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Abstract

This paper will describe a three-dimensional model used to generate

knotted ribbons with minimal ribbon length, the ratio of the length of

a ribbon to its width. This model treats ribbons as modified ropes and

constructs them in three-dimensional space. It is shown that the ribbon

length for all nontrivial framed unknots is 1, and that a lower bound for

the ribbon length of all ribbons with knotted cores is also 1. This will be

compared to other ribbon length conjectures already published.

1 Introduction

Knots have frequently been studied as both physical and abstract mathemat-
ical objects. This paper will treat knots as ribbons in three-dimensional space.
A ribbon can be thought of as a subset of <3 homeomorphic to a annulus [4].
Knotting the core, or centerline, of the ribbon is analogous to tying an actual
knot in the ribbon, pulling it tight until it becomes a flat folded knotted strip,
and then joining the ends together with a minimal amount of excess ribbon.
This joining creates what is called the closed form of the knot. A closed knot
can also be formed by introducing n half-twists in a ribbon, then joining the
ends together. The core of ribbons constructed this way is always the unknot,
and the boundary of the ribbon forms a link. The boundaries form a class
of knots called Torus knots, denoted T2,n. Adding simply one half-twist to a
ribbon and joining the ends together creates the familiar Mobius strip. Torus
knots are also produced by knotting the core of the ribbon itself. Figures 1 and
2 show the trefoil knot T2,3 both as the boundary of a twisted ribbon with the
unknot as core and as a ribbon with a knotted core. The core is shown as the
dashed line, and a dotted line is shown to indicate that the ribbon has been
joined together.

Knotted ribbons are distinguished by both type of core K and n, the linking
number of the boundary with the core, and are usually referred to as (K, n).
The linking number of the boundary of a ribbon, b with its core, K is defined
as

n = lk(b, K) =

(

1

2

∑

c

ε(c)

)

,

where c denotes the crossings between the boundary and the core and ε(c) de-
notes the signs of the crossings. The crossing signs on an oriented knot diagram
can be defined as follows. A crossing is positive if when traveling along the
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Figure 1: Trefoil knotted ribbon
with unknot core

Figure 2: Ribbon with trefoil
knotted core

undercrossing, the overcrossing runs from left to right. For example, in Figure
1, the linking number is n = ±3, while in Figure 2, n = ±6. (K, 0) is known as
a trivial framing of the knot K.

This paper will compare and contrast various notions of ribbon length.

Definition The ribbon length of a knotted ribbon is the ratio of the length of the
core to the width of the ribbon itself. Let K be any framed knot topologically
equivalent to (K, n). The ribbon length rl(K, n) of a framed knot (K, n) is
rl(K, n) = inf

K
rl(K)

Ribbon length is generally denoted as rl(K, n) = x, where x is the infimum
ribbon length for the knot. The length of a ribbon is calculated by measuring
the length of its core. The ribbon length of the knot is the minimum of these
over all realizations of the knot. This paper will prove a theorem that the ribbon
length for all nontrivial knotted ribbons, such as Figure 1, with the unknot as
the core is 1. It will also be shown that 1 is a lower bound for framed ribbons
with knotted cores, such as Figure 2.

2 Kauffman’s Model

Knotted ribbons have already been investigated in knot theory. In a paper
by Louis Kauffman [4], a model is described for creating ribbons with knotted
cores, and conjectures are offered as to the ribbon length for two common knots,
the trefoil knot (T2,3) and the figure eight knot using this model. In Kauffman’s
model, the core of a knotted ribbon is represented by a piecewise linear curve
embedded in the plane. At each angle in the embedding, a mirror segment is
placed perpendicular to the bisector of the angle, which represents a fold in
the ribbon made at that angle. Over- and undercrossings are then chosen and
the width of the core is expanded maximally (until the ribbon can no longer
be folded) to create the ribbon. Figure 2 shows the piecewise linear core with
mirrors in place.
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Kauffman conjectures that this model projects ribbons with minimum rib-
bon length for both the trefoil and figure eight knots. His model, however,
cannot account for twists in the ribbon that do not occur at a mirror segment
or fold. Using his model, only single folds made in the ribbon can add twists to
the ribbon. Each fold, however, increases the length required to make and close
the knot, subsequently increasing the ribbon length. In addition, each single
fold changes the orientation of the ribbon when it exits the fold. In order to
reverse the orientation of the ribbon using Kauffman’s model, another fold must
be introduced. For example, in order to create the Mobius strip with this con-
figuration, three mirrors must be used to allow for the orientation of the paper
to change exactly once. This paper offers an alternate model for knotted rib-
bons that allows for twists to be made without the introduction of more mirrors.

A knotted ribbon universe consists of a polygon immersed in the plane to-
gether with mirrors placed at each of its vertices. These mirrors may be one of
two forms:

• A single mirror, which will change the orientation of the ribbon once
constructed;

• or a double mirror, which will maintain the orientation of the ribbon once
it is constructed.

A knotted ribbon is formed by choosing over- and undercrossings at each self
transversal, declaring the orientation of the fold, then expanding the width of
the ribbon and threading it properly. If we are traveling along a ribbon in a
certain direction, then we will define the fold made to be oriented positively if
the part folded lies behind the part we are traveling on, and is oriented nega-

tively if that part lies in front of the other.
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Using this construction, a Mobius strip may be constructed with only one
double mirror. This can be made with the smallest ribbon length by using
square sheet of paper. A double mirror can be inserted in the center of the
square, and the figure can be folded along both diagonals of the square and the
ends can be joined to be created. Figure 3 shows the configuration on a square.

Figure 3: Double mirror configuration for Mobius strip

The dashed line denoted the core of the ribbon, while the dotted lines along
the diagonals of the square denote the mirrors where folds are to be made. The
result of this double mirror folding is a Mobius strip T2,1 with a ribbon of equal
width and length and thus having ribbon length 1. By connecting two of these
minimal Mobius strips with the correct orientation (i.e. so they do not cancel
each other out to form the unknot), a Hopf link T2,2 can actually be created
with paper which has ribbon length 2. Similarly, a trefoil can be created with
3 squares, but one extra square is needed to join the ends of the ribbon back
together, thus making a paper constructable trefoil with ribbon length of 4. In
general, any T2,n knot, n ≥ 3, is paper constructable to have ribbon length
n + 1. We conjecture this to be the optimal constructable ribbon length for
these knotted ribbons.

3 Barr’s Model

Stephen Barr [2], in his book Experiments in Topology, describes a model
for constructing the shortest Mobius strip out of a piece of paper, comparable
to a ribbon. This model describes creating a Mobius strip knot T2,1 (a half-
twisted ribbon) as turning one edge of the paper over and then joining the ends
together. This equates to joining A to A′ and B to B′ in Figure 4. This Mobius
strip begins with a piece of paper of length 1/

√
3 (AB) and width 1 (AB′), with

folds introduced creating equilateral triangles as shown in Figure 5. The first
fold is over on the dotted lines AC ′ and A′C. Another fold is introduced along
the dashed diagonal, AA′, and line segments BC ′ and B′C are then joined.

4



The figure is then folded in half along CC ′ to make the corners A and A′ meet,
and the line segments A′C and AC ′ are joined, finishing the construction. A
half-twist has been introduced to the resulting figure, though hard to believe,
and thus a Mobius band with length less than its width (or ribbon length less

than one) has been created.

A B

A’B’

Figure 4: Beginning strip of pa-
per

A B

B’ A’

C

C’

Figure 5: Construction for Mo-
bius strip with ribbon length
1/

√
3

Barr also cites [2] that Martin Gardner devised a method to make an in-
definitely wide Mobius strip, or one with an arbitrarily small ribbon length.
This can be done by simply creating an odd number of folds in the strip that
run parallel to the core of the strip. This creates an accordion-style piece of
paper. An end of this accordion figure can then be turned over and the ends
may be joined to form the Mobius strip. This can be done for any odd number
of folds, thus hypothetically creating a strip of indefinite width (if the paper is
thin enough). An introduction of an even number of folds results in a figure
that cannot be rejoined correctly.

Nevertheless, Barr’s model offers a different view of ribbon length than that
of Kauffman. In this model, folds do not need to occur from the core, so
the width of the ribbon can be expanded without restraint. This decreases
the ribbon length for knots as compared to Kauffman. However, ribbons with
knotted cores cannot be created with this model as can Kauffman’s construction.
In terms of creating a knot (K, n), Kauffman’s model is only be able to alter
the core K, while Barr/Gardner’s model can only alter the linking number n
of the boundary with the core. Not every knot (K, n) can be constructed using
Barr’s model, and the introduction of many more mirrors is necessary to create
a complicated (K, n) knot using Kauffman’s model. The model below offers an
alternate ribbon construction and subsequent notion of ribbon length.
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4 Another Mathematical Model for Knotted Rib-

bons

Definition A framed knot is a smooth curve (the core) equipped with a con-
tinuous choice of orthogonal direction at each point on the curve.

This mathematical model creates framed knots in three-dimensional space.
An orthogonal direction is chosen at each point on the smooth core, and the
ribbon is formed by extending the width until the strip self-intersects. The core
is chosen and the width is extended with enough twists in the ribbon to obtain
the proper linking number. Using this continuous framed knot construction, any
knot (K, n) can be formed by simply choosing the core K in three-dimensional
space and expanding the ribbon with enough twists to create a linking number
of n. Figure 6 shows a standard Mobius strip (unknot, 1) that was constructed
using this model without attempting to optimize ribbon length.

Figure 6: 3-Dimensional Mobius ribbon constructed with model

This definition of a framed knot is an adaptation of the concept of rope-
length. Ribbon length is analogous to ongoing research on the minimum length
to radial width of knotted tubes, called thickness [6]. No conjectures have been
made yet for the thickness of any specific knots.

This mathematical model can construct knotted ribbons with an unknotted
core that have minimal ribbon length. First, these knotted ribbons will be
constructed with ribbon length of 1, and then it will be proven that 1 is in fact
the smallest ribbon length that can be achieved for an unknotted core.
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Example rl(unknot, n) ≤ 1.
This optimal model for ribbons with unknotted cores is constructed as fol-

lows. The unknot core is formed in the xy-plane by parameterizing a rectangle
of length a + d and width d + 2l with semicircles of diameter d attached at each
end. In the middle of the arch of each of the semicircles, a small straight edge
is added of length 2l, where l can be defined as some fraction of d, (l = d

10000
,

for example). In Figure 7 the core of a ribbon using this model is shown, and
the length of this core is 2a + πd + 4l. The length of the edge 2l is exaggerated
in the figure for emphasis.

a

}2l
d+2l} a+d

Figure 7: Ribbon core in xy-
plane

Figure 8: 3 − D ribbon formed

It is on one of these straight edge portions of the core that the twisting occurs
in the ribbon. On the straight edge, the width is expanded in both directions
from the core on rotating vectors along the straight edge until it intersects the
knot. This occurs at the opposite edge of length 2l, and produces a ribbon of
maximal width 2(a + d). Multiple twists can be introduced along this straight
edge by simply altering the span of rotating vectors. On all other portions of
the core, the width of the ribbon is expanded to length 2(a + d) from the core
in the yz-plane, forming the ribbon. In Figure 8, the Hopf Link (T2,2) is formed
using this model, introducing one full twist to the ribbon. In general, this model
creates a ribbon representing some T2,n, n ≥ 1 knot with core length 2a+πd+4l
and width 2a + 2d. As d becomes arbitrarily small (i.e. the radius of the circle
used to create the core is restricted) and hence l, a factor of d, becomes small,
it can be seen that

lim
d→0

2a + πd + 4l

2a + 2d
= 1.

Using this construction, an upper bound of 1 has been constructed for the ribbon
length of all nontrivial framed unknots.

Remark It should be noted that with the exception of the Mobius strip, these
framings with ribbon length 1 cannot actually be made with a square sheet of
paper. As the number of half-twists increases, the length of the boundary of the
framing also increases, and thus this only can be made with an infinitely thin
ribbon.
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A theorem will now be offered which states that the ribbon length, or mini-
mal length to width ratio, of these knots actually equals one. First, the trivial
case of an unknotted core framed with a trivial framing will be addressed. If
we take an unknot core of length L to be just a simple closed curve on the xy−
plane, the width may be extended indefinitely in both directions from the core.
Therefore, the ratio of length to width approaches 0, and so the ribbon length
for this trivial construction is actually 0.

Theorem 1 If U is the unknot and n is any nonzero integer, then rl(U, n) = 1.

The continuous model created (unknot, n) knots with ribbon length 1, thus
creating an upper bound for the ribbon length of (unknot, n) knots.To show
that the ribbon length of theses knots actually equals 1, it must be proven that
1 is also the lower bound for ribbon length. This is synonymous to showing
that the length of the core must be at least as large as the width of these
ribbons. The proof of the theorem consists of several lemmas. First, the case
for 2-dimensional planar cores will be shown.

Lemma 1 The lower bound of ribbon length of any nontrivial planar framing

of the unknot is 1.

Proof Let K be a planar unknot, framed with any knot. Let L = l(k) denote
the length of the unknot core and let W denote the width of the ribbon. We
want to show that L ≥ W . In this framed ribbon, W is extended in both
directions perpendicular to K. The frame must necessarily puncture the disk
that K bounds at least once to form the knot itself. For all points P on K, let
n be the line that passes through P normal to K. Let C(K, P ) be the set of
points on n ∩ K (other than P ), and let Q be the closest of these points to P .
Define R = {|PQ| : C(K, P ) = Q}. Then the maximum that the width can be
extended in one direction from K is maxR, so 1

2
W ≤ maxR. Also, since PQ is

the smallest distance from P to Q and K runs from P to Q and back to form
the unknot, it follows that

L = l(K) ≥ 2|PQ| = 2 maxR ≥ 2(
1

2
W ) = W.2

Next, using the topological concept of a convex hull, it will be shown that
the ribbon length for any nontrivial framed unknot is at least 1, and therefore
equal to 1. The proof will actually generalize this to any nontrivial framing of
any core, not just unknotted cores.

Lemma 2 The ribbon length of any nontrivial framing of any core is at least

1.

Proof Let K be the core of a nontrivially framed knot in three dimensional
space. It will be shown that the arc length L(K) of K is at least as large as
the width of the frame of the ribbon, W . To do this, the convex hull of the
core K must first be defined, as given by Valentine [7]. The convex hull of K, or
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conv K, is the intersection of all convex sets which contain K. A set S ⊂ linear
space L is said to be convex if for each pair of points x, y ∈ S, the line segment
xy joining x and y is also in S. This is analogous to the familiar concept of
convexity. Let d denote the diameter of a set K, which is supx∈K,y∈K ||x − y||
or the maximum width of K, as defined by Lay [5]. K ⊂ conv K, so all points
on K are at most d apart. The ribbon width is expanded as far as possible from
K until self-intersection occurs. The core K bounds a surface in 3-dimensional
space that the frame (the width) must necessarily puncture at least once to
form the nontrivial framing. In the case of the unknotted core, this surface is
simply a disk. For knotted cores, this surface is called a Seifert surface [3]. This
surface will be punctured either on its boundary or on its interior, leading to
two cases.

Case 1: The surface is punctured on its boundary

Now, the boundary of this surface is simply the knot itself, which is known
to be inside the conv K. Therefore, the ribbon width can be extended in that
direction at most distance d from the knot, or 1

2
W ≤ d. Since d is the distance

between two points which are both on K, K must travel to and from these points
to be created. Because the straight-line d is the smallest distance between any
two points, it follows that

L(K) > 2d ≥ 2(
1

2
W ) = W.

Case 2: The ribbon width punctures the interior of the surface that

K bounds

Now, L(K) must travel more than 2d to be formed, so let ε = L(K) − 2d.
The maximum distance from any point on the surface to the convex hull may be
restricted to no more than ε

2
; or, in other words, the surface may be restricted

to lie within the union of ε
2

balls on the boundary of the conv K. To do this, the
region between the conv K and the farthest point away on the surface must be
rescaled with an isotopy outside of the conv K, an action which leaves the conv

K unaltered. This ensures that the puncture occurs within a distance of ε
2

+ d
from the knot itself. This puncture creates the width in one direction from the
core, so the width of the ribbon itself is twice this distance. Therefore,

W ≤ 2(
ε

2
+ d) = ε + 2d = L(K).2

It has been shown that the ribbon length for all nontrivial framings of the
unknot is 1, and a lower bound of 1 has been shown for the ribbon length of
nontrivially framed knotted cores. If a knotted core is framed trivially, the frame
does not have to puncture the Seifert surface to be formed. However, a lower
bound can still be formulated for these framed knots. It will now be shown that
a lower bound on the ribbon length for a trivially framed knotted core is 1.
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Theorem 2 The ribbon length of a trivially framed knotted core is at least 1.

Proof To prove this, it must first be shown that in a trivial framing, the width
of the knot will intersect another part of the knot. This argument is similar
to one found in a paper by Adams, et al [1]. Assume to the contrary that the
trivial framing will not intersect K. Then at each point on K, the frame can
be extended indefinitely. But an investigation of the union of the rays that
compose this indefinite width along with a point at infinity yields an immersed
open unpunctured disk with K as its boundary. This would force K to be
an unknot, but it is assumed that K is a knot. Therefore, the trivial framing
must intersect K. The point where this occurs is the maximum width that the
ribbon can be extended in one direction, and is no farther away than d. As in
the former proofs, this implies that 1

2
W ≤ d. Since d is the distance between

two points which are both on K, K must travel to and from these points to be
created. Because the straight-line d is the smallest distance between any two
points, it follows that

L(K) ≥ 2d ≥ 2(
1

2
W ) = W.2

5 Discussion

This continuous model described provides a very different view of ribbons
and ribbon length than both Kauffman and Barr. With Kauffman’s models, the
linking number n of a knot (K, n) can only be altered by the introduction of
more mirrors, subsequently increasing the ribbon length for many (K, n) knots.
With the continuous model, the width of the ribbon is expanded maximally from
the core without the introduction of folds. Therefore, any amount of twists can
be introduced in the construction to alter n without increasing the ribbon length
of the knot. This model improved the ribbon length of Kauffman’s model. How-
ever, ribbons created using the continuous model anomalistically are not paper
constructable, while Kauffman’s are.

With this continuous model, all twists that occur in the ribbon originate
from the core itself, as in the definition of a framed knot. Therefore, each twist
directly alters the linking number n of the boundary with the core. The folds of
both Barr’s model and the one offered by Gardner do not intersect the boundary
of the ribbon frame itself and are not expanded in one direction from the unknot
core, because other folds are introduced. These folds do not alter the linking
number n and violate the notion of a framed knot. Since these models violate
the definition of a framed knot, the notions of ribbon length described here are
essentially different.

A ribbon length of 1 has now been established for all nontrivial framed knots
with the unknot as core using the continuous model. In addition, a lower bound
of 1 has been established for all ribbons with knotted cores, regardless of fram-
ing. It is conjectured that a better lower bound can be found for the ribbon
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length of framed knotted cores, as intuitively more ribbon must be necessary to
form more complicated knotted cores. Further research must be completed on
this topic to find a better lower bound.
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