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Abstract

In this paper, we discuss the composition of knots on the cubic lattice.
One main theorem deals with finding a better upper bound for the stick
number of a composed knot in relation to the stick number of the original
two knots. Other theorems go into detail about the composition of two
or more trefoil knots and two or more figure-eight knots, finding upper
bounds for stick numbers.

Keywords : cubic lattice, lattice polygon, composition, stick number
on the cubic lattice.

1 Introduction

A knot is a spatial embedding of S1 in S3. Stick knots are made with only sticks
and no curves. The cubic lattice is the graph in R3 whose vertices consist of all
points with integer coordinates and whose edges consist of line segments of unit
length connecting these vertices. A lattice polygon, or a knot, on the simple
cubic lattice is a piecewise linear, simple closed curve. Further, each linear piece
of this polygon is a unit length segment with its endpoints on the cubic lattice.

Now, define the stick number s(K) of a knot K to be the least number of
straight sticks necessary to make K see[1]. Then, the stick number in the cubic
lattice, e⊥(K), is the fewest number of sticks required to build a knot, K, in
the cubic lattice. Thus, because of the restrictions that the cubic lattice yields
upon the structure of a knot, stick numbers tend to increase dramatically when
converting to cubic lattice form.

Moreover, there are several known results within this field, although many
open questions remain. For example, in 1992, it was found that the minimal
stick number for a nontrivial cubic lattice knot is 24, compared to only 6 sticks
for a general stick knot[3]. The knot that was found is a three-crossing knot, the
most basic knot. Although this result may seem trivial, we have yet to prove
the stick numbers of any other specific knots, such as those with four crossings,
five crossings, or seven crossings. Using a computer program, the authors of[4].
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it has been conjectured that the figure-eight knot has a minimum of 30 sticks,
the 51 knot has 34 sticks, the 52 knot has 36 sticks, and the 61, 62 and 63 knots
all can be constructed with a minimum of 40 sticks in the cubic lattice, yet this
is still to be proven. Furthermore, it has been shown that the compostition of
two cubic lattice knots yields no more than the original amount of sticks, or
that e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) (see[2]). So, open questions remain to
the existence of a better upper bound for composition and to finding the stick
numbers of various knots on the cubic lattice.

Most importantly, these knots are of particular importance in chemistry in
simulating various circular molecules, especially the ones with relatively big
volumes.[3]

2 General Definitions

First, we define several terms that will be relevant to the whole paper.

Definition 1: Each unit segment in a polygon is called a step.

Definition 2: The endpoints of the steps are called vertices.

Definition 2: A lattice polygon P (knot) is called reducible if there is a
shorter polygon which is topologically equivalent.

***Whenever we refer to a polygon in this paper, it will always mean a poly-
gon on the cubic lattice.

Further, we will refer to certain shapes as illustrated below:

Line Bowl Trunk with Branches Corner-piece

Stair-Step

Mouth-Shaped Corner
Pieces, so that they

Open Toward the
Outside of the Face Clasp Situation

Common Shapes Throughout the Paper
Figure 2.1
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3 The Stick Number of the Hopf Link in a Cubic
Lattice

Here, we are concerned with the minimal amount of sticks needed to construct
the Hopf Link in the restricted cubic lattice.

THEOREM 3.1: The minimal stick number of the Hopf link in the cubic
lattice is 16.

PROOF:

The Hopf link, by definition, is two unknots linked with two crossings[1].
When working under the restrictions of the cubic lattice, we find that each knot
must have an even number of sticks because it must have four sides in order to
contain only ninety degree angles. Thus, the smallest number of sticks that one
unknot could have would be 4. Therefore, in proving the theorem, we study
unknots with 4 sticks, 6 sticks, and those with 8 sticks, as pictured below.

(a) Four Sticks (b) Six Sticks (c) Eight Sticks

Figure 3.1

We notice that there exist six possible combinations for the linking of the
Hopf Link using the three dimensions of unknots listed above. We can link an
unknot of 4 sticks with one of 4 sticks, one of 4 with one of 6, 4 to 8, 6 to 6, 6
to 8, and 8 to 8. In order for the two unknots to link, they must be oriented so
that both unknots are in perpendicular planes and are situated along the cubic
lattice.

Thus, we notice that in the situation of linking 4 sticks with 4 sticks, the
unknots cannot intersect along the structure of the cubic lattice, as pictured
below.
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The flat unknot is not on the cubic lattice grid.

Figure 3.2

Obviously, this will occur whenever an unknot has a side of length 1 because
anything linked through that edge cannot possibly be aligned on the cubic lat-
tice. Therefore, it is impossible to have a correct link on the cubic lattice using
the unknots of stick numbers 4 and 6. This then leaves us only with the possi-
bility of using the two unknots of stick number 8 to create the Hopf Link. Thus,
we are left with a minimal stick number of 16 for the Hopf Link in the cubic
lattice. ¤

4 Composing on the Cubic Lattice

4.1 Definitions

Before we begin working on the theorem, we will define a few terms:

Definition 1: Given two projections of knots, we can define a new knot ob-
tained by removing a small arc from each knot projection and then connecting
the four endpoints by two new arcs. We call the resulting knot the composition
of the two knots[1].

Composition of two knots on the cubic lattice occurs by joining the two
structures without tampering with the original structure of the knot. A basic
way of doing this involves erasing one stick from the outer edge of each knot.
Then, to connect the two, one can add two more sticks to “bridge” the two
knots together. This is shown below.

(a) The outer edges of two knots (b) Losing two sticks (c) Final Composition

Figure 4.1.1

Note that this proves that e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) (as in[2]) since
adding in two sticks is negated by subtracting two more sticks.
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Definition 2: Whenever working with knots on the cubic lattice, one must
always find the shortest path from a point M to another point N. Whenever the
path can be reduced or changed without changing the knot type of the knot,
then we say we can perform a square move. Several square moves are shown
below[3].

M

N

OPEN VERTEX

OPEN VERTEX

M

N

OPEN VERTICES

M

N

M

N

M N M N

(a) (b) (c)

Figure 4.1.2

Definition 3: A knot is bad if every minimal cubic lattice representation
has this configuration on all its faces. A knot that is good does not have this
configuration on all its faces.

This Set-Up is at
Every Corner

8x8

The configuration on the face of a bad knot

Figure 4.1.3

4.2 The Main Theorem and Some Preparations for its
Proof

THEOREM 4.1: e⊥(K1#K2) ≤ e⊥(K1)+ e⊥(K2)−2 whenever both K1 and
K2 are Good.

PROOF:

We start out with two knots, Knot A and Knot B. Because each knot is situ-
ated on such a rigid structure, we can place each knot within a large rectangular
box and shrink the box until at least one edge from the knot lies on each of the
six faces.
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The trefoil knot surrounded by a box so that each face of the box contains edges from the knot

Figure 4.2.1
Thus, when composing one knot with another, we will only work with the

faces of the boxes. So, we have found four general cases of certain face designs
that can exist as shown below.

A B

CASE 1

A B
A B A B

Case 1 Examples

A B

CASE 2
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A B A B
A B

OR

A B
OR

Case 2 Examples

A B

CASE 3

A B

CASE 4

Figure 4.2.2

The Filled in dots represent vertices at which additional sticks may be added,
as in the pictured examples. Adding these steps does nothing to hinder the com-
position of the two knots since we will be focusing on the main structure.

For all these cases, we imagine a cube A with only such a design on all
the faces and a cube B with only that design on all of its faces. And, when
considering square moves, if we look at situation (c) in Figure 4.1.2, we know
that a single line will never exist on the face of the cube. This is illustrated
below.
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This gets rid of the single edge on the face.

Figure 4.2.3

So, for Case 1, we deal with two cubes that have only “lines” of at least
length two on each face. If one face of cube A has a vertical stick of length two
and cube B also has a vertical line of length two, then we can easily overlap the
two lines, add two steps to bridge the knots together, and then get rid of the
original four sticks. Thus, we end up with two less sticks than we began with
(Figure 4.2.4).

Lose these four sticks
(-4)

(+1)

(+1)

(-2)

Illustration of Case 1 Scenario

Figure 4.2.4

In the situation when one stick is vertical and the other horizontal, we can
easily rotate one cube to align the two sticks. And, we find that if we compose
two sticks of different lengths, we will always lose at least two sticks in the end
because the original stick must be at least of length two.

In the examples for Case 1, all that we are concerned with is the base line
of at least two steps. Then, no matter what is stemming off the base line, we
just overlap the base lines from both knots.

In Case 2, we can easily overlap the two “corner-peices” so that we lose at
least four sticks and then add two more for a total of at least two lost. Since a
corner-piece can rotate to always overlap some part of the another corner-piece,
stair-step, bowl, or trunk we are guaranteed this situation.

In the situation where we have two stair-steps, we need not be concerned
that the two might overlap completely, but instead that parts of each overlap.
Thus, in the end, all we need are two overlapping corner-pieces to obtain our
goal of a loss of two sticks which can easily be done by rotating one knot to get
the desired orientation. The same goes when composing a bowl with a stair-step
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or a trunk with a stair-step.

For Case 3, we have a new “stair-step” shape that can contain as many steps
that will fit on the face. For this case, we must keep in mind that all that exists
on cube A are the stair-step pieces (of at least 3 sticks) and all that exists on
cube B are the long line pieces. At first it seems that the two cannot line up,
but it ends up that we can add two sticks to the picture of cube B to get a
“spoon-like” design.

Add in two sticks

Move this stick down

Changing around Cube B of Case 3.2

Figure 4.2.5

We will always be able to do this for one of two reasons. In the first one,
open vertices already exist to make this addition possible. If these vertices do
not exist, it means that those vertices must be occupied by another stick. Re-
peating this process, we eventually get a stick at the very edge of the face of
the cube, and, here, one can add the extra sticks off the face of the cube with
no interference (since nothing exists there). And, once we add in the extra two
sticks, we will be able to overlap at least six of the sticks to end up with a loss of
two (losing six, adding two originally, and adding two more to bridge the knots).

Case 4, on the other hand, is much more complicated. Notice that if we use
the previous method of overlapping sticks, removing those that are overlapping,
and then adding two sticks to bridge the knots, the best that we can do is end up
with the same number of sticks that we began with, the exact conclusion that we
are trying to improve on. This happens because the corner-piece has only side
length of one step, allowing us to only overlap one step from the corner-piece
with one step from the line.

Thus, two possible solutions to the problem arise. The first is to prove that
it is not possible for a knot to have only corner-pieces on the faces of its box.
Then, we would not even have to worry about this case. This is much more eas-
ily said than done, and thus remains an open question: is it possible for a cubic
lattic knot to have only corner-pieces on the face of the box which surrounds it?

The second solution would be to prove that we can compose these two types
of knots without having to add in two more sticks to bridge them. Then, in this
case, several scenarios arise, illustrated below.

9



1 to 4 Corner pieces Clasp Situation Only Mouth pieces

Scenario 1 Scenario 2 Scenario 3

Both Corner pieces 
and Mouth pieces

This Set-Up is at
Every Corner

Scenario 4 Scenario 5

Possible Situations that can Occur

on the Cube with Only Corner Pieces

Single Line on
the Face

A Line on Each Side
 of the Face

Several Lines of
the Same Length

Scenario A Scenario B Scenario C
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Lines Oriented at
Right Angles

to One Another

The Outside Lines are
Shorter than the

Adjacent
Inside Lines.

The Outside Lines
are Longer than
the Adjacent
Inside Lines

Scenario D Scenario E Scenario F

Possible Situations that can Occur

on the Cube with Only Line Pieces
Figure 4.2.6

Now, we take each face of the box surrounding the cube and draw a rectangu-
lar box around everything on the face, creating the smallest rectangle possible.
We call this new region the interior region, as shown below.

The Interior Region on the Face of a Box Surrounding a Cubic Lattice Knot

Figure 4.2.7

Lemma 4.1: e⊥(K1#K2) ≤ e⊥(K1)+e⊥(K2)−2 is true whenever the inte-
rior region includes all of the face of at least one face of the box for the bad knot.

So, we are looking at the case in which the interior region is the face of the
box (that is, it is the same size as the face of the box). Then, we know that the
steps are on or near the outer edge of the face of the box.

Thus, for Scenario 1, the corner piece(s) are on the outer edge of the box.
Then, we can compose anything with one of these corner pieces since there ex-
ists a mass of open space surrouding the corner where we do not have to worry
about the second knot colliding with the first knot. Therefore, we do not have
to bother adding in the two extra bridging steps. This can also be applied to
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Scenario 2.

Then, for Scenario 3, since the outer corner vertices are free wherever a
mouth piece exists, we can easily square move to create Scenario 1, which is
given.

In Scenario 4, although we have both mouth pieces and regular corner pieces,
we will always have at least one corner piece or a mouth piece that can square
move into a corner piece. Then, although the face may seem cluttered, since the
mass of open space exists, we can easily compose without the two knots colliding.

Scenario 5 looks like a more troubling case, yet if the interior region is the
the face of the box, then we find that this scenario cannot exist. Because all
the faces of the cube have corner pieces (because otherwise we would not be in
this mess), we are very restricted as to the direction in which the steps have to
go. Figure below show that if the steps follow the only path possible, we are
left with a situation which is not reduced. And, since we assume that the knot
is in reduced form, we arrive at a contradiction. Thus, Scenario 5 cannot exist
when the interior region is the same size as the face of the box.

l

m

Obviously, the path
from point l to m can 

be reduced.

Scenerio 5 Cannot Exist on the Edge of the Box

Figure 4.2.8

Moving on to the Scenarios dealing with the lines, we see that Scenario A
could not even exist on all the edges of the face because then the knot would
be two dimensional.

For Scenario B, we can compose with any of the corner piece scenarios. All
we need to do this is a step on the outer edge of the corner piece knot and this
will either exist or we can use a square move to create it. Then, we overlap a
step from the outer corner of the interior region (of the knot in Scenario B) with
a step also from the outer corner of the interior region of the corner piece knot.
That way, the rest of the faces from the knots will not overlap, as illustrated
below. Then, Scenario C and F can be done in the same way.
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Only overlap
these outer edges.

The two faces
do not overlap.

Knot A

Knot B

Composing A Scenario B Knot with any Corner Piece Knot

Figure 4.2.9

Scenario D looks trickier, yet since the lines are always of at least length
two, there will always be a ”buffer” region so that the knots will not overlap.
Thus, we just take a step that is furthest from the edge and compose it with a
corner piece.

With Scenario E, we have to be more careful that the inner lines do not
accidentally overlap with parts of the corner piece knot. But, since it is on the
edge of the box, we have nothing to worry about since there exists the open
space around it. The only scenario that would not work, would be scenario 5,
but since it does not exist when the interior region is at the edges of all the
faces, we can ignore it.

Therefore, we can conclude that when the interior region includes all of the
face of at least one face of the box for both knots, case 4 can be composed.
Therefore,

e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2 holds true in this situation. ¤

Corollary 4.1: e⊥(K1#K2) ≤ e⊥(K1)+e⊥(K2)−2 is true when composing
two knots, both of which are smaller in dimension than 10× 10× 10 sticks.

Now, we look at the case in which the interior region is not on the edge of
the box, but within all the faces of the box surrounding the knot. However, we
find that for Scenario 1 and 3 we have an outer edge that can always compose
with any of the line scenarios A-F. We just take the step on the outmost corner
of the interior region so that enough blank space surrounds it. That way, we
do not have to worry about adding in two extra sticks to bridge the two knots.
For Scenario 2, we can perform a square move as before to arrive at Scenario
1, which is given. For Scenario 4, we can also find an outer edge to compose with.

On the other hand, Scenario 5 has been found to be the only problem
case. We call the structure of the corner pieces found in corner of the face,
the Downfall Situation and the shape that the two corner pieces make, the t
shape.
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The t-Shape

These corners must be 
taken in order

to avoid square moves
that would enable
easy composition. 

The Downfall Situation

Figure 4.2.10

It can compose with any of the line scenarios except for Scenario E because
the inner lines overlap with other parts of the knot. So, if we find the smallest
size face, x× y, for which Scenario 5 can exist, we will know that knots that fit
in boxes with smaller than a x × y face can compose, even under Case 4. We
found that a 9× 9× 9 box is the smallest that will have this situation. Below,
we show several cases for which Scenario E cannot occur. We start with a 3× 3
face since the trefoil knot is enclosed in a 3× 3× 3 box.

There is obviously
no way for the Staggered

t to exist at all four corners.

We have a Corner
Piece.  Without it,
we would be able

to perform a square 
move on the Mouth 

piece.
Here we can 
square move
to make a

corner piece.
3x3 3x4

These corners are
taken by a corner
piece which is
necessary to

avoid a square
move on the

Mouth pieces.

4x4

This corner has
the Downfall situation.

These two corners
can easily be 
composed with.

Can compose with
this edge.

4x5

This is the only additional corner
piece that we can put in when increasing 
from a 4x4 to a 4x5 and it is easy to 
compose using this step since it is
far enough away from the rest of the

steps on the face.
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5x5

We can compose with these two edges because of
the free space underneath them.  If those edges were not

there, we would be able to perform square moves
on the Mouth pieces directly above them to get
another outer step surrounded by enough free

space to compose.

5x6

Can compose with this edge because of the free space underneath
it.  If this vertice were taken, it would have to be taken by
a corner-covering corner piece or a Mouth piece that could

be square-moved into a corner-piece.

Can compose with this edge because of the free 
vertices underneath it.  If those two vertices
were taken by a Mouth piece or a corner piece,

we would still be able to compose.  If the clasp
piece was moved over to cover those vertices,

then we could compose with this step.

Figure 4.2.11

It is pretty obvious that any case that is 3 × x will not have the downfall
situation since you need at least an edge length of four steps for it to even exist
on the face. Also, any case that is 4× x will not have the downfall situation on
both corners of the edge of stick length 4, so we need not worry about those cases.

Now, from these situations in Figure , we can see general patterns. In order
to have the Downfall Situation we have to have two clasps at each corner of
the interior region. The reason these have to be clasps is because otherwise
the mouth pieces could be square-moved to corner-pieces that could easily be
composed with.
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If these corner pieces
were not here, we could

square-move the Mouth piece 
to create an edge ideal

for composing.

We must always have two clasps at each corner

Figure 4.2.12

Thus, we definately need each side of the interior region to be at least seven
steps in order to fit in two clasps at each corner (we need a space between each
of them). But, when we try to make all the sides of the interior region seven
steps, we are not able to fit two clasps at each corner, as shown below.

We run out of 
space.

Notice that these pieces nearest to the corner
of the interior region always have to be Mouth

pieces because otherwise we could compose
there.

7x7
A 7x7 is too small to have the Downfall Situation at all four corners

Figure 4.2.13

By increasing the size to a 7 × 8 we still cannot fit all clasps in. Yet, when
we finally look at the 8 × 8 case we see that we can fit in two clasps at each
corner in the appropriate manner.
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7x8

There is only space
for one clasp on

this side.

8x8
Figure 4.2.14

Thus, an interior region of at least 8 steps by 8 steps cannot compose with
a cube with faces of all Scenario E. But, as we found earlier, for Scenario 4, the
interior region cannot equal the face of the cube. Thus, we need a cube of at
size at least 10× 10× 10.

Therefore, for any knots in the cubic lattice surrounded by boxes smaller
than 10 × 10 × 10, we can conclude that, for any knot K1 composing with a
knot K2,

e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2. ¤

Thus, obviously, reducing the stick number by two after composition is pos-
sible as long as one knot is not a bad knot while the other has only lines such
as in Scenario E. Therefore, we can say that

e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2 whenever both K1 or K2 are Good. ¤

So, an open question remains to whether this conclusion holds true for knots
surrounded by boxes of dimension greater than or equal to a 10× 10× 10. One
way to do this would be to prove that either Scenario 5 or Scenario E cannot
even exist. Then, we could say that for any knot in the cubic lattice, we can
lose two sticks from the total stick number every time we compose.

5 Finding a Better Upper Bound on Specific
Compositions

5.1 Theorem 5.1

THEOREM 5.1: e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) + 2− 2m in the situation
shown below, where each knot has a line on the outer face:
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A Bn m

Theorem 5.1 Illustrated

Figure 5.1.1

Where m ≤ n, and n is the stick number of line A and m is the stick number
of line B.

First of all, we know that n >1 and m >1 as stated earlier because otherwise
we would be able to do a square move and reduce the stick number. So, the
most basic case would be where n = 2 and m = 2 which we prove earlier to
have a loss of two sticks after composition.

The first part of the theorem is known from [2], that the stick number of the
composed knots will be at least the stick numbers of the two individual knots
added together. Then, since a “line” shape can rotate in any way to always
overlap with another “line” shape, then we can definitely remove any sticks
that overlap. Since m is less than n, then we know that at least m sticks from
each knot will overlap. Thus, we can take away 2m from the composed knot
(amounting to the −2m in Theorem 5.1). Then, as usual, we must always add
2 more sticks to bridge the two knots together.

Therefore, we have that e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) + 2− 2m. ¤

5.2 Theorem 5.2

THEOREM 5.2: e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) − 2 − 2m − 2n in the
situation shown below, where each knot has a “bowl-shaped” piece on a face
of the surrounding cube, with “bottom” of the bowl always with stick number
equal to 2.

m n s t
A B

Theorem 5.2 Illustrated

Figure 5.2.1

Where m ≤ s and n ≤ t, m the stick number of one edge of the bowl on
knot A, n the stick number of the other edge of the bowl on knot A and s and
t similar for knot B. Also, the knots are oriented so the m and s overlap and n
and t overlap.
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First, the two “bowls” will always be able to rotate to align the bottoms
with one another. What is not guaranteed, however, is that the longest “leg”
from each bowl will line up with one another to get optimal stick loss. But, this
is possible. So, we overlap the two bowls to the best of our ability and remove
those overlapped sticks. The least number taken out will be eight, since we have
four from the bottoms of the two bowls and at least another four from the legs
of the bowls. Thus, the stick number of the composed knot will start out as the
stick numbers of each of the initial knots. Then, we subtract four sticks since
the bottoms will always overlap, and, thus, we can always remove those sticks.
Afterwards, we can remove 2m sticks from one side of the overlapped bowls and
2n from the other side of the overlapped bowls. Then, we add in 2 sticks to
bridge the two knots.

Therefore, we find that e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2− 2m− 2n.

***Note: this method will work for any two bowl-shapes with the same
bottom length. Thus, the “-4” in the equation decrease by two for each stick
added to the length of the bottom piece. ¤

5.3 Theorem 5.3

THEOREM 5.3: e⊥(K1#K2) ≤ e⊥(K1)+e⊥(K2)−2−2m−2n in the situation
shown below, where on the face of each knot there exists a base “trunk” of stick
number two with two branches stemming off in opposite direction.

A B

m

n

s

t

Theorem 5.3 Illustrated

Figure 5.3.1

Where m ≤ s and n ≤ t, m the stick number of one branch of the figure on
knot A, n the stick number of the other branch of the bowl on knot A and s and
t similar for knot B. Also, the knots are oriented so that the m and s overlap
and the n and t overlap.

First of all, the two figures may not always overlap for ideal stick loss. How-
ever, the trunks will always overlap so that four sticks can be removed. In this
case, we are looking at when the branches from the figures overlap. So, we
automatically subtract four sticks from the sum of the total stick numbers of
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the two knots added together. Then, since m ≤ s, we will be able to remove 2m
more sticks. Similarly, since n ≤ t, we can remove 2n more sticks (since those
are the one that will overlap). Finally, add in two sticks to bridge the two knots.

Therefore, e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2− 2m− 2n.

***Note: this method will work for any two of these figures with the same
trunk length. Thus, the “-4” in the equation decrease by two for each stick
added to the length of the trunk piece. ¤

5.4 Theorem 5.4

THEOREM 5.4: e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2− 2m in the situation
shown below, where on the face of one knot there exists a base ”trunk” of stick
number two with two branches stemming off in opposite direction and on the
face of the other knots there exists a “bowl-shaped” figure with the bottom of
the bowl of length two and two branches stemming off in opposite directions.

A

m
s

B

Theorem 5.4 Illustrated

Figure 5.4.1

Where m ≤ s, m the stick number of one branch of the figure on knot A
and s the stick number of one branch on the figure on knot B. Also, assume the
knots are oriented so that the m and s overlap.

First, since the bowl-shaped figure of knot A can rotate to always align with
part of the figure on knot B, we will always be able to remove at least six sticks:
the trunk pieces, and two of the overlapping branches. So, from the initial stick
numbers of the two knots added together, after composition, we can subtract
four sticks from the trunk pieces. Then, since m ≤ s and those two pieces over-
lap, we can remove 2m more pieces. And, finally, we add two sticks to bridge
the two knots together.

Therefore, we get e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 2− 2m.

***Note: this method will work for any two of these figures with the same
trunk length. Thus, the “-4” in the equation decrease by two for each stick
added to the length of the trunk piece. ¤
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5.5 Theorem 5.5

THEOREM 5.5: e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) + 2 −m when m is even
and e⊥(K1#K2) ≤ e⊥(K1)+e⊥(K2)−m when m is odd in the situation shown
below, where on the face of one knot there exists a staircase surrounded by open
vertices and on the face of the other knot there exists a straight line.

A Bm
s

Can Square Move to 
these vertices

Theorem 5.5 Illustrated

Figure 5.5.1

Where m is the stick number of the figure in knot A and s is the stick num-
ber of the straight line. m < s.

So, we start with the sum of the initial stick numbers of the two knots.
Then, since the corner piece is surrounded by open vertices, we can perform
square moves until we end up with two straight lines perpendicular to one an-
other. Then, if m is even, we will be able to take m/2 sticks and overlap those
(because they are in a straight line) with the straight line on knot B. Then, we
can remove twice m/2 sticks from the original stick numbers of the two knots.
Thus, we remove m sticks. Finally, we add in two more sticks to bridge the two
knots.

If, on the other hand, m is odd, we instead overlap m/2 + 1 sticks. Thus,
we remove m + 2 sticks and then add in two more to bridge the two knots.

Therefore, we have that e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) + 2 −m when m
is even and e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)−m when m is odd. ¤

6 Composing Trefoil Knots on the Cubic Lattice

6.1 Definitions

Definition 1: Let a knot have a certain fixed direction that it travels along
itself. Then, use your right hand and, at a crossing, point your thumb in the
direction that the top strand goes. If your fingers curl in the direction that the
lower strand points, then the crossing has right− handed orientation. If your
fingers curl in the opposite direction to that of the bottom strand, then the
crossing is a left− handed crossing[1].
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Right Handed Knot Left-Handed Knot

Definition 1 Illustrated

Figure 6.1.1

Definition 2: Given a knot, look down one axis of the knot. We look for
the L-shaped pieces on the front face of the knot. If we go clockwise when trav-
eling from short piece to long piece, then that piece of the knot has Clockwise
orientation. Similarly, a piece of the knot has Counterclockwise orientation if
one travels counterclockwise from short to long piece.

Clockwise Orientation

Counterclockwise Orientation

Definition 2 Illustrated

Figure 6.1.2

6.2 Theorem 6.1

THEOREM 6.1: e⊥
#
n (3

+
1 #3

−
1) ≤ 24 + (n− 1)16 where n is the number of

trefoil knots in the cubic lattice.

PROOF:

We know that the trefoil knot has 24 sticks (shown below)[3].

The Trefoil Knot

Figure 6.2.1

Now, put a box around the trefoil and notice the shapes that appear on each
face. Basically there are two shapes: a line of length two and an L-shape. Thus,
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we have three ways to compose: an L-shape with an L-shape, a line with a line,
and a line with an L-shape.

Straight line

L-Shape

The Shapes on the Faces of the Trefoil Knot

Figure 6.2.2

The L-shapes The Sticks Shapes

Figure 6.2.3

If we try to compose a line with a line, we find that we can only lose six
sticks in the process because of the tight structure of the trefoil (shown below).
A similar situation arises with composing the line with the L-shape. In these
two situations, we overlap the two lines of two, removing four sticks, and then
we can get rid of two of the bridging sticks so that the two knots are as close
together without overlapping.

Remove these four sticks (-4)

Take this out (-1)

Take this out (-1)

These two
 sticks cannot
 be removed 
because then
 the trefoils

would
collide.

Cannot Compose Along Two Straight Lines

Figure 6.2.4

However, when we compose an L-shape with another L-shape, six sticks
overlap, and then we can take away two more without the two trefoils colliding.
But, in order for two L’s to overlap, they must be of opposite orientation, that is,
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one must be clockwise, the other counterclockwise. Note that the right-handed
trefoil has counterclockwise orientation and the left-handed trefoil has clockwise
orientation (See Figure 6.2.6). So, obviously, it seems natural to be able to com-
pose a line of knots such that they are alternating, right-handed and left-handed.

Now, a small problem arises. In the drawing of the trefoil given in [3], we
have two L-shapes that are on adjacent sides. If we tried to compose a chain,
the knots would eventually run into one another. Thus, we perform a square
move, as shown below, to get two L-shapes directly across from one another.

Square move to this
open vertice.

Square Move to get Two L-shapes Directly Across from One Another

Figure 6.2.5

Since we are alternating knots, and since the right-handed knot has a mini-
mal stick representation with counterclockwise orientation and the left-handed
knot has only clockwise orientation (shown below), then we can easily compose
them in a straight line. All we need is for a clockwise L to line up with a
counterclockwise L which can obviously be done in this manner.

Left-handed Trefoil

Clockwise

Clockwise (you must
 look bottom up)

Clockwise

Counterclockwise

Counterclockwise

Counterclockwise

Right-handed Trefoil

The Orientation is Consistent Throughout A Single Trefoil

Figure 6.2.6
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Composing a left-handed
trefoil with a 
right-handed

trefoil.

Composing two trefoils

Figure 6.2.7

So, obviously, we lose eight sticks when two trefoils compose, or, we must
add 16 sticks for each additional trefoil. Since the initial stick number is 24, we
add 16 sticks for each additional trefoil. Thus, if there are n trefoils, we take
16(n− 1) to account for all but the initial. Then, we add 24 to account for the
initial. Therefore, for any chain of trefoils composed, we have that:

e⊥(
#
n 31) ≤ 24 + (n− 1)16.

Therefore, an open question remains as to whether or not we can get the
same results with only a right-handed trefoil. Thus far, no one has conjectured
to the stick number of the composition of two right-handed trefoils, so this is
also yet to be found. ¤

7 Composition of Figure-Eight Knots on the Cu-
bic Lattice

7.1 Definitions

Definition 1: The figure − eight knot is one which has four crossings. An
upper bound for the stick number of the figure-eight in the cubic lattice is 30
sticks[4].

25



The Figure-Eight Knot in the Cubic Lattice

Figure 7.1.1

7.2 Theorem 7.1

THEOREM 7.1: e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2) − 8 for two figure-eight
knots.

PROOF:

We can use a similar method of proving this that we used to prove Theorem
4.1. Notice that the figure-eight has two L-shapes on adjacent sides. Luckily,
these Ls are of different orientation, one is counterclockwise and the other is
clockwise. Thus, we can compose two knots that are either both right-handed,
both left-handed or a combination of the two. So, when we overlap the two Ls,
we automatically lose the six sticks from the actual L-shape and then we can
lose two more of the bridging sticks without worrying about the knots colliding.

Remove these six sticks.

Remove these two sticks to 
reduce the bridging.

Composing Two Figure Eights

Figure 7.2.1

Therefore, it becomes obvious that:

e⊥(K1#K2) ≤ e⊥(K1) + e⊥(K2)− 8 for two figure-eight knots. ¤
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7.3 Theorem 7.2

THEOREM 7.2: e⊥(
#
n 41) ≤ 30 + (n− 1)22 where n is the number of figure-

eight knots.

So, we know that the upper bound on stick number for the figure-eight is
30 sticks. We use the same technique used in proving Theorem 6.1. First, we
draw a box around the figure-eight. Then, we easily see that there are two
types of shapes on the faces of the box: sticks of length two and L-shapes. We
already know that composing sticks of length two yields only a loss of six sticks,
so we can try to compose the L-shapes. However, unlike in Theorem 6.1, we
cannot use square moves to make two Ls across from one another. Nevertheless,
when we start composing the-figure eights in a chain, we find that after three
different orientations of the knot in 3-space, a pattern forms and repeats itself,
as illustrated below.

These two L-shapes
connect.

Now, this L-shape can connect 
with another figure-eight 

like (a).

(a) (b)

(c)

Composing Several Figure Eights

Figure 7.3.1

And, as the picture illustrates, (a) composes with (b) which composes with
(c) which in turn composes with (a), starting the chain over again. Thus we
have a pattern like so:

(a) (b)

(c)

(a) (b)

(c)

(a) (b)

(c)

(a) (b)

(c)

(a) (b)

(c)

Pattern Created when Figure-Eight Knots Compose in a Chain
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Figure 7.3.2

Now, we know that eight sticks are lost between two figure-eight knots. Thus,
30 Sticks - 8 sticks yields 22 sticks left for each knot except for the first and the
last ones (since those two only compose once). Then, we have that the total
stick number is 22n + 8. We add in the eight since the first and the last knots
each have 26 sticks rather than 22. Then, we can rewrite +8 as −22 + 30 and
then the math follows:

22n + 8 ⇒

22n(30− 22) ⇒

24 + 22n− 22 ⇒

24 + 22(n− 1) ⇒

which is what is needed.

Therefore, we have that for a chain of figure-eights,

e⊥(
#
n 41) ≤ 30 + (n− 1)22 where n is the number of figure-eight knots. ¤
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