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Abstract

The Ramsey number is known for only a few specific knots and links,
namely the Hopf link and the trefoil knot (although not published in
periodicals). We establish the lower bound of all Ramsey numbers of any
knot to be one greater than its stick number.

1 Background and Definitions

The study of Ramsey numbers of knots can be found at the intersection of knot
theory and graph theory.

1.1 Knot Theory Background

A knot is a simple closed curve in <3, while a link is a set of disjoint knots.
As shown in figure 1 the unknot(a), trefoil knot(b), figure-8 knot(c), unlink(d),
and Hopf link(e) are examples of inequivalent links.

Figure 1 - Some simple knots

Stick knots are knots composed of straight line segments intersecting only
two at a time. The stick number, s(k), of a knot k, is the fewest number of
sticks necessary to embed a knot in <3. Many stick numbers for knots are
known (MM). For example, s(unknot) = 3, s(unlink) = 6, s(trefoil) = 6,
and s(figure − 8) = 7. Illustrations of these are in Figure 2. Also, Calvo has
classified all 8-stick knots(JC).
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stick unknot stick trefoil stick figure-8

Figure 2 - Some simple knots

1.2 Graph Theory Background

A graph, G = (V, E, δ), consists of a set, V , of vertices, a set, E, of edges that
connects pairs of vertices, and a function, δ, that identifies the vertices incident
to each edge. The complete graph Kn is a graph of n vertices in which there
exists an edge between all vertices. A path is a sequence of distinct adjacent
vertices. A cycle consists of a path with identical beginning and ending points.
A Hamiltonian cycle of a graph is a cycle which is composed of all vertices of
the graph. A spatial embedding of a graph is a mapping of a graph onto <3 such
that all edges are simple closed curves intersecting only at the ends of edges,
while a linear embedding of a graph spatial embedding such that all edges are
non-intersecting straight line segments.

Figure 3 - Examples of linear embeddings of K3 and K5

1.3 Ramsey Number Introduction

A cycle or set of disjoint cycles of a complete graph embedded in <3 is a link.
Negami (91) proved the existence of a finite integer, n, such that any linear
embedding of the complete graph, Kn, (of n vertices) contains a cycle home-
omorphic to the link k. (after SN). This finite integer is called the Ramsey
number, R(k), of a link, k. Since equivalence of links can defined in many ways,
Negami also showed the existence of a finite integer, R+(k), such that any linear
embedding of Kn with n ≥ R+(k) contains a link ambient isotopic to k.

Conway’s and Gordon’s paper, ”Knots and Links in Spatial Graphs,” (1983)
provided useful results for finding Ramsey numbers of knots and links:

• Theorem 1: Every spatial embedding of K6 contains a nontrivial link.

• Theorem 2: Every spatial embedding of K7 contains a nontrivial knot.
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From Theorem 1, it is easily shown that R(Hopflink) = 6.

• Theorem 3: The Ramsey number of the hopf link is 6.

Since all linear embeddings of a complete graph are spatial embeddings,
every linear embedding of K6 contains a nontrivial link. The hopf link is the
only nontrivial link with stick number less than or equal to 6. Hence, every
linear embedding of K6 contains the hopf link. Thus, the Ramsey number of
the hopf link is 6. An example of a linear embedding of K6, and the hopf link
it contains, is illustrated in Figure 4.

Figure 4 - A linear embedding of K6 containing the Hopf link

Similar results are not easy to obtain from Theorem 2, since both the trefoil
and figure-8 are knots with stick numbers less than or equal to seven. However,
results about the bounds of the Ramsey numbers of the trefoil and figure-8
can be made. By examining a particular linear embedding of K7, it can be
shown that any Hamiltonian cycle, a 7-cycle, is equivalent to a 6-cycle. This
would mean that not every linear embedding of K7 will contain knots with stick
number seven, the only one being the figure-8. Hence the Ramsey number of the
figure-8 must be greater than seven. In this same embedding, the only knotted
cycles are right-handed trefoils. Thus R+(trefoil) is also greater than seven.

• Theorem 4: R(k) > 7, where k is the figure 8 knot.

• Theorem 5: R+(k) > 7, where k is the left-handed or right-handed trefoil
knot.

A similar result can be made about K8. The only knotted cycles in a specific
linear embedding of K8 are the trefoil and figure-8. Thus, as with K7, knots
with stick number eight will have Ramsey number greater than eight.

• Theorem 6: R(k) > 8, where k is any knot with stick number 8.

Clearly the Ramsey number of a knot is always greater than or equal to its
stick number(R(k) ≥ s(k)). Conjunctively, Theorem 4 and Theorem 6 state
that R(k) > s(k) for knots with s(k)=7,8. We also show this to be true for all
knots; the Ramsey number of a knot is always greater than its stick number.

• Main Theorem: R(k) > s(k) for all knots.
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We accomplish this using a function that produces a linear embedding of
Kn, in which all Hamiltonian cycles of length n and knot type k are reducible
to length n− 1, whike retaining the knot type.

Our techniques significantly use the following lemma (after Calvo’s Reduc-
tion Lemma):

• Triangle Reduction Lemma: Let abc be a path from a cycle C of a graph
embedded in <3. The triangle created by abc is reducible to the line
segment ac if it is not intersected by another edge in C. (Illustrated in
Figure 5.)
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Figure 5 - Example of Non-reducing triangle 4ABC and reducing triangle 4A′B′C′

2 Proofs

2.1 Proof of Theorem 4
R(k) > 7, where k is the figure-8 knot

Let ε7 (Figure 6) be a linear embedding of K7 in <3 defined be the following
set of labelled and classified vertices:

A : (0, 1
3

√
3, 2

3

√
6)

}
axial vertex

1 : (1, 0, 0)
2 : (−1, 0, 0)
3 : (0,

√
3, 0)



 corner vertices

X : (−1
10 , 17

30

√
3, 1

3

√
6)

Y : ( 2
5 , 4

15

√
3, 1

3

√
6)

Z : (−3
10 , 1

6

√
3, 1

3

√
6)



middle vertices
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Figure 6 - Incomplete ε7 and complete ε7

Note that ε7 is rotationally symmetric about the axis of vertex A and the
middle of triangle 123. For a seven stick knot to be contained in ε7, the equiva-
lent cycle, C, must be Hamiltonian. We shall attempt to contruct a Hamiltonian
cycle with non-reducing triangles, by building outwards from A.

First note that a reducing triangle is formed if A’ s incident edges are both
middle vertices or both corner vertices. So A must be adjacent to a middle and
a corner vertex. Let’s fix corner vertex 1 to A. Now the only middle vertice that
A can be adjacent to is X. All other middle vertices would result in a reducing
triangle. Now we have XA1 ∈ C. Now we build C from 1.

Clearly 1 is not adjacent to a corner vertex, so it must be adjacent to a middle
vertice. The only two choices, XA1Z and XA1Y , contain reducing triangles.
By symmetry, all constructions of Hamiltonian cycles in ε7 are reducible to
6-cycles. Hence the figure-8 is not contained in ε; R(figure− 8) > 7.

2.2 Proof of Theorem 5
R+(k) > 7, where k is the left-handed or right-handed
trefoil knot

It is a routine excercise to verify that the only knotted cycles in ε7 are right-
handed trefoils. When all reducible triangles are reduced in the knotted cycles,
the corresponding cycle is 1X2Y 3Z (Figure 7), the six stick right -handed trefoil.
Obviously, the mirror image of ε7 contains only left-handed trefoils. Hence,
R+(k) > 7, where k is the right-handed or left-handed trefoil.
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Figure 7 - ε7 and its reduced right-handed trefoil

2.3 Proof of Theorem 6
R(k) > 8, where k is any knot with s(k) = 8

Let ε8 (Figure 8) be a linear embedding of K8 in <3 defined by the following
set of labelled and classified vertices:

A : (0, 1
3

√
3, 2

3

√
6)

B : (0,
√

3, 0)
C : (−1, 0, 0)
D : (1, 0, 0)





corner vertices

1 : (−7
20 , 9

20

√
3, 0)

2 : (0, 3
30

√
3, 1

15

√
6)

3 : ( 9
20 , 1

4

√
3, 3

10

√
6)

4 : (−1
10 , 3

5

√
3, 3

10

√
6





middle vertices

Unlike ε7, ε8 contains non-reducing Hamiltonian cycles. We show that there
are precisely 5 and that they are either trefoils or the figure-eight. Let C be a
non-reducing Hamiltonian cycle in ε8. We can elimiate many reducing Hamil-
tonian cycles from our examination of ε by establishing the following lemmas,
which are clear upon visual examination of :

• Lemma 1: Three adjacent corner vertices can’t exist in C.

• Lemma 2: Three adjacent middle vertices can’t exist in C.

Although the middle vertices lie upon planes of the tetrahedron formed from
the corner vertices, we allow triangle reductions when it is only a middle vertex
that intersect the surface bounded by the potentially reducing triangle.

2.4 Proof of Main Theorem
R(k) > s(k)

Let εn be the linear embedding of Kn defined by the following function for the
position(ρ) in <3 of vertex i in a complete graph with n vertices:

ρ(i, n) = [cos(
i ∗ π

n
), sin(

i ∗ π

n
),

i ∗ pi

n
]
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The vertices of the embedding lie on a half-circle of the helix parameterized by
the following equations:

x(t) = sin t
y(t) = cos t
z(t) = t



 t : [0, π]

INSERT ILLUSTRATIONS OF epsilonn
Given Hamiltonian cycle C in εn, let k denote the knot type represented by

C. We will show that the stick number of k is less than or equal to n− 1. This
will be accomplished by showing that under a specific manipulation of C , a
topologically equivalent cycle with one less edge can be created.

Since C is Hamiltonian, it contains all vertices of εn. We wish to focus on
the nth vertex and those adjacent to it, say p and q. The following three step
algorithm constructs an n− 1-cycle with knot type k from C:

1. Begin by removing vertex n and its incident edges pn and qn. This
reduces the number of edges by two.

2. Next, lengthen the edges still incident with p and q, in effect, pushing p
and q off the half circle helix. Extension of these edges is sufficient when a new
edge, pq, can be added such that it doesn’t interfere with C.

3. Reconstruct the knot by adding new edge pq. This increases the number
of edges by one.

In cases where the extending edges are parallel, an ε-movement of p (or q)
along the half-circle helix will make the extending edges nonparallel. This will
allow construction of the new edge pq without upsetting the integrity of C, as
long as ε is less than the distance between p (or q) and it’s closest vertex .

Note that the net effect of this algorithm reduces the number of edges by
one, yet still retains the knot type of C.
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