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Abstract. The r-iterated clasp move creates two full twists in a torus link,
while adding only r sticks to the stick number of the link. An r-iterated clasp
move performed on the minimal stick representation of the Tr,r torus links
results in the minimal stick representation of the Tr,3r for r≥2, obtaining
s(Tr,3r)=4r. The r-iterated clasp move may also be performed in a more
general set up, adding 2r-1 sticks and two full twists.

1. Introduction

A stick link l is a link composed of vertices connected by straight edges. The
stick number of a link s(l) is the least amount of sticks necessary to create the stick
link representation of l. A torus link Tr,s is a link that can be arranged such that
it sits on a torus, without crossing itself. The link Tr,s crosses the meridian of the
torus r times and the longitude of the torus s times. See Figure 1a and [1]. The
number of components in any torus link is the greatest common divisor of r and
s.[2]
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Figure 1a

Work has previously been completed on torus knots and links. Jin proved that if
2≤r<s and if r does not divide s, leaving less than r components, then s(Tr,s)≤2s.
Also, if 2≤r<s<2r, then s(Tr,s)=2s. If r does divide s, then there are r components.
Each component must have at least three edges, and Jin composed a method in
[2] for constructing the Tr,r torus link such that it only requires three edges per
component. So for r≥1, s(Tr,r)=3r. Figure 1b shows T3,3 and Figure 1c shows the
minimal stick representation for T3,3. Jin goes on to prove that for r≥1, s(Tr,2r)=4r-
1 by using r-1 quadrilaterals and one triangle as the components in the construction
algorithm for the link.[2] This paper proves that s(Tr,3r)=4r by adding r more sticks
to Tr,r using a geometric operation called the clasp move at one specific vertex on
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each component of the link. This paper also proves that by performing the r-
iterated clasp move on a torus link with a more general stick arrangement, two full
twists can be added using only 2r-1 sticks.

Figure 1b Figure 1c

2. The Clasp Move

The clasp move [3] is a technique that will add to a knot two crossings using one
stick, creating a two tangle. To perform this move, the correct stick orientation is
necessary. Three edges are needed set up as in Figure 2a. The edges E1 and E2 are
extended so that one edge will cross under E3, and the other edge will cross over
E3. This is shown in Figure 2b. There is a choice of how to resolve the intersection
point of E1 and E2. For this paper, the point of intersection will always be resolved
with the negative sloped edge, E2, crossing over the edge with the positive slope,
E1. E1 and E2 are connected by a new vertical edge, so they clasp around E3. The
clasp move in Figure 2c is isotopic to the tangle in Figure 2d.
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Figure 2d: Isotopic equivalence of tangles.

3. The Iterated Clasp Move

The iterated clasp move [3] is the clasp move performed twice on a slightly dif-
ferent stick set up. Two sticks and four crossings, creating a four tangle, will be
added to the knot. Four edges and two vertices are needed, where the vertices lie
on a line. Each angle defines a plane. Each plane contains the common line of the
vertices, but the second plane is slightly rotated about that line. See Figure 3a and
3b.
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Figure 3a: Planes. Figure 3b: Initial stick set up.
Starting at the vertex formed by E1 and E2, perform the clasp move. E1 and

E2 will clasp around the angle created by E3 and E4. Then connect E1 and E2

by a new edge. The new crossing created by E1 and E2 will be resolved as stated
before, with E2 crossing over E1. See Figure 3c. Now the sticks are in the correct
orientation to perform the clasp move using E3, E4, and the new edge. The new
crossing created by E3 and E4 will be resolved with E4 crossing over E3. See Figure
3d.
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Figure 3c: One clasp move. Figure 3d: Two clasp moves.
After the second clasp move is performed, it becomes clear that a four tangle

has been added to the knot or link. See Figure 3e.

E

1
E

2E

3

E4

Firgure 3e: Topological equivalence of the iterated clasp move.

4. The n-iterated Clasp Move

The n-iterated clasp move may be performed on many different stick arrange-
ments. For simplicity, I will describe a specific arrangement. Let the x-axis be
a line which contains n vertices, v1,...,vn starting at x=0 and labeling right. Let
vi=( i−1

n ,0,0) be the position of each vertex on the x-axis. Each of these vertices
has two edges attached to it. These two edges create a plane, which we assume
also contains the x-axis. Let p1,...,pn be the planes defined by these vertices and
their adjoining edges. Let the first plane p1 be the xy-plane with v1=(0,0,0). The
plane pi should be rotated by an angle of π

4n about the x-axis from pi−1. The angle
created at v1 is translated and rotated to create vi, so every angle with the vertex
on the x-axis is congruent.
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Figure 4a: Rotating angles and the planes that contain them.

Next, starting with the right most vertex on the x-axis, vn, perform the clasp
move. The edges should be extended until they reach x=−1

n . Then the vertical
edge x=−1

n should connect the endpoints of these two edges. Since the planes are
rotating at π

4n , the extended portion of the negative sloping edge will cross over
every positive sloping edge in its path. Following the same idea, the positive sloping
edges will only cross under negative sloping edges. See Figure 4b. The rest of the
vertices will follow the same procedure. The clasp move will be performed at each
vertex, starting with the rightmost vertex each time. The edges adjoining at that
vertex will be extended to x=( i−1

n -1)=( i−1−n
n ). The actual clasping edge will start

at the open end of the negative sloping edge and extend down, perpendicular to the
x-axis, crossing over every negative sloping edge of every other component. After it
crosses the x-axis at ( i−1−n

n ), this new edge will cross under every positive sloping
edge until it meets the positive sloping edge that is part of the same component.
The result is pictured in Figure 4c.
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Figure 4b: First added edge after one clasp move. Figure 4c: Four added edges after four clasp moves.

Figure 4d is an example of the T3,3. After three clasp moves are performed, the
resulting link is the T3,9 as shown in Figure 4e.

Figure 4d Figure 4e
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5. Two Full Twists in the Band

Lemma 5.1. The n-iterated clasp is equivalent to two full twists.

Proof. The iterated clasp move creates two full twists with two strands. Shown
below are the geometric and corresponding isomorphic representations of the be-
ginning and ending stages of the iterated clasp move.
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There is an obvious band in Figure 5d between the two strands. Since Figure 5c
and 5d are isotopic, there must be a band running between the strands in Figure 5c.
Let the strand containing the edge E3 be strand 1 and the strand containing E1 be
strand 2. To see the band in Figure 5c, imagine an arc between the strands 1 and
2. One endpoint of the arc is attached to strand 1, where the edge E3 is labelled,
and the other endpoint is attached to strand 2, where E1 is labelled. The arc can
slide along the strands down the positive sloping edges, then up the vertical edges
and back down the negative sloping edges. The band flows in the space between
the strands where the arc runs. See Figure 5e.
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Figure 5e

The n-iterated clasp move preserves the band and creates two full twists in
the band. The initial angles are composed such that the band will be preserved
and two full twists will be created with any number of strands used. After the n
clasp moves are performed, the strands remain in their initial order throughout the
created tangle.
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Let the exterior strands be the strands that start off passing through v1 and
vn. Let the interior strands be those that start off passing through every other
vertex from v2 to vn−1. Again to visualize the band, the arc’s endpoints will lie on
the exterior strands. Instead of being a perfectly smooth arc, now the arc will be
composed of line segments from vi−1 to vi, where there are i=2,...n strands. The
order of the strands does not change throughout the tangle after the iterated clasp
move, so the arc can slide along the tangle without breaking. The exterior strands
form the boundaries for the band. Added strands will never intersect any other
strand or pierce the band. Thus, the band will remain unaffected.

To generalize pictorially, let the center strand in Figure 5e in section 4 represent
n-2 strands. The band may be thought of as a twisted piece of ribbon with the
ends connected. The strands are drawn on the ribbon in parallel lines. When the
ribbon is twisted, the lines stay skewed, and their order never changes. ¤

6. Clasp Move on a Tr,r

Theorem 6.1. If r≥2, s(Tr,3r)=4r.

Proof. An r-iterated clasp move will be performed on a minimum stick link Tr,r to
result in Tr,3r. A slightly modified version of the construction Jin uses to create
Tr,r [2] is required for the proof and is included for convenience.

Let (0,0,0), (1,1,0), and (1,-1,0) be the vertices of the triangle L1. For each
i=2,...,r the triangle of Li should be rotated π

4r around the x-axis from Li−1. Then
Li should be translated 1

r units in the positive direction on the x-axis from Li−1.
The union of all Li triangles creates the (r,r) link. Thus, there will be r vertices
on the x-axis at a distance of 1

r units apart. The r-iterated clasp move will be
performed using these vertices and their adjacent edges.

Starting with the vertex on the far right vr and continuing left, perform the clasp
move on each vertex as described in Section 4. By Lemma 5.1, this will add two
full twists to Tr,r to create Tr,3r with the addition of only r more sticks.

Now if s(Tr,3r)<4r, then at least one component must be a triangle. The linking
number for a triangle and a quadrilateral would need to be three, which is the
common linking number of any two components of the Tr,3r. However, the linking
number for a triangle and a quadrilateral is at most two. Therefore, the stick
number of Tr,3r is equal to 4r. ¤

7. Generalized Iterated Clasp

In Section 2, the stick set up for the clasp move began with two angles and
two vertices. It is possible to start with only two edges and two vertices. A few
adjustments to the link can create the stick orientation as previously described. In
this section, I will describe the more general setting where the n-iterated clasp move
may be performed in torus links. With the correct stick set up, only 2r-1 sticks are
needed to add two full twists.

Theorem 7.1. The iterated clasp move may be performed in a more generalized
set up on a stick representation of a link, adding two full twists to the band and
only 2r-1 sticks.

Proof. The plane p0 is defined by two edges m1 and m2, connected at the vertex
v0. The value of the angle α created at v0 is less than π. Define the line k in p0

such that it bisects the angle α. See Figure 7a. Define the plane pk as the plane
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perpendicular to k. Now let e1,..., en be rotating edges that pierce the plane p0.
Let ai and bi be the two endpoints on each edge ei such that ai lies above the plane
p0 and bi lies below p0, with i= 1,..., n. Let each edge ei intersect p0 at the point vi.
Beginning with e1, project each edge onto pk. The projection of the edges from e1

to en must rotate in one direction, so that ei+1 is rotated more than ei. However,
the angle of rotation does not need to be constant.
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Now, let each edge ei be split into two, one edge from ai to vi aivi which is
the edge above p0, and another edge from vi to bi vibi which is the edge below p0.
This will add r-1 sticks to the stick number. Starting with v1, slide each vi along
the plane p0 to the line k until it is an epsilon distance from vi−1 as in Figure 7b.
The new angles created by aivi and vibi at each vi define planes, pi. The plane pi

also contains the edge ei, because the endpoints ai and bi did not move. Since the
projection of each edge ei onto pk is rotating, then the new projection of the angle
created by aivi and vibi is also rotating. This rotation of angles creates a conducive
environment for the iterated clasp move to be performed, using the vertices on line
k.

We will assume that anvn is rotated the furthest clockwise when projected into
pk. If the projected edges are rotating counterclockwise, the crossings later defined
would simply be reversed. The projection of the edges onto pk will determine how
the crossings are resolved. Starting at vn, extend the edges anvn and vnbn past vn.
Since

−−→
vnbn is rotated at the greatest angle, it will cross under every edge before it

pierces p0 at vn; then it will cross over every edge in its path. Similarly, starting
at an, −−→anvn will cross over every edge until it reaches vn, since it is rotated at
the greatest angle. It then extends below p0, so the extended portion of −−→anvn will
cross under every edge beginning with the edge

−−→
vnbn, connecting then to cn. For

the remaining clasp moves, the edge −−→aivi is rotated further clockwise than −−−→amvm,
where m<i, so −−→aivi will cross under every other edge once it pierces the plane.
Similarly, the edge

−−→
vibi is rotated further clockwise than

−−−→
vmbm, where m<i, so

−−→
vibi

will cross over every other edge once it pierces the plane. The subscripts of the
clasping edges ci will correspond to the subscripts of the edges connected to them.
Each ci will connect −−→aivi to

−−→
vibi as before. See Figure 7c. The r clasping edges will

add r to the stick number. In all, (r-1)+r=2r-1 sticks will be added to the stick
number of the original torus link. Following Lemma 5.1, the r-iterated clasp move
will add two full twists to the band.
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Figure 7c
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Corollary 1. The upperbound for the stick number after n-iterated clasp moves
are performed on Tr,r is s(Tr,(2n+1)r)≤4r+(2r+1)(n-1) for n∈ N and r>1.

To perform the n-iterated clasp move, there must be n vertices in a line k. The
edges attached to each vertex must be rotating in one direction when projected
onto the plane pk perpendicular to k. These edges are then extended, clasped
together, and the crossings at each vertex resolved. However, before the crossings
are resolved, clasping edges lie on the same rotating planes as the extended edges
they clasp together. If each crossing is resolved in the same way, the clasping edge
and the adjacent edge that was chosen to cross over at the intersection point create
planes that rotate in the same manner that the original planes did.

The stick arrangement after the n-iterated clasp move is performed fulfills the
requirements for another n-iterated clasp move to be performed. It is the same set
up as first described in Section 7 before the clasp move is performed. Following the
method in Section 7, the n-iterated clasp move may be again performed, adding
2n-1 sticks and two full twists. Thus, if one iterated clasp move can be performed
as described, then many more iterated clasp moves can be performed using the
clasping edges just added. Since 2n-1 sticks and two full twists will be added each
time, s(Tr,(2n+1)r)≤4r+(2r+1)(n-1) for n∈ N and r>1.
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