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Abstract

We shall consider the problem of embedding the complete bipartite
graph, Km,n, onto a linear and cyclic chassis in such a way as to minimize
the cutwidth. The linear cutwidth of the complete bipartite graph is
established and a partial solution to the cyclic cutwidth is presented. It
is known that there is a paper in existance [3] that has established the
linear cutwidth of the complete bipartite graph. However, we were unable
to locate the paper and hence these results were formed independently,
without the aid of this paper.

1 Introduction

A graph G = (V,E) consists of a set of vertices, V, and a set of edges, E, that
join pairs of vertices. Figure 2 is an example of a graph G with V = {1, 2, 3, 4, 5}
and E = {(1, 2), (2, 4), (2, 3), (3, 5), (4, 5), (1, 5)} where edges are represented by
lines and vertices by points.

A complete bipartite graph Km,n consists of two disjoint sets of vertices A
and B such that every vertex in A is joined by an edge to each vertex in B where
|A|= m and |B|= n, and no two vertices in the same set share and edge. Figure
1 is an example of the complete bipartite graph K4,4.

Figure 1: K4,4

We shall now define the important terms and ideas used in this paper. For
any graph G a linear embedding of a graph is simply all of the vertices of the
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graph embedded onto a line. Any edges that connect vertices in the non-linear
embedding of G will also connect vertices in the linear embedding. An example
of a linear embedding of the graph is found in Figure 2.
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Figure 2

A region is defined to be the area between two adjacent vertices on the linear
embedding of a graph (Figure 2b). The cut of a region is the number of egdes
that cross the region from the left or right. For example, in Figure 2b the region
between vertices 2 and 3 has a cut of 3.

A cyclic embedding of G is a graph in which all of the vertices of G are
embedded onto a cycle. Any edges that connect vertices in G will also connect
vertices in the cyclic embedding of G.
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A region between two adjacent vertices in a cyclic embedding is defined to
be the triangular area created by the two adjacent vertices and the center of the
circle. The cut of a region in a cyclic embedding is the number of edges that
cross over the given region. In Figure 3b the region between vertices 4 and 5
has a cut of two.

The maximum cut of a particular embedding of a graph is the largest cut that
occurs on the graph. The cutwidth of the graph is the minimum of all possible
maximum cuts over all possible embeddings. In Figure 2b the maximum cut of
the particular embedding is three and in Figure 3b it is two.

The following shall consider the cutwidth problem for different embeddings
of complete bipartite graphs. The cutwidth problem is basically the problem
of searching to find optimal arrangements of vertices in different embeddings,
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such that the number of edges crossing any given region of the embedding is
minimized. This paper will provide a proof for the linear cutwidth of a complete
bipartite graph as well as a partial solution to the cyclic cutwidth of the complete
bipartite graph.

2 Background

Graph theory has been applied to many different problems since it has
connections to real world applications (i.e. networking, circuit layout, or code
design). One specific graph theory problem related to these applications is the
cutwidth problem. By discovering cutwidth one is able to optimally arrange a
network or circuit such that the edges are evenly distributed across the network
or circuit alleviating congestion.

Many different people have worked with the cutwidth problem. Fransisco
Rios developed a formula for the linear (lcw) and cyclic cutwidth (ccw) of a
complete graph Kn. The following results were proven by Fransisco Rios [4].

For any complete graph Kn on n vertices,

lcw(Kn) =







n2

4 , n even

n2
−1
4 , n odd.

For any complete graph Kn on n vertices,

ccw(Kn) =



























n2+8
8 , n

2 even

n2+4
8 , n

2 odd

n2
−1
8 , n odd.

Heiko Schroder made progress with the cyclic cutwidth of a two-dimensional
mesh Pm x Pn [5]. A mesh is a rectangular graph that has dimensions m by n.
The following results are results of Schoder as amended by Dwayne Clarke [2].

For a graph G which is a Pm x Pn mesh where m ≥ n ≥ 3,

ccw(G) =















n− 1, m = n even
n, m = n, n+ 1, n odd or

m = n+ 1, n+ 2 and n even
n+ 1, otherwise.

Joe Chavez and Rolland Trapp have completed the cyclic cutwidth problem
for trees. A tree is a connected a-cyclic graph, meaning a graph with no cycles
where each vertex is reachable from any other vertex. Chavez and Trapp have
proven the following result about trees: if T is a tree, then lcw(T ) = ccw(T )
[1].
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There have been many advancements on the cutwidth problem in recent
years. It has been proven that there is no single solution to the cutwidth problem
of a general graph. So it is important to concentrate on specific cases and this
is the reason we are focusing on complete bipartite graphs.

3 Linear Cutwidth of the Complete Bipartite

Graph

Theorem 1: For any complete bipartite graph Km,n,

lcw(Km,n) =







mn
2 , mn even

mn+1
2 , mn odd.

Proof

Let A and B be two disjoint sets of vertices, where |A|= m and |B|= n,
together composing the vertex set of Km,n. Without loss of generality we may
assume m ≤ n.

We will now embedd the vertices ofKm,n on a line making a linear embedding
of Km,n. For each pair of adjacent vertices in the linear embedding of Km,n

define the cut to be the number of edges of Km,n that pass between the given
adjacent vertices.

Let cut(a, b) denote the cut in the region directly following (from the left) a
vertices from A and b vertices from B. Figure 4 is a diagram of K3,4 where the
black vertices are from set A and the white are from set B.

Cut(2,1)= 2(4-1)  +  1(3-2) = 7

Figure 4

Explicitly,

cut(a, b) = a(n− b) + b(m− a)

We shall first minimize each individual cut along the linear embedding of
Km,n from the left to right. The following procedure will do just this.

Let x be the number of vertices to the left of the cut(in Figure 1 x = 3). At
each region, place [ xm

m+n
] vertices from A and x− [ xm

m+n
] vertices from B to the

left of the cut. (Where [x] = bx+ .5c)
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Let y = [ xm
m+n

].

There are two cases to examine in order to show this process yields minimum
cut for each region on the graph.

Case 1: m < n

For any region x where 0 < x ≤ m+n
2 ,

cut(y, x− y) = y[n− (x− y)] + (x− y)(m− y)
= y(n−m+ 2y) + x(m− 2y).

Now consider the same cut if the ratio described above is disrupted and the
margin between the number of elements from each class to the left of the region
is made larger.
Where 1 ≤ l ≤ y,

cut(y − l, (x− y) + l) = (y − l)[n− (x− y + l)] + (x− y + l)[m− (y − l)]
= y(n−m+ 2y) + x(m− 2y)− ln+ 2xl − 4ly + 2l2 + lm.

We observe that,

cut(y − l, (x− y) + l) = cut(y, x− y) + l(2x− 4y +m− n+ 2l).

We will now show that l(2x− 4y +m− n+ 2l) ≥ 0.

It is known from the above argument that x ≤ m+n
2 implies:

x ≤ (m+n)(m−n)
2(m−n)

x ≤ m2
−n2

2m−2n

x(2m− 2n) ≥ m2 − n2 since (2m− 2n) < 0
x(2m− 2n) + n2 −m2 ≥ 0

1
m+n

[x(4m− 2m− 2n) + n2 −m2] ≥ 0 since 1
m+n

≥ 0
1

m+n
[4mx− 2mx− 2nx+ n2 −m2] ≥ 0

1
m+n

[4mx− 2x(m+ n) + (n−m)(n+m)] ≥ 0
4mx
m+n

− 2x+ (n−m) ≥ 0.

Now we know, 4mx
m+n

− 4[ mx
m+n

] ≤ 2 ≤ 2l since, l ≥ 1.
This implies,

4[
mx

m+ n
] + 2l ≥

4mx

m+ n

Yields,

4[ mx
m+n

] + 2l − 2x+ n−m ≥ 0

4y − 2x+ n−m+ 2l ≥ 0.
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Therefore,

cut(y, x− y) ≤ cut(y − l, (x− y) + l) when m < n.

Case 2: m = n

Using the same method for vertex distribution as in case 1. Let x be the
number of vertices to the left of the cut. At each region, place [ xm

m+n
] vertices

from A and x−[ xm
m+n

]vertices from B to the left of the cut. (Where [x] = bx+.5c).
yields,

cut(y, x− y) = 2y2 + x(m− 2y).

Now consider the same cut if the ratio described above is disrupted and the
margin between the number of elements from each class to the left of the cut is
made larger. Where 1 ≤ l ≤ y,

cut(y − l, (x− y) + l) = 2y2 + x(m− 2y) + 2xl − 4ly + 2l2.

We observe that, cut(y − l, (x− y) + l) = cut(y, (x− y)) + 2xl − 4ly + 2l2.

We want to show that 2xl − 4ly + 2l2 ≥ 0.

Since we know y ≤ x
2 we get,

4y ≤ 2x
2x− 4y ≥ 0

2x− 4y + 2l ≥ 0
2xl − 4yl + 2l2 ≥ 0.

Therefore, cut(y, x− y) ≤ cut(y − l, (x− y) + l) when m = n.

Therefore using the above mentioned method for vertex distribution will
yield the minimum cut for each region of the linear embedding of Km,n

Having established the minimum cut for each region on the graph, we may
now determine the linear cutwidth of Km,n by finding the largest cut on the
graph. The largest cut in the linear embedding of Km,n occurs at the middle
region of the graph (i.e. the region directly following the m+n

2 vertex if m + n

even or the m+n−1
2 vertex if m + n odd). To show that this is true we should

examine four seperate cases.

Case 1: Both m and n are even

Using the above mentioned method for vertex distribution yields,

cut(
m

2
,
n

2
) =

mn

2
.
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We now consider any other cut on the graph to the the left of the middle
region. Let q be the number of vertices we shift from the middle region in set
A and p the number in set B, where 0 ≤ q ≤ m

2 and 0 ≤ p ≤ n
2 .

Then,

cut(m
2 − q, n

2 − p) = (m
2 − q)(n− n

2 + p) + (
n
2 − p)(m− m

2 + q)
= mn

2 − 2qp.

Relating the two equations gives,

cut(
m

2
− q,

n

2
− p) = cut(

m

2
,
n

2
)− 2qp.

Therefore, cut(m
2 − q, n

2 − p) ≤ cut(m
2 ,

n
2 ) since 2pq ≥ 0.

Therefore, if both m and n are even the cutwidth of Km,n is
mn
2 .

Case 2: m odd and n even
Using the same method for vertex distribution as before yields,

cut(
m− 1

2
,
n

2
) =

mn

2
.

We consider the other cuts on the graph:

cut(m−1
2 − q, n

2 − p) = mn
2 − p(2q + 1)

= cut(m−1
2 , n

2 )− p(2q + 1).

We have, cut(m−1
2 − q, n

2 − p) ≤ cut(m−1
2 , n

2 ) since p(2q + 1) ≥ 0.

Therefore, if m is odd and n is even the cutwidth of Km,n is
mn
2 .

Case 3: m even and n odd
Calculating the cut of the middle region yields,

cut(
m

2
,
n− 1

2
) =

mn

2
.

Using the same method as in case 1, consider any other cut on the graph to
the the left of the middle region. Let q be the number of vertices we shift from
the middle region in set A and p the number in set B. Where, 0 ≤ q ≤ m

2 and
0 ≤ p ≤ n

2 . Then,

cut(m
2 − q, n−1

2 − p) = mn
2 − q(2p+ 1)

= cut(m
2 ,

n−1
2 )− q(2p+ 1).

We have, cut(m
2 − q, n−1

2 − p) ≤ cut(m
2 ,

n−1
2 ) since q(2p+ 1) ≥ 0.
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Therefore, if m is even and n is odd the cutwidth of Km,n is
mn
2 .

Case 4: m odd and n odd
Calculating the cut of the middle region gives,

cut(
m+ 1

2
,
n− 1

2
) =

mn+ 1

2

Using the same method as in Case 1 we consider other cuts on the graph:

cut(m+1
2 − q, n−1

2 − p) = mn+1
2 + p− q − 2qp

= cut(m+1
2 , n−1

2 ) + p− q − 2qp.

Note: If one of p or q is zero and the other is not, it must be p that is zero.
This is due to the fact that the vertices were arranged in such a way that there
is always a vertex from A directly to the left of the middle region. This ensures
that p− q − 2pq ≥ 0.

We have, cut(m+1
2 − q, n−1

2 − p) ≤ cut(m+1
2 , n−1

2 ) since p− q − 2pq ≥ 0.

So if m and n are both odd the cutwidth of Km,n is
mn+1

2 .

Therefore, For any complete bipartite graph Km,n where m ≤ n

lcw(Km,n) =







mn
2 , mn even

mn+1
2 , mn odd.

4 A lower bound for Cyclic Cutwidth

For each pair of adjacent vertices in a cyclic embedding G, define the cut of
a region to be the number of edges that cross the triangular region created by
the two adjacent vertices and the center of the circle. The maximum cut of a
particular embedding of a graph is the largest cut that occurs on the graph.
The cutwidth of the graph is the minimum of all possible maximum cuts over
all possible embeddings.

Theorem 2: For any graph G,

ccw(G) ≥
lcw(G)

2
.

Proof

Let y be the linear cutwidth of G. Consider any cyclic embedding of G
with cyclic cutwidth x. Assume that x < y

2 .

We shall number the vertices of the cyclic embedding clockwise from a1 to
an beginning at a region where the cutwidth x occurs. We also number the cuts
of the graph such that the cut to the right and adjacent to ai will be αi (Figure
5).
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We now transform the cyclic embedding of G into a linear embedding. To
do this we shall arrange each of the vertices, ai, in order on a linear embed-
ding, connecting all of the vertices that were connected in the cyclic embedding
(Figure 6).

....a 1aaa 23n .... .... ....

Figure 6

Let αi be the cut on the cyclic embedding such that when transformed into
a linear graph a maximum cut occurs at the cut αi. Assume l is the number
that the cut αi increases by in the linear embedding. So the maximum linear
cut is αi + l. We know

αi + l ≤ αi + x since l ≤ x

≤ 2x since ai ≤ x

< y by hypothesis.

Therefore, αi + l < y.

A contradiction arises since if lcw(G) = y then the largest linear cut on this
embedding αi + l ≥ y by definition of linear cutwidth. So x ≥ y

2 . Therefore, a
lower bound for the cyclic cutwidth of G is half of the linear cutwidth of G.

So for any graph G,

ccw(G) ≥
lcw(G)

2
.

Note: Since this fact is proven for any graph G it is also true for Km,n, the
complete bipartite graph.
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5 Cyclic Cutwidth of the Complete Bipartite

Graph

We have the following partial results about the cyclic cutwidth of the complete
bipartite graph.

Theorem 3:

ccw(Km,n) =







mn
4 , m, n both even

mn+3
4 , if m = n odd.

Proof

Let A and B be two disjoint sets of vertices, where |A|= m and |B|= n,
together composing Km,n. Without loss of generality we may assume that
m ≤ n.

Case 1: m,n both even

It has been established by Theorem 2 that
lcw(Km,n)

2 (otherwise written mn
4 )

is a lower bound for ccw(Km,n). So to prove that ccw(Km,n) =
mn
4 , it is

sufficient to show that it is always possible to cyclically embed Km,n with a
maximum cut of mn

4 when m and n are even.

We shall now arrange the vertices of Km,n in such a way that each cut will
be mn

4 . Divide the cyclic embedding into four quadrants: I, II, III, IV. Let
quadrants II and IV of the graph each be composed of m

2 vertices from A and
I and II each of n

2 vertices from B (Figure 7).

....

....

.

.

.

.

.

.

II 
m/2 vertices from A

IV
m/2 vertices from A

I 
n/2 vertices from B

III 
n/2 vertices from B

Figure 7

We now develop a method to calculate each cut of this embedding. Without
loss of generality we will define the initial cut to be the cut between quadrants
I and II. It is obvious any region that lies between two adjacent quadrants will
have a cut of (n

2 )(
m
2 ) =

mn
4 since there are n

2 vertices on one side of the region,
whose edges will contribute to the cut, adjacent to m

2 on the other.
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Let l be an integer representing the number of vertices (going clockwise)
away from the initial cut where the cut is being examined. Let 0 ≤ l ≤ m

2 .

Since the graph is symmetric the same process could be done if the initial
cut was between the third and fourth quadrants. We note that any vertex loss
from A in quadrant II in the movement from the initial cut is replaced by a
vertex from A in quadrant III. This is intuitively why each cut is mn

4 since there
are still m

2 vertices from A adjacent to
n
2 vertices from B whose edges cross the

region we are examining. Explicitly we have,

(
m

2
− l)(

n

2
) + l(

n

2
) =

mn

4
.

Therefore, each region on this cyclic embedding of Km,n will have a cut of
mn
4 . Now since

mn
4 is a lower bound for ccw(km,n) we have proven for m and n

even that,

ccw(Km,n) =
mn

4
.

Case 2: m = n and m,n odd

We shall establish a lower bound for the cyclic cutwidth ofKm,n whenm = n

and m and n are odd. Since m = n, without loss of generality will will consider

Kn,n where n is odd. Using Theorem 2 we know ccw(Kn,n) ≥
lcw(Kn,n)

2 . Using
Theorem 1 where n is odd implies,

ccw(Kn,n) ≥
n2 + 1

4
.

We now note that n2+1
4 is not an integer since n2 + 1 is not divisible by 4.

Let n = 2k + 1 where k is a positive integer. Consider,

n2+1
4 = (2k+1)2+1

4

= 4k2+4k+2
4

= k2 + k + 1
2 .

Clearly this is not an integer. So the lower bound can be increased to the nearest

integer greater than n2+1
4 . It is clear by examining the above written equations

that this number is n2+3
4 . So we have now established that,

ccw(Kn,n) ≥
n2 + 3

4
.

To prove that this lower bound is in fact the cutwidth of Kn,n it is sufficient
to show that it is always possible for Kn,n to have a maximum cut equal to
n2+3

4 .

In order to do this we must first arrange the vertices ofKn,n in an alternating
pattern such that no vertex will be directly next to another vertex of the same
class (Figure 8). We know this is possible since in Kn,n both A and B have
exactly n elements.
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Figure 8

To show that this arrangement always yields a maximum cut of n2+3
2 we

first number the vertices from 1 to 2n (Figure 8). Divide the graph into two
equal halves with a line going through the region between 1 and 2n and the
region between n and n+ 1. Let there be n+1

2 vertices from B (black) and n−1
2

vertices from A (white) in the half of the circle containing vertex 1. So in the
other half of the circle containing vertex 2n there are n−1

2 vertices from B and
n+1

2 vertices from A.

Finding the cut of the region between vertices 1 and 2n will help to determine
the cut of the other regions on the graph. We will connect pairs of vertices with
the shortest edge possible. As we count the edges crossing the region we will
not yet consider diameters (i.e. edges from a vertex i to i+n) since these edges
require a choice regarding which way to send it around the center of the circle.

Vertex 1 connects with a total of n−1
2 non-diameter vertices that will con-

tribute to the cut of the given region. It is clear that the edge from 1 to n+ 1
will be a diameter and for the time being we should not be concerned with such
edges.

We now move to vertex 3, which contributes a total number of n−3
2 non-

diameter edges to the cut of the region. The reason vertex 3 contributes one
less then vertex 1 is since we are connecting with the shortest path one edge
will not have a shortest path over the region we are considering. Namely, the
edge from 3 to n+ 1 will not contribute to the cut of the region between 1 and
2n.

This pattern continues as we move farther from vertex 1 until there is only
one egde contributed by a vertex. So we know that the vertices from B on this
half of the cycle will contribute,

[
n− 1

2
+
n− 3

2
+
n− 5

2
+ ....+ 1].

And now we determine how many edges the vertices from A in the half of
the graph containing vertex 1 will contribute to the cut of the region between
vertices 1 and 2n. The edge from vertex 2 to vertex n + 2 will be a diameter
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and we shall not consider that at this moment. We are left with a total of n−3
2

edges crossing the region. A similar argument works for the remaining vertices
of A, yielding a contribution of

[
n− 3

2
+
n− 5

2
+
n− 7

2
+ ....+ 1].

Totalling the two contributions to the cut of the region yields,

n−1
2 + 2[(n−3

2 ) + (
n−5

2 ) + ...+ 1] = n−1
2 + 2(

( n−3

2
)( n−1

2
)

2 )

= n−1
2 + n2

−4n+3
4

= n2
−2n+1

4 .

Therefore, the region has a cut of n2
−2n+1

4 without considering the diameters
of the graph. It should be noted that each region on the graph will have a cut of
n2
−2n+1

4 when diameters are not considered. Since if you shift say to the region
between 1 and 2, the only change will be that there are n+1

2 vertices from A
(white) and n−1

2 vertices from B (black) in the half of the circle containing 1.
The total contribution to the cut of the region will remain the same.

Diameters have been ignored until this point. Every Kn,n where n is odd
will have exactly n diameters since the arrangement alternates the vertices in
such a way that each vertex i will be in a different class from the vertex i+ n.

Victor Sciotino has proven that the largest contribution of the n diagonals
to a region’s cut will be n+1

2 [6]. So the contribution of the diagonals to the cut
of any given region will either be n+1

2 or n−1
2 . In proving this result the method

used to get these values is alternating the direction of the diameters (i.e. if
one diameter is sent to one side of the center of the circle, then the diameter
adjacent to it is sent to the other side). Adding the larger contribution to our
previous result yields,

n2 − 2n+ 1

4
+
n+ 1

2
=
n3 + 3

4
.

This arrangement will yield a maximum cut of n2+3
4 . Therefore, since we

have established a lower bound of n2+3
4 for ccw(Kn,n) and proven that it is

always possible to obtain a maximum cut of n2+3
4 we can conclude that,

ccw(Kn,n) =
n2 + 3

4
.

Now substituting m = n into the above equation where m and n are odd
yields,

ccw(Km,n) =
mn+ 3

4
.
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6 Conclusion

In this paper we have proven a complete solution for the linear cutwidth of the
complete bipartite graph. A partial solution to the cyclic cutwidth is included.
Further research could be done on the cyclic cutwidth problem for the complete
bipartite graph.
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