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Abstract

This paper finds the linear wirelength of complete bipartite and tripar-

tite graphs. A model for the graph with minimum wirelength is created

by examining the wirelength directly in the bipartite case as well as by

minimizing the cut at each region to find the wirelength for both bipartite

and tripartite graphs.

1 Introduction

A complete bipartite graph Km,n consists of two sets of vertices A and B in
which each of the m vertices in A is joined by an edge to each of the n vertices in
B, but no vertex is joined to another in the same set. In this paper, the vertices
from set A will be white and the vertices from set B will be black. Figure 1 is
a representation of the complete bipartite graph K2,3.

Figure 1: K2,3

Figure 2: linear embedding

This paper minimizes the linear embedding of complete bipartite and tri-
partite graphs, in which each vertex of the graph is embedded onto a line. In
a linear embedding, the edges are connected by the same rule. Figure 2 is a
representation of a linear embedding of K2,3.

The linear wirelength of an arrangement of vertices is the sum of the lengths
of all the edges. The linear wirelength of the above arrangement is 1 + 2 + 1 +
2+2+3 = 11. However, the linear wirelength of a graph, denoted lwl(G) is the
minimum wirelength over all numberings. So the lwl(K2,3) is ≤ 11. The first
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proof in this paper will show the diagram of the minimum wirelength for any
complete bipartite graph.

A Complete Tripartite graph Kr,s,t consists of three sets of vertices |A| = r,
|B| = s and |C| = t in which each of the vertices in one set is joined by an edge
to each of the vertices in the other two, but no vertex is joined to another in
the same set. Figure 3 is one representation of K1,2,4.

Figure 3: One arrangement of K1,2,4.

This paper also uses linear cutwidth as a method for calculating wirelength.
The cut of a region between two vertices is the number of edges that cross the
region from the left or right. For example, the cut of Figure 4 between vertices
2 and 3 is 6.

Figure 4: One arrangement of K2,6.

The maximum cut of an arrangement of a graph is the largest cut that
occurs in that arrangement. The linear cutwidth of a graph is the minimum of
all maximum cuts over all possible arrangements.

2 Background

Applications of cutwidth and wirelength include networking, circut layout,
and code design. Many papers on the cutwidth and a few papers on the wire-
length of graphs have been written. F. Rios [12] and D. Clarke [7] found the
linear and cyclic cutwidth of any complete graph Kn. J. Chavez and R. Trapp
[5] found the cyclic cutwidth of trees and S. Bezrukov and U.-P. Schroeder [3]
wrote a corresponding paper on the cyclic wirelength of trees. M. Johnson
[11] found the linear cutwidth of Km,n and M. L. Holben [9] found the cyclic
cutwidth of Km,n.
Johnson used a specific graph numbering to find the minimum cutwidth of any
complete bipartite graph, which was mn

2 for mn even and mn+1
2 for mn odd.

Johnson’s numbering consisted of an algorithm in which he placed xm
m+n

ver-
tices from the smaller set to the left of each position x where x is the number of
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vertices to the left of the cut. Holben used Johnson’s linear cutwidth as a lower-
bound for finding cyclic cutwidth. Johnson also claimed that his arrangement
minimized the cut at each region, which would then also give the wirelength
since the sum of the cuts equals the wirelength. However, while Johnson’s lin-
ear cutwidth was correct, there was a flaw in his proof that his arrangement
minimized the cut of each region. Within this paper, we find an arrangement
which minimizes the cut of each region (resulting in the same linear cutwidth
as Johnson), allowing us to find the wirelength.

3 Structure for the Minimum Wirelength of a

Complete Bipartite Graph

Theorem 1 The minimum linear wirelength for a complete bipartite graph

Km,n where n ≥ m occurs when the graph is arranged such that the m ver-

tices from set A and m − 1 vertices from set B alternate between d n−m+1
2 e

vertices from set B on the left and bn−m+1
2 c vertices from set B on the right.

Figure 5 is an example of the arrangement described in the theorem.

........

m white, m-1 black

....

Figure 5: optimal arrangement

Proof
Let Km,n be a complete bipartite graph with n ≥ m represented by n black

vertices and m white vertices. First, we want to place the two outer white
vertices so that the wirelength contributed by these two will be minimized.
Without loss of generality, consider the left side of the graph. Suppose that
there are j black vertices on the left of the first white vertex as in the diagram
below.

........

j-1 black

....

n-j black, m-1 whitejth black

Figure 6: switching vertices

Since we are minimizing the contribution by this white to the wirelength, we
want to choose the biggest j such that switching the jth black vertex with the
first white vertex will result in a positive change in wirelength. Observe that
switching these two will bring the white vertex closer to j−1 black vertices and
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further from n − j black vertices, and bring the black vertex closer to m − 1
white vertices. So the change to the wirelength is −(j−1)+(n− j)− (m−1) =
n − m − 2j + 2. We want this to be the least integer greater than zero, so
n − m − 2j + 2 > 0 ⇒ 2j < n − m + 2 ⇒ j < n−m

2 + 1.
Case 1:
When m is odd and n is even or m is even and n is odd, n−m

2 + 1 is not
an integer, so the greatest integer less than this is n−m−1

2 + 1. So there are
n−m−1

2 + 1 black vertices on each side of the two outer white vertices. So there
are a total of 2 · n−m−1

2 + 1 = n − m + 1 black vertices on the outside and
n − (n − m + 1) = m − 1 black vertices inside the two outer white vertices.

Case 2:
When m and n are both even or odd, n−m

2 + 1 is an integer, so n−m
2 is the

greatest integer less than n−m
2 + 1. So there are n−m

2 black vertices on the left
before the first white vertex. Similarly, there are n−m

2 black vertices on the
right following the last white vertex. However, observe that switching the first
white vertex on the left with adjacent j + 1th black vertex will not change the
wirelength since this makes the white vertex further from j black vertices and
closer to n− j − 1 black vertices and makes the black vertex further from m− 1
white vertices, resulting in a change to the wirelength of

j − (n − j − 1) + (m − 1)

= m − n + 2j

= m − n + 2 ·
n − m

2
(Since j = n−m

2 )

= m − n + n − m

= 0

Since the change in wirelength is zero, either arrangement of those two vertices
is equivalent, and we will use the latter. This diagram has n−m

2 black vertices
on one side of the outer white vertices and n−m

2 + 1 black vertices on the other
side, totaling n − m + 1 black vertices on the outside and m − 1 black vertices
on the inside of the two outer white vertices.

Now that we know how many black vertices are on the ends, we can focus
on minimizing the wirelength of the center of the graph. With both cases, given
a Km,n graph, the piece inside and including the two outer white vertices will
consist of m white vertices and m − 1 black vertices. So now we can focus on
minimizing the complete bipartite graph Km,m−1.

We want to show that the wirelength is minimized when this graph is alter-
nating, so assume we are starting with a white vertex from the left (because of
the above arrangement) and that the graph is alternating until the gth vertex
from one set, which begins a string of h adjacent vertices from the same set.

Case 1: Suppose the vertex which begins the string of non-alternating ver-
tices is the gth from the smaller set (see Figure 7). So switching the hth black
vertex in this string with the adjacent white vertex will result in a change of
wirelength totaling

g − (m − g − 1) + m − g − h − (g − 1) − (h − 1) = 2g − m + 1 + m − 2g − 2h + 2
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... .... ........

m-g-1 white, m-1-(g-1)-h blackg white, g-1 black

hth black in stringgth black

h-1 black
=m-g-h black

Figure 7: Km,n with h adjacent white vertices

= −2h + 3

Thus, if h ≥ 2, the equation is negative, so making the switch decreases the
wirelength. Therefore whenever there are 2 or more black vertices in a row, it is
better to switch them so that each white vertex is between two white vertices.

.... .... ........

m-1-g black, m-(g-1)-h whiteg-1 white, g-1 black

hth white in stringgth white

h-1 white
=m-g-h+1white

Figure 8: Km,n with h adjacent black vertices

Case 2: Supppose the vertex which begins the string of non-alternating
vertices is the gth vertex from the larger set as in Figure 8. So switching the
hth white vertex in this string with the adjacent black vertex will result in a
change of wirelength totaling

m − (g − 1) − h − (g − 1) − (h − 1) + (g − 1) − (m − 1 − g)

= m − 2g − 2h + 3 + 2g − 1− m + 1

= −2h + 3

We observe that if h ≥ 2, the equation is negative, so making the switch de-
creases the wirelength. Consequently, whenever there are 2 or more white ver-
tices together, it is better to make switches so that each white vertex is adjacent
to two black vertices. So if we decrease the diagram by switching until there are
no strings of white or black vertices, the diagram will be alternating with white
vertices on each end. Therefore, we know know that when n is odd and m is
even or n is even and m is odd, the graph is minimized when there are m − 1
black vertices alternating with m white vertices and there are n−m−1

2 + 1 black
vertices on each side of the two outer white vertices. In the case where both n

and m are even or odd, the diagram will be the same except that there will be
n−m

2 black vertices on one side of the outer white vertices and n−m
2 + 1 black

vertices on the other side. 2
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4 Linear Cutwidth of Complete Bipartite Graphs

Theorem 1 gives the model for the minimum wirelength of a complete bipar-
tite graph. It was noted, however, that this does not match Johnson’s model
for cutwidth, in which he claimed that the cut at every region was minimized.
If this claim was true, the models would be identical, because when the cut is
minimized at every region, the sum of the cuts equals the wirelength of a graph.
For example, Figure 9 is a K2,6 complete bipartite graph arranged by Johnson’s
arrangement, which places [ xm

m+n
] vertices from the smaller set to the left of each

position x where x denotes the number of vertices to the left of the cut. This
arrangement gives a linear wirelength of 32.

Figure 9: Johnson’s Model of K2,6; Wirelength is 32.

Figure 12 is K2,6 with the numbering described in Theorem 1. The linear
wirelength of this arrangement is 30, which is a smaller wirelength than the
previous model.

Figure 10: Model of K2,6 from theorem 1; Wirelength is 30.

If we look at the cuts of the same two arrangements of K2,6, we see that
the maximum cut of each graph is 6, but that there are some regions where the
cuts are not the same. When x = 2, the cut of the Johnson arrangement is 6,
but the cut at x = 2 of the arrangement given in Theorem 1 is 4.

Figure 11: Johnson Arrangement of K2,6; Cut at x = 2 is 6.

Figure 12: Model of K2,6 from theorem 1; Cut at x = 2 is 4.

Johnson’s arrangement does solve the cutwidth problem (finding the min-
imum of all maximum cuts of any linear arrangement of a complete bipartite
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graph), but does not solve the wirelength problem or minimize the cut of each
region. Together with S. Bowles and J. Chavez, we show that the arrangement
from Theorem 1 minimizes the cut of each region. From this, we can calculate
the wirelength of a complete bipartite graph by adding the cuts of each region
for any Km,n size graph.

Bowles-Chavez-Hartung (BCH) Theorem 1:
Let Km,n be a complete bipartite graph with two sets of vertices A and B, where

|A| = m and |B| = n, and let m ≤ n. Then the cut of each region of a linear

embedding for Km,n is minimized by placing 2x+m−n
4 vertices from A to the left

of the cut.

Proof: Let x be the number of vertices to the left of a cut. Given x,
suppose there are a vertices from A to the left of the cut. Thus, there are x− a

vertices from B to the left of the cut. From this we can conclude that on the
right side of the cut there are m − a vertices from A and n − (x − a) vertices
from B. We know that the cut of region (a, x − a) is

cut(a, x − a) = a(n − (x − a)) + (x − a)(m − a)

= an − ax + a2 + mx − ax − am + a2

= 2a2 + a(n − 2x − m) + mx

Let f(a) = 2a2 +a(n−2x−m)+mx. Notice that f(a) is a continuous function
of a ∈ R, and that f(a) = cut(a, x − a) for 0 ≤ a ≤ m and a ∈ Z. Also, we can
observe that f(a) is a positive quadratic, so the graph is a parabola opening
upwards. Thus, the derivative at zero gives the minimum of f(a).

f ′(a) = 4a + n − 2x − m = 0

⇒ a =
m + 2x − n

4

a may not be an integer, and if it is not, it is rounded to the nearest whole
number, denoted [x] = bx+ .5c and put [a] vertices from A to the left of the cut.
Thus for all of the regions of the linear embedding of Km,n, its cut is minimized
by placing

[

m+2x−n
4

]

vertices from A to the left of each cut.

Corollary:
Let Km,n be a complete bipartite graph whose linear embedding is arranged by

the BCH theorem. Then the maximum cut will occur when x = n+m
2 for m + n

even and when x = n+m−1
2 and x = n+m+1

2 for m + n odd. Also, the cuts to

the left of the middle cut will be strictly increasing and the cuts to the right of

the middle cut will be strictly decreasing.

Proof: Let

cut(a, x − a) = 2a2 + a(n − 2x − m) + xm

= 2a2 − 4a2 + xm (since a = 2x+m−n
4 gives the minimum cut)

7



= −2a2 + xm

= −2(
2x + m − n

4
)2 + xm

= −
1

8
· (2x + m − n)2 + xm

Let f(x) = − 1
8 ·(2x+m−n)2+xm be a continuous function of x ∈ R and notice

that − 1
8 · (2x+m−n)+xm gives the cut of the region for 1 ≤ x ≤ m+n. Since

f(x) is a negative quadratic equation, we know that it is a parabola opening
downward. Thus, the maximum value occurs when the derivative is equal to
zero. By taking the derivative, we can show that the maximum cut occurs at
the middle region where x = n+m

2 for m + n even and where x = n+m−1
2 for

m + n odd.

f ′(x) = −
1

4
· (2x + m − n) · 2 + m

= −
1

2
· (2x + m − n) + m

= −x −
m

2
+

n

2
+ m

=
m + n

2
− x

Observe that m+n
2 − x > 0 when 1 ≤ x < m+n

2 , thus f(x) is increasing, and
m+n

2 − x < 0 when m+n
2 ≤ x ≤ m + n, thus f(x) is decreasing. So for m + n

even, the maximum cut occurs at m+n
2 , but when m + n is odd, m+n

2 is not an
integer, but is equally spaced between the integers m+n−1

2 and m+n+1
2 , so the

maximum cut of the graph occurs at these two points.

Bowles-Chavez-Hartung (BCH) Theorem 2: Let Km,n be a complete

bipartite graph. Then

lcw(Km,n) =

{

mn
2 for mn even

mn+1
2 for mn odd

Proof:
We have shown that the linear embedding given by BCH Theorem 1 minimizes
the cut of each region and that the center cut is the maximum of the linear
embedding. Thus the lcw(Km,n) occurs when x = m+n

2 for m + n even and
when x = m+n−1

2 and x = m+n+1
2 for m + n odd. So we will look at each case

to find the lcw(Km,n).
Case 1:
Let m + n be even. So x = m+n

2 . Place d 2x+m−n
4 e vertices from A to the left of

the center cut. Substituting m+n
2 for x gives dm+n+m−n

4 e = dm
2 e. Thus a = m

2
when m is even and a = m+1

2 when m is odd. Since m + n is even, we know
that when m is even, n is even, and when m is odd, n is odd. Therefore, the
number of vertices from B on the left is

{

x − m
2 = n

2 for n even
x − m+1

2 = n−1
2 for n odd
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Taking the cut of (m
2 , n

2 ) gives

cut(
m

2
,
n

2
) =

m

2
·
n

2
+

n

2
·
m

2

=
mn

2

and taking the cut of (m+1
2 , n−1

2 ) gives

cut(
m + 1

2
,
n − 1

2
) =

m + 1

2
·
n + 1

2
+

n − 1

2
·
m − 1

2

=
mn + 1

2

Case 2:
Let m + n be odd. Wlog, let x = m+n−1

2 . Place b 2x+m−n
4 c vertices from A

to the left of the center cut. Substituting m+n−1
2 for x gives bm+n−1+m−n

4 c =
b 2m−1

4 c = bm
2 − 1

4c. So a = m
2 when m is even and a = m−1

2 when m is odd.
Since m+n is odd, we know that when m is even, n is odd, and when m is odd,
n is even. Therefore, the number of vertices from B on the left is

{

x − m
2 = n−1

2 for n odd
x − m+1

2 = n
2 for n even

Taking the cut of (m
2 , n−1

2 ) gives

cut(
m

2
,
n − 1

2
) =

m

2
·
n + 1

2
+

n − 1

2
·
m

2

=
mn + m

4
+

mn − m

4

=
mn

2

and taking the cut of (m−1
2 , n

2 ) gives

cut(
m − 1

2
,
n

2
) =

m − 1

2
·
n

2
+

n

2
·
m + 1

2

=
mn − n

4
+

mn + n

4

=
mn

2

Therefore,

lcw(Km,n) =

{

mn
2 for mn even

mn+1
2 for mn odd.

5 Calculating the Wirelength of a Complete Bi-

partite Graph

Thus far, Theorem 1 gives the model for the minimum wirelength of the com-
plete bipartite graph and the BCH theorem gives the model for the minimum

9



cutwidth at each region of a complete bipartite graph. It is not a coincidence
that these minimizations result in the same model; Adding up all the cuts of a
graph gives the wirelength, so the graph with the minimum cutwidth at each
region will also give the minimum wirelength. Because it is simpler to add the
cuts of a graph, this is the method we will use to find wirelength.

Theorem:

lcw(Km,n) =

{

−m3

12 + m2n
2 + mn2

4 + m
12 for m + n odd

−m3

12 + m2n
2 + mn2

4 + m
3 for m + n even.

Proof: Let i be the position with i vertices to its left. We will first look at
the case when m + n is odd. In this case, there is an even number of adjacent
vertices from set B on each side of the graph, so the graph is symmetric. Since
the graph is symmetric, we will calculate the cuts of the left side and multiply
this by 2. Observe that there are n−m+1

2 adjacent black vertices on the left side
of a Km,n bipartite graph and that each of these will have a cut of im since
there will be i black vertices connecting to m white vertices.

........

m white, m-1 black

....

(n-m+1)/2
black

(n-m+1)/2
black

Figure 13: Km,n with m+n odd

So the sum of these cuts will be
∑

n−m+1

2

i=1 im.
Beginning with the first position with a white vertex to the left, the cut will
be different, and for the puposes of creating a summation, we will start with
i = 1 again. Here, there will be n−m+1

2 + i vertices to the left of each position i.
However, when calculating the number of white or black vertices on each side
of i, the number will be different depending on whether the vertex left of i is
white (then i is odd) or black (then i is even), so we will split this into cases.
Case 1: i is odd. For each of these, there will be n−m+1

2 + i−1
2 black vertices

and i+1
2 white vertices on the left and n+m−1

2 − i−1
2 black vertices and m− i+1

2
white vertices to the right. So the cut at i

= (
n − m + 1

2
+

i − 1

2
)(m −

i + 1

2
) + (

i + 1

2
)(

n + m − 1

2
−

i − 1

2
)

= m · (
n − m + 1

2
+

i − 1

2
) +

i + 1

2
(
−n + m − 1

2
−

i − 1

2
) + (

i + 1

2
)(

n + m − 1

2
+

−i + 1

2
)

= m · (
n − m + 1

2
+

i − 1

2
) +

i + 1

2
(
2m − 2

2
) +

i + 1

2
(
−i + 1 + 1 − i

2
)

= m · (
n − m + 1

2
+

i − 1

2
+

i + 1

2
) +

i + 1

2
(−1 +

2 − 2i

2
)
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= m · (
n − m + 1

2
+

2i − 1 + 1

2
) +

i + 1

2
(−i)

= m · (
n − m + 1

2
+ i) −

i(i + 1)

2

Case 2: i is even. For each of these, there will be n−m+1
2 + i

2 black vertices

and i
2 white vertices on the left and n+m−1

2 − i
2 black vertices and m− i

2 white
vertices to the right. So the cut at i

= (
n − m + 1

2
+

i

2
)(m −

i

2
) + (

i

2
)(

n + m − 1

2
−

i

2
)

= m · (
n − m + 1

2
+

i

2
) +

i

2
(
−n + m − 1

2
−

i

2
) + (

i

2
)(

n + m − 1

2
+

−i

2
)

= m · (
n − m + 1

2
+

i

2
) +

i

2
(
2m − 2

2
) +

i

2
(
−i − i

2
)

= m · (
n − m + 1

2
+

i

2
−

i

2
−

i

2
(i)

= m · (
n − m + 1

2
+ i) −

i(i + 1)

2

So for each case, the cut at i is equal to m · (n−m+1
2 + i) − i

i(i+1)
2 . This is

equivalent to the sum
∑m−1

i=1
i(i+1)

2 −
∑m−1

i=1
i(i+1)

2 , which is the wirelength of
the left half of the graph. Since the graph is symmetric, the total wirelength of

the graph is 2 · (
∑m−1

i=1
i(i+1)

2 −
∑m−1

i=1
i(i+1)

2 ). This can be further simplified to
an algebraic formula as such:

2 · (

m−1
∑

i=1

i(i + 1)

2
−

m−1
∑

i=1

i(i + 1)

2
)

= 2m ·

m−1
∑

i=1

i −
2

2
·

m−1
∑

i=1

i −
2

2
·

m−1
∑

i=1

i2

= 2m · (
(m+n−1

2 ) · (m+n+1
2 )

2
) −

(m − 1)(m)(2(m − 1) + 1)

6
−

(m − 1)(m)

2

= m(
m2 + mn + m + mn + n2 + n − m − n − 1

4
) +

(m2 − m)(2m − 1)

6
+

−m2 + m

2

=
m3 + 2m2n + mn2 − m

4
+

−2m3 + m2 + 2m2 − m

6
+

−m2 + m

2

=
3m3 + 6m2n + 3mn2 − 3m − 4m3 + 6m2 − 2m − 6m2 + 6m

12

=
−m3

12
+

m2n

2
+

mn2

4
+

m

12

We will now look at the case when m + n is even. In this case, there are
n−m

2 + 1 adjacent vertices on one side of the graph and n−m
2 + 1 on the other.
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Without loss of generality, suppose that there are n−m
2 + 1 adjacent vertices on

the left side of the graph. On the outer sections with consecutive blacks, the
positions i (i being the number of vertices to the outside of the position) will

have cuts of im. So the cuts of the outsides will add up to
∑

n−m

2
+1

i=1 im on the

left side and
∑

n−m

2

i=1 im on the right.

........

m white, m-1 black

....

(n-m)/2+1
black

(n-m)/2
black

Figure 14: Km,n with m+n even

Beginning on the left with the first position where there is one white to the
left, there will be a different cut for each position in the middle section with
alternating vertices. Here, we will start with i = 1 again, so let i denote the
space with n−m

2 +1 vertices to the left. Again, calculating the number of white
and black vertices on each side of i will depend on whether i is odd (following
a white vertex) or even (following a black vertex), so we will split into cases.
Case 1:
i is odd. For each of these, there will be n−m

2 + 1 + i−1
2 black vertices and i+1

2

white vertices on the left and n+m
2 − 1 − i−1

2 black vertices and m − i+1
2 white

vertices to the right. So the cut at i

= (
n − m

2
+ 1 +

i − 1

2
)(m −

i + 1

2
) + (

i + 1

2
)(

n + m

2
− 1 −

i − 1

2
)

= m · (
n − m

2
+ 1 +

i − 1

2
) +

i + 1

2
(
−n + m − 2

2
−

i − 1

2
) + (

i + 1

2
)(

n + m − 2

2
+

−i + 1

2
)

= m · (
n − m

2
+ 1 +

i − 1

2
) +

i + 1

2
(
2m − 4

2
) +

i + 1

2
(
−i + 1

2
) + (

i + 1

2
)(
−i + 1

2
)

= m · (
n − m

2
+ 1 +

i − 1

2
+

i + 1

2
) +

i + 1

2
(−2 +

i + 1

2
)(−i + 1))

= m · (
n − m

2
+ 1 + i) +

i + 1

2
(−i − 1)

= m · (
n − m

2
+ 1 + i) −

(i + 1)(i + 1)

2

Case 2:
i is even. For each of these, there will be n−m+1

2 + i
2 black vertices and i

2 white

vertices on the left and n+m−1
2 − i

2 black vertices and m − i
2 white vertices to

the right. So the cut at i

= (
n − m

2
+ 1 +

i

2
)(m −

i

2
) + (

i

2
)(

n + m

2
− 1 −

i

2
)

12



= m · (
n − m

2
+ 1 +

i

2
) +

i

2
(
−n + m − 2

2
−

i

2
) + (

i

2
)(

n + m − 2

2
+

−i

2
)

= m · (
n − m

2
+ 1 +

i

2
) +

i

2
(
2m − 4

2
) +

i

2
(
−i

2
) +

i

2
(
−i

2
)

= m · (
n − m

2
+ 1 +

i

2
+

i

2
) + (

i

2
)(−2) +

i

2
(−i)

= m · (
n − m

2
+ 1 + i) −

i(i + 2)

2

So when i is odd, the cut at i is equal to m · (n−m
2 + 1 + i)− (i+1)(i+1)

2 , and

when i is even, the cut is equal to m · (n−m
2 + 1 + i) − i(i+2)

2 . As when m + n

was odd, we see that this is m multiplied by the number of vertices to the left,

but with each ith vertex after the first white, (i+1)(i+1)
2 is subtracted for each

odd i and i(i+2)
2 is subtracted from each even i. So putting these together with

the sums of the outside, we obtain

n+3m−2

2
∑

i=1

im +

n−m

2
∑

i=1

im −

2m−2
∑

i=2

i(i + 2)

2
(for i even) −

∑2m−1
i=1

(i+1)(i+1)
2 (for i odd).

The first summation goes up to n+3m−2
2 to include all cuts except those on

the outer right, where there are no longer alternating vertices. The last two
summations go up to 2m−2 and 2m−1 because there are 2m−2 cuts between
the two outer white vertices. However, for these last two, we want a summation
of consecutive integers (not just odds or evens), so when i is even, we will
substitute 2j for i to get

m−1
∑

j=1

(2j)(2j + 2)

2
=

m−1
∑

j=1

2j2 + 2j

And for i odd, substitute 2j − 1 for i to get

m−1
∑

j=1

((2j − 1) + 1)((2j − 1) + 1

2
=

m−1
∑

j=1

2j2

So the summation is

n+3m−2

2
∑

i=1

im +

n−m

2
∑

i=1

im −
m−1
∑

j=1

2j2 + 2j −
m−1
∑

j=1

2j2

= m · (

n+3m−2

2
∑

i=1

i) + m · (

n−m

2
∑

i=1

i) − 4(·

m−1
∑

j=1

j2) − 2 · (

m−1
∑

j=1

j

= m · (
(n+3m−2

2 )(n+3m
2 )

2
+

(n−m
2 (n−m+2

2 )

2
− 4 · (

(m − 1)(m)(2(m − 1) + 1)

6
) − 2 · (

(m − 1)(m)

2

13



= m · (
2n2 + 6mn + 9m2 − 2n − 6m − 2mn + 2n − 2m + m2

8
) −

4

6
· (m2 − m)(2m − 1) − m2 + m

=
2mn2 + 4m2n + 10m3 − 8m2

8
−

4

6
· (2m3 − m2 − 2m2 + m) − m2 + m

=
3mn2 + 6m2n + 15m3 − 12m2 − 16m3 + 24m2 − 8m − 12m2 + 12m

12

= −
m3

12
+

m2n

2
+

mn2

4
+

m

3

6 Linear Cutwidth of Complete Tripartite Graphs

In this section, we minimize the cut of every region of the linear embedding
of a complete tripartite graph Kr,s,t. To do this, we will refer to the middle
and outer regions of the graph. The middle region consists of r sets of three
vertices, each set including one black, one white, and one gray vertex. The
outside consists of the remaining vertices.

Bowles-Chavez-Hartung Theorem 3 (BCH3):
Let Kr,s,t be a complete tripartite graph with three sets of vertices A, B, and C,

where |A| = r, |B| = s, and |C| = t, and let r ≤ s ≤ t. To minimize each cut of

the linear embedding for Kr,s,t, the middle and outer sections of the graph are

minimized independently. The middle cuts are minimized by placing 2x+2r−s−t
6

vertices from A, 2x+2s−r−t
6 vertices from B, and 2x+2t−r−s

6 vertices from C to

the left of each cut. The outer sections are minimized according to the BCH

arrangement for complete bipartite graphs.

Proof: This proof is separated into three sections: the minimizing of the
middle region, the minimizing of the outer regions, and the placement of the
middle region.

6.1 Minimizing the Middle Region

Let x be the number of vertices to the left of a cut. Given x, suppose there
are a vertices from A, b vertices from B, and c = x − a − b vertices from C to
the left of the cut. From this we can conclude that on the right side of the cut
there are r−a vertices from A, s− b vertices from B, and t− (x−a− b) vertices
from C. We know that the cut of region (a, b, x − a − b) is

cut(a, b, x − a − b) = a[(s − b) + (t − (x − a − b)] + b[(r − a) + (t − (x − a − b))]

+(x − a − b)[(r − a) + (s − b)]

= as − ab + at − ax + a2 + ab + br − ba + bt − bx + ba + b2

+xr − xa + xs − xb − ar + a2 − as + ab − br + ab − bs + b2

= 2a2 + 2b2 + a(t − r − 2x) + b(t − s − 2x) + 2ab + x(r + s)

14



Let f(a, b) = 2a2 +2b2+a(t−r−2x)+b(t−s−2x)+2ab+x(r+s). Notice that
f(a, b) is a continuous function of a, b ∈ IR, and that f(a, b) = cut(a, b, x−a−b)
for 0 ≤ a ≤ r and a ∈ ZZ and for 0 ≤ b ≤ s and b ∈ ZZ. The minimum of f(a, b)
is found by taking its derivative and setting it equal to zero. So,

∂f(a, b)

∂a
= 4a + (t − r − 2x) + 2b = 0 (1)

⇒ 2b = −4a− t + r + 2x. (2)

∂f(a, b)

∂b
= 4b + (t − s − 2x) + 2a = 0 (3)

⇒ 2a = −4b− t + s + 2x. (4)

Substituting the value of 2b from (2) into (3) and gives

0 = 2(−4a− t + r + 2x) + t − s − 2x + 2a

⇒ 6a = 2x + 2r − s − t

⇒ a =
2x + 2r − s − t

6
.

Substituting the value of 2a from (4) into (1) gives

0 = 2(−4b− t + s + 2x) + t − r − 2x + 2b

⇒ 6b = 2x + 2s − r − t

⇒ b =
2x + 2s − r − t

6
.

Knowing a and b we can get c:

c = x − a − b

= x − [
2x + 2r − s − t

6
] − [

2x + 2s − r − t

6
]

=
2x + 2t − r − s

6
.

a, b, and c may not be integers, and if any one is not, it is rounded to the nearest
whole number, denoted [x] = bx+ .5c. Now given a, b, and c, let 1 ≤ a ≤ r since
we are only concerned with the middle of the graph where all of the sets are
active. If we minimize the cuts of the middle region, they will not be affected
by the arrangement of the vertices on the outside as long as we know how many
vertices from each set are on the left and right of the middle region. Given the
middle region and the number of vertices to the left and right of it, we know
that each vertex in the middle will be connected to the same number of edges
regardless of the structure of the outside vertices. Therefore we can minimize
the inside independently of the arrangement of the outside vertices.

If a chart of the values a, b, and c is constructed, each vertex may not have
a unique position. Below in Figure 15, the x represents the number of vertices
to the left of a cut. The variables a, b and c represent the number of vertices
from each set A, B, C to the left of a cut. Every time a, b or c increases by
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one, a new vertex is added to that spot. For example, in Figure 15, at vertex 5
(x = 5), there are no vertices from A to the left. However, at vertex 6, there is
one vertex from set A, so the sixth vertex will be black.

Since 1 ≤ a ≤ r, there will be r groups of three in the middle region.
Beginning with the first position where a = 1, each group of three vertices will
have one black, one white and one gray vertex, but the arrangement of those
within the group of three is not necessarily unique. So let the three positions of
each group be denoted x1, x2, and x3. There are three cases:

Case 1: Every black, white and gray has a unique position. For every xi

the value of only the vertex from a, b, or c will change and it will be consistent
throughout the r groups. In this case, xi = a + b + c for all xi while 1 ≤ a ≤ r.
For example, in K1,4,7, the order of the middle must be black, white, gray.

Figure 15: K1,4,7

Figure 16: K1,4,7
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Case 2: Either black, white or gray will have a unique position consistantly
throughout the r groups. For the remaining two sets, the vertices from those
sets will be interchangable within each group of three. Again, remember that
for each group of three, we are denoting the three positions x1, x2 and x3. In
this case, either at x1, a + b + c = x1 + 1 or at x2, a + b + c = x2 + 1. For
example, in K4,8,11, the black and the gray vertices can be interchanged between
positions x1 and x2, as shown in Figure 18, but the white vertices are always in
position x3.

Case 3: The black, gray and white vertices in each group of three are all

Figure 17: K4,8,11

Figure 18: K4,8,11

interchangable. In this case, at x1, a+b+c = x1+2 and at x2, a+b+c = x2+1.
K3,9,13 is an example of this where the whites, grays and blacks can be in any
position within groups of three.
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Figure 19: K3,9,13

Figure 20: K3,9,13

So when it is not clear whether a, b or c changes first, the cuts of the regions
are equivalent regardless of which arrangement is chosen as long as there is a
vertex from each set within each group of three. Thus the linear embedding of a
complete tripartite graph Kr,s,t is minimized within the region where 1 ≤ a ≤ r

by placing 2x+2r−s−t
6 vertices from A, 2x+2s−r−t

6 vertices from B, and 2+2t−r−s
6

vertices from C to the left of each cut.

6.2 Minimizing the Outer Regions

We will now consider the outer vertices. The chart of a complete tripartite
graph gives the number of vertices from set B and C to the right and left of the
middle region. The number of vertices from B and C to the left of the middle
region is given by b and c at the last position where a = 0. For example, in
Figure 15, when x = 5, there are 2 gray vertices and 3 white vertices. The
number of vertices from B to the right of the middle region is given by s − b

where b is the first position where a = r + 1. The number of vertices from C

to the right is given by t − c where c is the first position where a = r + 1. For
example, in Figure 15, when x = 9, b = 3 and c = 4, so there is 1 vertex from
B and there are 3 vertices from C to the right of the middle. Also, we have r
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gray, r white and r black vertices in the middle region. As previously stated,
the arrangement of the middle does not affect the cuts of the outside. Without
loss of generality, we look at the vertices to the left of the middle region. Let i

be the number of vertices to the left. Observe that each white on the outside is
connected to r gray and r black vertices from the middle region and that each
gray on the outside is connected to r white and r black vertices from the middle
region. This results in the middle vertices contributing i · 2r to the cut of each
region. The same is true of the vertices to the right of the middle region where
i is the number of vertices to the right of each cut. This applies to any arrange-
ment of the outside vertices. But the outside vertices make up the complete
bipartite graph Ks−r,t−r, thus to minimize the cuts along outside vertices, we
can use the BCH arrangement.

6.3 Placing the Middle Region Within the Bipartite Graph

We have shown that the middle region can be minimized independently of
the outer regions and the outer regions can be minimized independently of the
middle region. Since we know the number of vertices to the left of the middle
region, we can place the minimized middle region after this number of vertices
of the minimized bipartite graph. Notice that the left outer region consists of
d s−r

2 e vertices from B and d t−r
2 e vertices from C and the right outer region

consists of b s−r
2 c vertices from B and b t−r

2 c vertices from C. This results in the
minimal cut for each region of the complete tripartite graph Kr,s,t. 2

7 Future Research

Wirelength formula for tripartite: Because of time constraints, the wire-
length of a complete tripartite graph has yet to be calculated. However, this is
a short-term goal of mine, so a more profitable subject of research would be:
Can this concept be applied to n-partite graphs? The possibility is promising
because it appears that each ”inner” section of j sets of vertices can be mini-
mized independently of each ”outer” section of j + 1 sets vertices containing it.
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