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Abstract

This article will show that the stick number of a T2,8 link is ten by
showing that it cannot be made by nine or less sticks. Then I will show
that it can be made by 10 sticks. Extending result shows that s(Tr,4r) =
5r.

1 Introduction

1.1 Torus links

In this project we are looking at the link known as T2,8, a torus link formed by
two strands and 8 crossings between them. Torus knots are knots that possesses
the special property that they can be wrapped around a torus without allowing
any intersections upon the surface. The pictorial depiction is easy to produce
since both the components are unknots. An example of a torus know can be
seen in Figure ??.

Figure 1: A sample torus knot, this one happens to be T3,7.

1.2 Linking number

One idea that helps to classify knots easily is the idea of linking number
or self linking number. The linking number of a link is a way to express how
“linked the components of the link are.” Often times the linking number can be
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thought of as the amount of times that one component of a link intersects the
surface of the other component bounded in space. When counting the linking
number, one has to remember that the knot is oriented and that the sign of each
intersection is equal to the signs of the crossings caused by the intersection. Each
time the surface is insected (assuming that it has the same sign as the rest of
the breaks), two crossings are added to the link. So when dealing with torus
links, we know that in a T2,2k one component will intersect the surface traced
by the other component exactly k times. By using this idea with a mixture of
geometrical and topological theorems one can analyze torus links and help with
the construction of the minimum stick representation of the links. An example
of a link with linking number 2 can be seen in Figure ??.

Figure 2: One component intersects the surface (shaded in) of the other como-
nent twice in the same direction thus the linking number of these two compo-
nents is two.

1.3 Braids

The next idea that also helps in understanding torus links is the idea of
braiding. A braid is an intertwining of some number of strings such that there
exists a point at which the orientation fo the braid is constant (i.e. counter
clockwise around the point). In space, this point is actually a line perpendicular
to the plane and is refered to as the axis of the braid. A braid can be described
as an n− braid where n is the amount of loops going around the center. Notice
that a single strand could go around the braid 4 times which would count as 4
loops not just one. Figure ?? is considered a 4−braid even though it has only
two components. This is a result of four different loops going around the x,
which is its axis.

A braid can be described by a group of braids generators. If you number
the strands starting with the strand furthest from the axis to the closest, any
crossing will occur between two adjacent strands. So we define a crossing σk as
the positively oriented crossing between the k and k + 1 strand. σk would be
the negatively oriented crossing of the same two strands. If we look at Figure
?? again, we can see that the braid word, or the order of the generators that
yields that braid, is {σ1σ3σ1σ2σ1σ3σ2σ2σ1σ3}. As with all groups, the group
of generators is not without certain identities that help us to simplify a braid
word. For instance, in a 3−braid there are two sigma generators that can be
used σ1and σ2. As it turns out in this group, the only identity that can be made
is the identity that says σ1σ2σ1 = σ2σ1σ2. Naturally as the group gets bigger
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Figure 3: A two component 4− braid.

so does the amount of identities.

2 Why Not Nine

Since T2,8 is a torus link we immediately know that it must be made by two
polygons with sides adding up to nine. One possibility would be for one of the
polygons to be a triangle and the other a hexagon. The other possibility would
be for one to be a quadrilateral and the other a pentagon. I show, however, that
these two different arrangements will not be able to yield a T2,8 link.

2.1 The Triangle and the Hexagon

This part of the proof is mostly a geometric argument. If we think of the
triangle as a surface and the hexagon as a curve breaking the surface we know
that the hexagon has to break the surface 4 times. Since a triangle is a planar
object we know that each break must be made by one stick. This means we
have to use four separate sticks to make the necessary break. The result is a
shape similar to Figure ??. As one can, see the four sticks already in place need
at least four more sticks to be able to connect the tops of the oriented sticks
going through the surface, to the bottom of them (see Figure ??). Since four
more sticks would require at least 11 sticks, we can conclude that the T2,8 link
cannot be made with a triangle and a hexagon.

2.2 The Quadrilateral and the Pentagon

The fact that the quadralateral can outline more than one plane makes the
arguement against it more complex. The first thing one has to notice is that the
quadrilateral can never be oriented perfectly flat once the link has been made.
If this were to happen an arguement link there was in section ?? could be used
to prove its inefficiency. As a result one can conclude that the quadrilateral
must be bent if there will be a way to make a 10 stick, 8 crossing knot (see
Figure ??).
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Figure 4: Four different sticks are required to pierce the surface formed by the
triangle four times.

Figure 5: Four more sticks are needed to connect the four sticks (dotted ones)
together.

2.2.1 Two in Each Face

After determining that the quadrilateral must be bent we analyze the ways
linking with the pentagon can occur. First of all, we must think of how the
pentagon must intersect the surface topologically traced by the quadrilateral.
Clearly if all four sticks pierce the same plane the figure cannot be made as in
the discussion of the triangle and the hexagon. This means at least one line
must pierce through the second plane as seen in Figure ??. However, there is
a problem with this set up. Assuming that the stick through the upright plane
is connected directly to two of the other sticks, this still requires at least two
more sticks to connect the three sticks through the bottom plane. Thus a total
of 10 sticks must be used to make T2,8. This leaves the only other possibility
and when there is two sticks breaking each triangle as seen in Figure ??.

2.2.2 Proof that T2,8 is Not the Knot Produced

The first thing to notice about the setup in Figure ?? is that the connection
between the sticks must alternate from top to bottom and vise versa. This
is seen in the proof of why three cannot be in the same face. If the two sticks
through the same plane are connected, an extra stick is required. This condition
would force the sticks through the other plane causing an additional stick to be
necessary. This requires the maker to add an extra stick to connect the both
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Figure 6: The quadrilateral cannot be flat but instead can be thought of as two
triangles defining two planes if you fold the quadrilateral over the diagonal.

Figure 7: One stick through one
three through the other

Figure 8: Two sticks go through
each plane

pairs of sticks totalling to the addition of two sticks (one for each consecutive
pair) and using a total of ten sticks instead of nine. The only knot universe that
will work is the one depicted in Figures ?? and ??.

The only way that a pentagon can cross a quadrilateral 8 times.

Figure 9: Three dimensional Figure 10: Two dimensional

At this point we can use a linear transformation on the whole link, so that
the quadrilateral can be aligned with the x, y, and z axis as shown in Figure ??.

This allows us to look down the z-axis and view the whole knot from above,
causing the quadrilateral to appear to be a triangle and the pentagon to look like
a star. Since the pentagon has a star shape it adds 5 self crossings in addition
to the 8 crossings between the pentagon and the quadrilateral . The other key
aspect of the knot diagram is the fact that it seems to be a 3−braid. Since T2,8

is a two braid, either the link has to be reducible to a 2−braid or it is not T2,8.
The only way that a T2,8 can appear to be a 3−braid is for it to appear as is
does in Figure ??.

If one looks at Figure ?? and attempts to write the braid word as a product
of braid generators, one will find that (assuming, without loss of generality, that
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Figure 11: A linear transformation moving the quadrilateral to the center of the
axis

Figure 12: This is a T2,8 link represented by a 3− braid

all the crossings between the components are positive since if they were negative
they would just be a rotated or reflected version of one of the all positive crossing
sets) the codeword will be {σ1σ1σ1σ1σ1σ1σ1σ1σ2} or {σ1σ1σ1σ1σ1σ1σ1σ1σ2}
(which is the one in Figure ??) when written in its simplest terms. That means
that if the 9 stick knot universe is going to be T2,8 it will have to be simplified
to one of these two code words. This tells us that at most one of self crossings
can remain after the braid identities are applied. Furthermore, if you observe
the crossing order seen in Figure ??, you will notice that all the crossings can
be topologically moved in such a way that it appears like they do in Figure ??.
There is only one set of crossings that would not allow for this change to be
preformed. This topic is discussed a bit later.

In most cases the crossings can be moved into the Figure ??, shape so we
should be able to write the braid word for this shape, and it should simplify into
the braid word of the T2,8. So, once again assuming without loss of generality
that the crossings between the two components of the links are all positive and
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Figure 13: A way the different stick representatives can be thought of after
being moved topologically

not assigning a specific value to the self crossing of the pentagon we find that the
braid word for Figure ?? is {σ2σ1σ1σ2σ2σ1σ1σ2σ1} or {σ2σ1σ1σ2σ2σ1σ1σ2σ1},
which when simplified come out to be {σ1σ1σ1σ2σ2σ1σ1σ1σ2} and {σ2σ1σ1σ2σ2σ1

σ1σ2σ1} respectively. Clearly these two cannot be simplified any more and thus
are not T2,8.

Figure 14: The different cases can easily be seen here

Figure 15: As you can see these two sticks have one end in the same plane in
the same plane yet weave around another stick.

The remaining cases are the ones in which Figure ?? cannot be reached.
These cases are caused by the fact that one of the crossings cannot be moved
outside the loop by standard reidemeister moves. If you look at this specific
crossing in Figure ??, you can see that the two sticks have endpoints in the
same plane and end up crossing another stick and then each other in a way that
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clearly cannot be done by only those three sticks. Therefore, this stick diagram
cannot actually occur in space with only 9 sticks, the stick number of T2,8 > 9
otherwise T2,8 = 10 2.

3 Stick Number of Tr,4r

With the stick number of T2,8 established to be 10, the question arises: is
there a generic way to write the stick number of Tr,4r? Initially it seems that
the stick number should be 5r from the given example. To prove this, we have
to look at a generic construction of Tr,4r by building upon the known minimum
stick representation of T2,8. One way to make T2,8 with 10 sticks is to connect
two pentagons as can be seen below in Figure ??. This 10 stick representation
of T2,8 can be made by adding two points along a line containing each vertex as
can be seen in Figure ??. If you label each pair of points as one and two in an
alternating fashion and connect each 1 to the 2’s adjacent to it in teh core you
will yield T2,9 by simply changing one of the line sets so that instead of 1 → 2
you can make 1 → 1 so that takes out one crossing ending in T2,8.

Figure 16: This 10 stick rep of T2,8

Figure 17: If you lable each consecutive point as 1 or 2 and then connect the
ups to the downs along the core line you will get T2,9. A small twist fixes the
problem and makes it T2,8

3.1 5n is an Upper Bound

If this construction is repeated with r points added along the line (numbering
each from 1,2,3,...,r with the point ), and the points are connected such a way
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that {1, 2, 3, ..., r} → {r, ..., 3, 2, 1}. Similar to the construction of the T2,8 one
of the three sides has to be a {1, 2, 3, ..., r} → {1, 2, 3, ..., r}. By reducing the
space between the dots this construction can be done for an infinitely large r.
This construction will yield a Tr,4r with 5r sticks. This gives us an upper bound
for s(Tr,4r). An example of this construction when r = 3 can be seen in Figure
??.

Figure 18: Here is a r=3 construction

3.2 Proof 5n is a Lower Bound

There are several ways to make Tr,4r with less than 5n sticks. Notice that
the construction described above adds a pentagon from each Tr−1,4(r−1) to Tr,4r.
One way would be if there was a point where a quadralateral or triangle could be
added to the construction described above at some point to go from Tr−1,4(r−1)

to Tr,4r. This cannot happen because in a Tr,4r any two components can form
a T2,8. If either a triangle or a quadralateral could be added and form Tr,4r,
there would be two components of the link that formed a T2,8 with less than
10 sticks. Since we know the s(T2,8) = 10 we know that this cannot happen.
This would be true of all 5-5 (5 sticks in the first component, 5 sticks in the
2nd component) stick constructions so no 5-5 stick constructions can improve
on this number.
That means the only way that a lower value can be found for Tr,4r would be
if there was a 6-4 or 7-3 construction that would yield a smaller quantity that
5n. We can immediately throw out the 7-3 constructions because, as can be
seen in section ??, at least 11 sticks are necessary to make T2,8 with a triangle
as a component. That leaves only the 6-4 construction to consider. The 6-4
construction will not work because of a argument similar to why the 5-5 con-
struction does not work. For a 6-4 construction a hexagon and a quadralateral
form T2,8. Quadralaterals cannot be added since that would mean that two
quadralaterals would be forming a T2,8. Pentagons cannot be added since that
would be implying that a pentagon and a quadralateral are making a T2,8. So
that means that a hexagon must be added each time yielding 6r − 2 sticks for
a Tr,4r. 6r− 2 > 5r so there is not a way to make Tr,4r with less than 5r sticks,
therefore 5r is also a lower bound. Hence, s(Tr,4r) = 5r. 2
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Conclusion

There are several new conjectures that can be drawn from the results above.
First of all using the previously found results that s(Tr,r) = 3r and s(Tr,2r) =
4r − 1 [?] also that s(Tr,3r) = 4r [?], a pattern seems to emerge. First of
all s(Tr,kr) appears to be d s(T2,2k)

2 e(r − 2) + s(T2,2k). You can arrive at this
conclusion logically from the idea that d s(T2,2k)

2 e represents the component made
of more sticks when the two component link is made so that the two components
as close to the same amount of sticks as possible. In the case of T2,8 this occurs
when each component is made of 5 sticks. The reason for the n−2 factor next to
it accounts for the fact that its that component that will be repeated to continue
making the knot. The stick number added to that adds in the contribution of
the original two component link. This conjecture would be more or less easy to
prove, all that needs to really be shown is that if a two component torus link
can be made with n sticks then it can be made with one component made with
dn

2 e sticks and one ofbn
2 c sticks. With that proven, a similar but more general

version of the proof found in section ?? should be able to prove this conjecture.
The next idea that seems to fall out of the results above is that s(T2,2k) <
s(T2,2k+2). To prove this it has to be shown that s(T2,2k) can be made with at
least one less stick than s(T2,2k+2). If this proves true a few more stick numbers
would quickly be confirmed and the monotonic tendencies of the stick number
would exist. This would lead to my last and final conjecture. I believe that

s(T2,2k) =





4
3k + 14

3 when 3|k + 1
4
3k + 13

3 when 3|k + 2
4
3k + 4 when 3|k

= b4
3
k +

14
3
c

from the numbers that I have collected and from the apparent stick numbers
that come after it. The results in general might be useful in developing a general
formula for the stick number of Tp,q, which would be quite good.
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