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Abstract

This paper looks at the construction of a twisted torus and it proves

that when putting a Tr,s around a twisted torus a new torus knot Tr,z,

results where z is a function of s, r, and n, where n is the number of twists

in the torus. This paper shows that the stick representation on a twisted

torus is 2ns + 2s which improves the known upper bounds for the stick

number as given in Jin’s construction.

1 Introduction

A torus is a surface with a hole in it. A real life example of a torus is a
doughnut. On the surface of the torus, meridian and longitude curves can be
drawn. The meridian curve is a curve that goes around the shorter way of the
torus, while the longitude curve is drawn so that it runs the long way around
the torus.

A torus knot is a knot on the surface of the torus and it can be characterized
by the number of times it crosses the meridian and longitude of a torus. For
example, if a knot crosses the longitude three times and the meridian two times,
it would be characterized as a T2,3 knot, with the general form of Tr,s where r
represents the number of times the knot crosses the meridian and s represents
the number of times the knot crosses the longitude.

meridian

longitude

Figure 1: The torus with its meridian and longitude drawn in.

2 Minimal Stick Number

Jin looks at the minimal stick number for knots on a torus. The stick
number s(Tr,s) of a knot is the least number of sticks needed to make a knot
representation. Jin proves if 2 ≤ r < s < 2r, then s(Tr,s) = 2s. Furthermore,
Jin proves for r≥ 1, s(Tr,r) = 3r and s(Tr,2r) = 4r − 1.
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2.1 Jin’s Construction of the Torus

In order to prove the minimum stick number, Jin constructs the torus out
of hyperboloids. Jin begins by choosing an angle, α, between πr/s and min
{π, 2πr/s}. Then, he chooses two points (cos(α/2),−sin(α/2),−1) and
(cos(α/2), sin(α/2), 1) from which he constructs a line segment.

The line segment Jin constructs has equations x = cos(α/2) and y =
zsin(α/2). Jin rotates this line segment around the z-axis to obtain the hy-
perboloid with the equation x2 + y2 − z2sin2(α/2) = cos2(α/2). Similarly Jin
takes another angle, β, (defined to be β =2πr/s-α) and using the same procedure
as above forms another hyperboloid.

Jin takes the union of the two hyperboloids and the result is a torus with
the alpha hyperboloid (Hα) on the outside and the beta hyperboloid (Hβ) of
the inside. Figure 2 shows the completed torus based on Jin’s construction.

Figure 2: The union of the hyperboloids

2.2 Jin’s Construction of Knots on the Torus

In the next step of the process, Jin places the knot onto the torus by con-
structing line segments which rotate to form the torus knot. Jin constructs the
line segments from the points below, where i goes from 0 to 2s.

Xi =

{

(cos(π(r)i/s), sin(π(r)i/s),−1) if i is even;
(cos(π(r)(i − 1)/s + α), sin(π(r)(i − 1)/s + α), 1) if i is odd.

By having an even i, XiXi+1 is rotated through the angle, −πri/s − (α/2)
on the z-axis. This rotation causes the points (cos(α/2), sin(α/2), 1) and
(cos(α/2), sin(α/2),−1) to be connected by the line segment. This line segment
is contained in Hα. The same technique can be applied to the line segment
XiXi−1, while rotating it through the angle, −πri/s − (β/2) (radians) on the
z-axis. This line segment is contained in Hβ .

Each curve goes around the z − axis through 2πr/s (radians), so a knot
goes r times around the longitude. Then Jin considers a disc whose core is the
union of Hα and Hβ . The curve that Jin defines causes the linking number of
the knot to be s, meaning that he has constructed Tr,s with 2s edges.
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Figure 3: The T3,4 knot on the torus using Jin’s construction

3 Linking, Twisting, and Writhing

In the 1980’s, biologists were working with DNA and they discovered DNA
had similar properties to knots. The DNA was supercoiled which relates to the
twisted torus and its behavior. Supercoiling can be defined as the difference
between the linking number of DNA in its natural state and the linking number
of a molecule in a different closed state. (The closed state would be where
the writhing is equal to zero and the natural state of DNA is when writhing
is at its greatest.) The supercoiling configuration has the minimum amount of
twisting and it introduces bend into the DNA molecule. Supercoiling increases
the writhing in the DNA molecule.

Writhe is equal to the linking number minus the twisting number. The twist
of a ribbon measures how much a ribbon twists around its axis and it is defined
to be the integral of the incremental twists around the ribbon.

When a knot crosses over itself, it produces an index number of 1 or -1,
depending on the way the top piece crosses over the bottom piece. The linking
number is half the sum of the signs of the crossings. The positive crossing has the
right strand crossing under the left strand, while the negative crossing has the
right strand crossing under the left strand. Figure four depicts the orientation
of the knot and the type of crossing it produces.

One way to think about writhing, linking, and twisting would be to imagine
a telephone cord. When a telephone cord is in its natural state its twisting is
small and its writhe is large. However, when the telphone cord is stretched, the
the writhing on the telphone cord becomes small and the twisting increases.

Linking is important when constructing the knot on the twisted torus. The
linking number of a knot on a torus can be increased by writhing and twisting.
Jin’s construction uses twisting to increase the linking number. However, when
placing a knot on the twisted torus the linking number increases due to writhing
and twisting.
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Figure 4: Positive and negative crossings.

4 Constructing the Twisted Torus

Based on the ideas of the supercoiled DNA properties and the Jin’s con-
struction of the hyperboloid, a twisted torus was created by adding twists to
the torus. By twisting the torus, writhe was added.

The single twisted torus is made up of an upper and a lower twisted loop
that form the boundaries for the twisted hyperboloid. In this construction, one
full loop can be made from two equations.

The points in A form the bottom loop of the twisted torus.

A =

{

(cos(α), sin(α), 1 − .35cos(α/2)) if 0 ≤ α ≤ 2π ;
(2cos(α) − 1, 2sin(α), 1− .35cos(α/2)) if 2π ≤ α ≤ 4π.

The points in B form the top loop of the twisted torus.

B =

{

(cos(α), sin(α), 1.5 − .35cos(α/2)) if 0 ≤ α ≤ 2π ;
(2cos(α) − 1, 2sin(α), 1.5− .35cos(α/2)) if 2π ≤ α ≤ 4π.

When the two loops are graphed together loop B sits above loop A and a
link is formed between the two.

Figure 5: The bottom and top of the twisted hyperboloid.

The figure of the twisted torus can be thought of having two main parts.
The “smooth” part is the part of the torus that connects from the bottom to
the top of the torus. This is the part that does not have twisting. The “twisted”
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part of the torus is obviously the part of the torus that twists. The twisted part
of the torus is also the part where the linking occurs.

From the construction the twisted hyperboloid is the surface between the top
and lower boundaries of the loop. As in Jin’s construction, the twisted torus
has an inside and outside edge so the knot can alternate.

5 Constructing the Twisted Torus Knot

In order to graph the knot onto the twisted torus, Jin’s scheme to plot the
points onto the hyperboloid was used. To graph the points onto the twisted
torus for i from 0 to 4s−1, the following construction was used, where b=πri/s,
d=b/2 and j=πr(i-1)/s +((r+.5)π/s). This will hold for when 0≤ b<2π or 4π
≤ b<6π or 8π ≤ b <10π.

If k is even, then the following formulas were used:

Xk =

{

(cos(b), sin(b), 1 − .35cos(d)) if i is even;
(2cos(b) − 1, 2sin(b), 1− .35cos(d)) if i is odd.

If k is odd, then the following formulas were used.

Xk =

{

(cos(j), sin(j), 1.5 − .35cos(j/2)) if i is even;
((2cos(j) − 1, 2sin(j), 1.5− .35cos(j/2)) if i is odd.

The different formulas were used when k was odd and even is because Jin’s
construction has a different pattern for even and odd cases. For example in
Jin’s construction he skips two vertices for a T3,s and for a T4,s he skips first
two vertices and then he skips four vertices to achieve the proper arrangement
of the knot. This knot construction will allow for the knot to alternate from
the top loop of the torus to the bottom loop of the torus. Furthermore, the
knot will alternate from the inside to the outside of the torus. The vertices are
spaced evenly apart.

Figure 6: The knot with base T3,8 on a single twisted torus.
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6 The Representation of Knots on the Twisted

Torus

To draw Jin’s scheme on a piece of paper, a circle is constructed with twice
r vertices. For T3,s a line would connect the vertices that are spaced two apart,
as seen in the diagram.

Figure 7: The representation of a T3,4 on a torus using Jin’s construction

For the twisted torus a different paper representation has to be used to graph
the knot onto the torus. The twisted torus can be made so it had two circles as
shown in the figure. In a diagram with one twist, one set of vertices would be
placed on the inside circle and other set of vertices from the other knot would
be placed on the outside circle. The knot would be drawn in the same manner
as the knot on the torus; however, the knot would have to alternate from the
inside to the outside circles.

Figure 8: The twisted torus
drawn two dimensional. Figure 9: The representation of

T3,4 on the twisted torus.

7 T3,s on the Twisted Torus

In his work, Jin gives an example of the knot T3,4 using eight points with
each line segment alternating on the inside and outside the hyperboloid. Jin’s
knot construction used eight sticks to go around the hyperboloid.
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Using the twisted torus, the knot was plotted on it with the base knot T3,4.
The knot was carefully examined and each of the line segments went inside
and outside of the twisted torus as in Jin’s construction. The knot on the single
twisted torus was at least T3,8 because one T3,4 knot was added to the “twisted”
part of the torus and one T3,4 was added to the “smooth” part of the torus.

However, since the two boundaries for the twisted torus link, the linking
number had to be considered. The way the twisted torus was constructed six
strands of the knot crossed over the twisted part with each having a positive
crossing of one. The linking number is three because six strands cross over the
core of the torus contributing a net of three. This is demonstrated in figure 7.
The linking number of three was contributed to the knot, thus making the knot
T3,11. The stick number of T3,11 is sixteen which results from twice the number
of vertices.

Figure 10: The linking with the core for a T3,s

By extending the following procedure with each of the T3,s knots, a formula
was made as to what knot would result from the base knot T3,s, where is s
is relatively prime to three. All the knots of general form T3,s have a linking
number of three. Furthermore, as the knot acquires more twists, the number of
base knots have to be added for each twist of the torus plus one base knot for
the “smooth” part of the torus.

Lemma 7.1 The knot T3,z where z= (s(n + 1) + 3n), where s is from the base
knot and n is the number of twists in the torus.

Lemma 7.2 The stick number for the knot T3,z is 2(s(n + 1)) which is twice
the number of all vertices of the base knots on the torus.

8 Tr,s on the Twisted Torus

Extending the idea of the base T3,s knots on the twisted torus, torus knots of
the general form Tr,s were examined. It was observed from T3,s that the linking
number has to be considered because the torus twists. In general, the linking
number will be the number, r, of the base torus knot. The linking number will

7



be r because this is the half number of times the knot goes along the longitude
of the torus. Based on this construction, a general formula can be constructed
that determines the knot that results from the base knot.

As in the T3,s case, the torus can be twisted more than one time so the base
knot has to be added the number of times the torus is twisted. In general for
a base Tr,s knot on a twisted torus, the number of times the torus twists the
more times the base knot has to be added.

Lemma 8.1 The new Tr,z that will result is z = s(n + 1) + rn, where r and s
are the meridian and longitude crossings in the base knot and n is the number
of twists the torus has.

The stick number for Tr,s is 2(s(n + 1)). Note this is the same as the T3,s

base knot case because the stick number does not depend on the linking number.
The stick number depends on the number of times the base knot has been added
around the twisted torus.

9 Proof

A Tr,s knot intersects the meridian r times and the longitude s times, while
the meridian and longitude intersect exactly once. (The number of intersections

with the meridian is the longitude number.) In general, Tr,s =s~m+r~l, so this
concept can be applied to the twisted torus knots to show that they are torus
knots.

In general for Tp,q, the torus knot is equal to q ~m+p~l, where ~m is the number

of crossings of the meridian and ~l is the number of crossings of the longitude.
It is also the unique disc that bounds the disc outside of the torus. However to
see if the knot that was constructed by adding twists is a torus knot, p and q
have to be found in terms of r, s and, n.

It is known that Tp,q= A~m+B~l′ where ~l′ interesects with the top of the torus

and A and B are constants. To find ~l′ the intersections of the knot with the
meridian need to be calculated. Furthermore, ~l′=A~m+~l. Using these facts, it
can be shown that the knots constructed are torus knots. Tp,q=A~m+B~l′

=(Tp,q
~l′)~m + (Tp,q ~m) ~l′, where Tp,q

~l′ is the number of vertices.

By substituting the values into the equation the following results- =ns~m+r~l′

however, the equation has to be put in terms of ~l so by substitution
=(ns)~m+ r(A~m+~l)

=(ns)+(rA~m)+ r~l

=(ns + rA)~m+ r~l

Using the equation to give the new torus knot, (ns + rA) gives the number
of meridians on the torus knot, while r gives the number of longitudes. It is
known that z = s(n + 1) + rn and this is equivalent to the equation above.
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10 The Best Construction of Tr,z with the Same

Base

From Jin’s construction, it is known that the stick number is 2s. However
based on the construction of the twisted torus, it is known that the stick number
is 2ns + 2s. For the general case this is 2rn sticks less then in Jin’s case.

Furthermore, some knots can be made with different bases and different
number of twists, yet still result in the same Tr,z knot. When observing these
knots, the knots with the smaller base knot and more twists used less number
of sticks then the ones with the larger base and less twists.

As known from the previous equation, for a T3,s the equation to find the
z is (s + 3)n + s. To minimize the stick number of s the derivative has to be
taken. By solving the z equation for n and substituting it into the stick number
equation of 2ns + 2s the minimum can be found. The equation for z in T3,s

is z = (s + 3)n + s and solving it for n, n = z−s
s+3

. By substituting it into the

minimum stick equation the following equation is the result: 2zs−s2

s+3
+ 2s.

Taking the derivative with respect to s shows that the stick number decreases
with more twists and a smaller base knot. Optimally, for T3,z the smallest base
knot is needed with the most number of twists. In the T3,s case, the base knot
that would have the minimun stick number would be T3,4 with n number of
twists. S is the smallest it can be and the stick number goes down (in relation
to an untwisted tours) once the twists are added to the knot. The same applies
to the generalized case where z = (s + r)n + s. The stick number would be
minimized when n is the greatest and s is the least.

11 Different Bases

Torus knots can be made out of different knots that have the same r. For
example, a T3,5 and T3,8 can be put together to form T3,16 with one twist.

Lemma 11.1 For two knots to be put together, Tr,s and Tr,t, then Tr,z would
be z= t + ns + rn, where s is smaller of the two.

When constructing a knot out of different bases, sometimes a link forms.
When this occurs, the knot would connect back to its starting point after one
rotation. To finish the link that is formed, start one vertex to the right of
the original starting point and continuing doing this until all the vertices are
connected. This will depend on the r of the knot.

Even though different bases are used for the construction of the knot, the
stick number remains 2rn less then in Jin’s construction. The total stick number
for a knot with different bases is 2(t+ns+rn) in Jin’s construction. However,
using the twisted torus construction the stick number is 2(t+sn).
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12 Comparison of Stick Number on Different

Bases

Based on experimental evidence, it appears that the most efficient torus knot
in terms of stick number is the knot with different bases and the most number
of twists. For example, T3,67 can be made with 92 sticks using one T3,11 and
seven T3,5 twisted seven times. However, T3,67 can be made with a base T3,7

that is twisted six times and has 98 sticks. With the T3,7 base, the knots are
all equal (they have the same number of sticks). However, in the base T3,5 and
T3,11, the T3,11 adds 11 vertices but when the T3,5 is added multiple times it
contributes less sticks then T3,7. Thus when multiple twists are added to the
torus, the stick number is less then the knot with base T3,7.

Even though the lower cases of the different bases knots do not appear to
give less of a stick number, (they are either more or equal to the number given
by the same base knots) as the number of twists increases, then the stick number
increases. This is due to the fact that the knot being twisted is smaller than
the other knot it is connected to.

13 Conclusions and Recommendations

Using the twisted torus construction, the equations for z of Tr,z were found
for knots constructed from the same and different bases. It was shown that the
stick number of any Tr,z was 2sn + 2s which is 2rn less than Jin’s construction.
Moreover, it was shown that the stick number is improved with more twisting
and a smaller base. Last, evidence suggests that the best stick construction for
a torus knot might be with different bases.

Some further areas of investigation might be to prove which bases give the
minimum stick number and investigate how the different bases interact with one
another. In addition, more research needs to be done on what happens when
two or more knots combine together on the twisted torus. The formula for the
new knot that results from this combination and its stick number have to be
looked at in relation to the other knots construsted. Moreover, a method could
be found to determine the most efficient base knots used to create a knot when
given z.
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