidth. From
before, we know that the sum of the quantity of edges that pass through the
middle sections of the bottom half of the grid is (m2−m)(n2+4)

8 − n2−2n
4 . Now

we can subtract (n
2 )( (m−1)n2

4 + 1) from this total to find the amount of edges
that need to be rerouted to the upper portion of the graph. This yield n

2
n−2

2 ,
which is always even. Therefore, it should be possible to construct a grid with
grid cutwidth mn2

4 + 1.
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Figure 27

The figure above, shows the cutwidths in various sections of our grid thus far.
Now, we are going to attempt to alter the grid in order to get a grid cutwidth
of mn2

4 + 1. To demonstrate the changes a 6× 6 grid will be used.

a21 a22 a23 a24 a25 a26

a11 a12 a13 a14 a15 a16

a a a a61 62 63 64 a65 a66
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Figure 28a Figure 28b

Figure 28a above, shows the cutwidths of all sections of the grid. First, we
are going to decrease the cutwidth of the section between a43 and a44 by 6,
which is the total number of edges over being able to make all middle horizontal
sections 46. In general, we are going to decrease the cutwidth of the section
between a( n

2 +1)( n
2 ) and a( n

2 +1)( n
2 +1) by n(n−2)

4 . Further, we are going to do this
without altering the cutwidths of any of the vertical sections. To demonstrate
how this is going to be done consider the edge connecting a43 to a14. If we
reroute this edge to run a43 to a13 to a14, we decrease a43 to a44 and a44 to a14

by a cutwidth of one and increase a43 to a13 and a13 to a14 by a cutwidth of one.
However, if we counteract this change by rerouting the edge connection a44 to
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a13 to run a44 to a14 to a13, we decrease a44 to a43 and a43 to a13 by a cutwidth
of one and increase a44 to a14 and a14 to a13 by a cutwidth of one. Thus,
the final result is an increase of two to the cutwidth between a13 to a14 and a
decrease of two to the cutwidth between a43 to a44, as can be seen in Figure
28b. In general, this can be repeated (m

2 )(
n
2 +1

2 )(
n
2 +1

2 )+(m
2 )(

n
2 +1

2 )(
n
2 +1

2 ) times,
as can be generalized by the shading in Figure 29.

a21 a22 a23 a24 a25 a26

a11 a12 a13 a14 a15 a16

a a a a61 62 63 64 a65 a66

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a56a55

a a a a31 32 33 34 a35 a36

Figure 29

However, while there are many edges that can be rerouted to decrease the
cutwidth between a( n

2 +1)( n
2 ) and a( n

2 +1)( n
2 +1), the upper portion of the grid is

only able to accept a small portion of these edges. In fact, using the sum from
before we find that there is (m−1)(n2+4)

8 + 2n−3n2

4 edge running across the middle

sections of the upper portion of the graph. If we then subtract out m
2

(m−1)n2+4
4

and use the fact that m = n, we find that the upper portion of the grid can
accept n(n+2)

4 vertices. Previously it was determined that we wanted to reroute
n(n−2)

4 edges to the upper portion of the graph. Thus, since n(n+2)
4 is always

greater than n(n−2)
4 , we will always be able to reroute n(n−2)

4 edges. Thus, we
can say that the lower portion of the grid would look as illustrated in Figure 30
or more concretely as Figure 31.
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Figure 31

Now edges for the middle section of the lower portion of the graph can be
shifted up a row to make all rows (m−1)n2

4 + 1. For example, considering the
6 × 6 grid, in order to make the section a43 to a44 equal 46, six edges will be
rerouted to that pass through the middle section of the row below. For example,
the edge connecting a53 to a14 will be rerouted to a53 to a43 to a44 to a14. To
counteract the changes made in the cutwidth and further increase the cutwidth
between a43 and a44, the edge connecting a54 to a13 will be rerouted to a54 to
a44 to a43 to a13. This process will continue until the cutwidth for the middle
section is (m−1)n2

4 + 1. Then this process is repeated for the next row until
the bottom of the grid is reached. Once completed we have a grid of cutwidth
(m−1)n2

4 + 1. Thus, the grid cutwidth is:

gcw(km×n) =
mn2

4
+ 1.
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6.3 Conclusion

The grid cutwidth of a m× n grid where m = n and m and n even is:

gcw(Km×n) =





mn2

4 m multiple of 4

mn2

4 + 1 m not a multiple of 4.

7 Conclusions

7.1 Results

The horizontal cutwidth for an m× n grid is known to be:

hcw(Km×n) =





mn2

4 n even

m(n2−1)
4 n odd.

The vertical cutwidth for an m× n grid is known to be:

vcw(Km×n) =





m2(n+1)
4 m and n even, m 6= n

m2n
4 m even and n odd

(m2−1)(n+1)
4 m odd and n even

(m2−1)n
4 m odd and n odd.

In order to prove the the cutwidth of a grid is

gcw(Km×n) =





mn2

4 n even

m(n2−1)
4 n odd,

we must prove the following inequalities:

• mn2

4 ≥ m2(n+1)
4

• mn2

4 ≥ (m2−1)(n+1)
4

• m(n2−1)
4 ≥ m2n

4

• m(n2−1)
4 ≥ (m2−1)n

4 .

The first inequality can be simplified as follows:

mn2

4 ≥ m2(n+1)
4

mn2 ≥ m2(n + 1)
n2 ≥ m(n + 1)

n2 −mn ≥ m
n(n−m) ≥ m.
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With the stipulation that n > m, n(n −m) is clearly greater than m. The
next inequality would simplify as follows:

mn2

4 ≥ (m2−1)(n+1)
4

mn2 ≥ (m2 − 1)(n + 1)
mn2 ≥ m2n + m2 − n− 1

1 ≥ m2n + m2 − n−mn2

1 ≥ mn(m− n) + m2 − n
1 ≥ m(n(m− n) + m)− n.

Since n > m, m(n(m − n) + m) − n will always be less than 1. Therefore,
the inequality is true. Simplification of the next inequality is:

m(n2−1)
4 ≥ m2n

4
m(n2 − 1) ≥ m2n

(n2 − 1) ≥ mn
n− 1

n ≥ m.

Since n > m and m and n are integer, n − 1
n will always be greater than

m. This is because the closest that m and n could be is 1 apart and n minus a
fraction less than 1 will always be greater than m, which is n− 1. Finally, the
last inequality would simplify as follows:

m(n2−1)
4 ≥ (m2−1)n

4
m(n2 − 1) ≥ (m2 − 1)n
mn2 −m ≥ m2n− n
mn2 + n ≥ m2n + m

n(mn + 1) ≥ m(mn + 1)
n ≥ m.

Since all four inequalities are true the following theorem can be made with
the inclusion of m = n and m and n even:
Theorem: The cutwidth for any embedding of a complete graph on an m× n
grid such that m ≤ n is:

gcw(Km×n) =





mn2

4 n even and m 6= n

mn2

4 n even and m = n and m multiple of four

mn2

4 + 1 n even and m = n and m not a multiple of four

m(n2−1)
4 n odd.

7.2 Open Questions

After completion of complete graphs embedded on grids, work was begun on
complete bipartite graphs embedded on grids. While we were able to complete
some results on grid cutwidth, much work has yet to be done.
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