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Abstract

ABSTRACT. The crossing number of a given knot is the least possible
number of crossings in any configuration of the knot. The supercrossing
number, of a configuration on the other hand, represents the greatest
number of crossings possible. The minimal stick representations of Torus
knots are used to find bounds for the supercrossing index.

1 INTRODUCTION

A torus knot is any knot that can be put onto a torus such that no two
strands cross on the surface of the torus. Torus knots can be represented by the
notation Tp,q, where p is the number of times that the knot wraps around the
meridian, and q is the number of times that the strands cross the longitude, also
known as the lengthwise surface of the knot. The ordering actually does not
matter and in fact a Tp,q knot is equivalent to a Tq,p knot. When p and q are
relatively prime, the knot has one component. The gcd of p and q determines
the number of components that the torus knot has. The stick number,s[K], of
a torus knot K, is the minimum number of sticks needed to create it.

Figure 1: A Torus on which stick knots can be placed.

2 SUPERCROSSING INDEX

A knot invariant is a function on the set of knots which describes a prop-
erty of a knot, such that the same value is assigned to equivalent knots. The
supercrossing index, a known knot invariant of a given knot, was first studied
by Adams [2]. The supercrossing index is the minimum supercrossing number
taken over all possible configurations of a given knot. By Lemma 2.5, he proved
that for the supercrossing index of a knot K,
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scr[K] ≤
{

s(s− 3)/2 if s is odd;
s(s− 4)/2 + 1 if s is even.

Where s is the stick number of the given knot.
These results come directly from the fact that there can be at most two

all-crossing segments in any given knot projection. An all-crossing segment is
one which crosses every other segment except for its adjacent segments. For an
knot constructed with an odd number of sticks, each of the s segments can cross
at most s-3 other segments. For an even number of sticks, all other segments
can cross at most s-4 other segments, and since the all-crossing segments must
cross each other, an extra crossing is always added. His results describe the
trefoil knot as having a supercrossing index of either 6 or 7. This is because
it is not known if every configuration of a trefoil knot can be made to have 7
crossings. Adams also has been able to bound the supercrossing index in terms
of the crossing number.
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Figure 2: A 7 crossing representation of a 6 stick trefoil knot.

3 SUPERCROSSING OF TORUS KNOTS

Torus knots are easiest drawn by a process of a braiding knots. For example
to find a representation of T2,5, draw two top points and two bottom points
then starting with the top points, draw braids that cross each other five times,
until they reach the bottom points. Next, whichever braid ends up at the left
most bottom point connects to the left most top point and same with the right
points. From these basic projections I will look at three types of Torus knots
and their stick numbers:
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1. Torus knots of the form Tq,q−1,
2. Torus knots of the form Tq,3q

3. Torus knots of the form T2,q

3.1 Example 1, Tq,q−1

One can bound supercrossing numbers for any type of knot as long as one
knows the stick number and/or crossing number of that knot.

For Torus knots of the form Tq,q−1, the stick number and crossing number
are known, they are 2q and q2 − 2q respectively.

Lemma 1 For any knot K, of the form Tq,q−1, s[K]2/4− s[K] + 3 ≤ scr[K]

Proof: Since s[K] = 2q and crn[K] = q2−2q. By Lemma 2.6 from Adams’
et. al. paper:

cr[K] + 3 ≤ scr[K] ≤ 2cr2[K]− 3cr[K]

In this inequality, cr[K] represents the crossing index, the minimum crossing
number taken over all projections of a knot. It follows that

crn[K] = (s[K]/2)2 − 2(s[K]/2)

and for Tq,q−1 torus knots, since the stick number is always even, by substi-
tution, s[K]2/4− s[K] + 3 ≤ scr[K].

3.2 Example 2, Tq,3q

It should be noted that every Tq,3q knot is actually a link of q components,
where each component is the unknot. Since links will at most have the same
upper bound as knots for supercrossings, we can use Adam’s same bound.

Lemma 2 For any knot K, of the form Tq,3q, 3(s[K]2/16−s[K]/4+1) ≤ scr[K]

Proof: Since s[K] = 4q and crn[K] = 3q2 − 3q,
By Theorem 6.1 from Mills’[4] paper:

ifq ≥ 2, s(Tq,3q) = 4q

it follows that:

crn[K] = 3(s/4)2 − (s/4) = 3(s2/16− s/4)

By substitution, crn[K] + 3 = 3(s2/16− s/4 + 1) ≤ scr[K].

There exists a certain type of knot, T2,q and although the stick number is
unknown, I can still bound the supercrossing number for a specific case.
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3.3 Example 3, T2,q

For knots of the form T2,q, G.T. Jin [3] has proposed an equation which will
generate stick knots on a Torus, where the gcd of 2 and q must be 1. Although
the stick number of T2,q knots is unknown,his equation generates Torus knots
with exactly 2q sticks. In his construction we use i, a counter that determines
the number of vertices. It starts at 0 and goes to 2q−1. Also used is his equation
is α, which is a variable that is always between π(p)

q and min(π, 2π(p)
q ), in this

case I chose α = 3π/q. For T2,q his equation becomes:

|Xi| =
{

(cos(2π(i)/q), sin(2π(i)/q),−1) if i is even;
(cos((2π(i− 1))/q + α), sin((2π(i− 1))/q) + α, 1) if i is odd.

The T2,q knots that are generated by Jin’s construction will have a vertex
every π

q rotations. In any of Jin’s T2,q constructions, an angle π
q is made by ro-

tating the radius that goes from the center to any vertex to the next consecutive
vertex. Similarly, an angle 3π

q is made by rotating the radius that goes from the
center to any vertex to a vertex that is three vertices away counterclockwise.
By his construction, q short sticks and q long sticks are created. Every vertex
is considered either a top vertex or a bottom vertex and at φ = 90, top vertices
are created along z=1 and bottom vertices are created along z=-1. The central
angle made between the vertices of the short sticks and longs sticks is π

q and 3π
q

respectively. By using symmetry arguments, I can determine the supercrossing
number for these knots.

Lemma 3 The supercrossing number for T2,q, q odd, q≥ 5 using Jin’s construc-
tion is less than 4q.

Proof: This proof has 2 main cases. Case 1: Each short stick crosses at most
3 other sticks. Case 2: Each long stick crosses at most 5 other sticks.

For any T2,q knot, under Jin’s construction, at φ = 0, the short sticks are
the ones which contain vertices that are connected by an edge going from top
to bottom, counterclockwise. The long sticks are connected by edges that are
bottom to top, counterclockwise.

3.3.1 The Viewing Rectangle

In order to describe the maximum number of crossings possible for T2,q, one
must constrain a region from which to view the potential crossings for each
stick. This region is a viewing rectangle and it iks a region formed by 4 vertices
from which one can look through and determine crossings. Two of the vertices
of this rectangle include those given by any stick for which one would like to
find crossings for. The other two vertices are formed by any two vertices on the
circle which are separated such that they create a central angle of either π

q or
3π
q . This angle corresponds to whether a short stick or a long stick was chosen

for the first two vertices.
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Case 1: Let E be a short stick constructed by Jin’s equation and viewed
from φ = 90. Create a viewing rectangle using the two vertices of E as one side.
Next, constrain the viewing rectangle such that E and the arc on the opposite
side of E both make a central angle of π

q . The vertices on the opposite side of E
do not have to be vertices of the knot itself. When this region of equivalent arcs
is created, 3 situations arise that describe the greatest possible contribution to
the supercrossing number of E. In all three cases E can always cross the long
stick, call it F , contained in the viewing rectangle, which is actually parallel to
E at φ = 0.

E

/nπ

π/n

Figure 3: situation 1, φ = 0

E

/nπ

π/n

Figure 4: situation 2, φ = 0

E

/nπ

π/n

Figure 5: situation 3, φ = 0

The first situation describes the viewing rectangle that contains the vertices
of E and any bottom and top respective counterparts on any other side. In this
situation, the edges of the viewing rectangle will connect the bottom vertex of
E to any other bottom vertex and the top vertex of E to any other top vertex
in the circle. In this situation, the viewing rectangle contains E, the long stick
F , and two more sticks. In such a region containing E, F and two other sticks,
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E can cross at most 3 others.
The second situation is similar to the first except that the viewing rectangle

contains the vertices of E and instead, contains the top and bottom respective
counterparts on any other side. In this region, E can potentially cross F as well
as two other sticks. The short stick E can cross at most 3 others in this region
as well.

The third situation describes a viewing rectangle that contains the vertices
of E and vertices on any other side that are to the left or right of each existing
vertex on the circle. With the exception of F , the short stick E can potentially
cross 3 more sticks, two long and one short. However, since one of the long
sticks must have the same top or bottom vertex as the short stick, then that
vertex must be on the opposite side of E than the short stick’s. However if that
vertex is on the opposite side of E, then either the short stick or the long stick
does not cross E. In this case, E can at most cross 3 others. The drawing below
describes an example of this third situation (not including F ).

Figure 6: Situation 3, φ = 90, E can cross only 2 sticks in addition to F .

Thus, for every possible arrangement of any short stick, E, there are at
most 3 crossings. By Jin’s arrangment, there are q short sticks and therefore
the contribution to supercrossing number for the short sticks is less than 3q.

Case 2: Let G be a long stick constructed by Jin’s equation and viewed from
φ = 90. By a similar argument to Case 1, if one creates a viewing rectangle
using the two vertices of G as one side, one can constrain a viewing rectangle,
such that G and the arc on any other side both make a central angle of 3π

q . The
vertices on the other side do not have to be vertices of the knot itself. When this
region of equivalent arcs is created, 3 situations arise that describe the greatest
possible contribution to the supercrossing number of G. In all three cases G can
always cross the short stick, H, that is contained between the 4 vertices of G.
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Figure 7: G must cross H from this viewing angle.

These cases follow similarly to Case 1 and, in general, G can potentially cross
5 sticks other than H. However, in any viewing rectangle of G that contains 5
sticks other than G, at least two edges will always be connected to a common
vertex. Since for every bottom vertex, except one, there are two top vertices on
opposite sides of G and for every top vertex, except one, there are two bottom
vertices on opposite sides of G, then one edge must cross G and the other edge
must not. Therefore, G can at most cross 4 of those sticks.

Figure 8: G can at most cross only 4 sticks in addition to H.

For every possible arrangement of any long stick, G, I get at most 5 crossings.
By Jin’s arrangment, there are q long sticks and therefore the supercrossing
number for the short sticks is less than 5q.

By combining these two supercrossing upperbounds and dividing by two to
make up for crossings counted twice, the supercrossing number for a T2,q knot
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when q is odd, and is constructed with 2q sticks is less than 4q. 2

4 The Equivalent Supercrossing Number

Consider that every T2,q knot in this section refers to those constructed by
Jin’s formula. In his construction, one can create a line, which I call the line
of sight, which describes any diameter, such that by looking down it, one can
realize the supercrossing number. To do so however, one must construct a new
type of viewing rectangles. These rectangles are created by first constructing
tangent lines to the circle that are parallel to the line of sight, then drawing
two more parallel lines to those which intersect the vertices of any chosen stick.
The tangent lines are necessary because they help determine which vertices to
focus on in order to construct the additional parallel lines. By looking through
the viewing rectangle created by the additional parallel lines, one can observe
the exact number of crossings for a certain stick at fixed angles of φ and θ. At
certain angles however, there exist degenerate cases for specific lines of sight.

4.1 The Degenerate Cases:

The supercrossing number for T2,q is recognized at φ = 90. However, special
restrictions on θ are necessary to make this argument. If a line of sight is
drawn such that its parallel lines of tangency intersect points that lie on the
knot’s vertices, then when φ = 90, the knot will appear to have an overlap of
vertices and therefore crossings are not recognized as they should be. In Jin’s
construction, a degenerate case occurs whenever θ = 90 + iπ

q , where i is an
integer. These degenerate cases occur for both long sticks and short sticks.

Figure 9: A Degenerate Case, when vertices overlap.
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4.2 Short Sticks

Lemma 4 In any T2,q knot by Jin’s construction, when q is odd, q ≥ 5 and
φ = 90, by any given non-degenerate line of sight,exactly 2 short sticks will each
cross 2 other sticks and exactly 1 short stick will cross 0 other sticks. The rest
of the short sticks will each cross exactly 3 other sticks.

Proof:
Construct a circle O, with a T2,q knot, K, on it. Form a line of sight,L, and

construct the two tangent lines A and B that are parallel to L. Under Jin’s
Construction, one of the points of tangency, call it P , that either A or B create
will be part of an arc π

q which is between two vertices that connect to form a
short stick, whereas the other point of tangency, call it Q is part of an arc π

q
between two vertices that are not connected. Next create a viewing rectangle
by constructing two lines parallel to L that intersect the vertices of the short
stick that contains P in the arc between its vertices. In this viewing rectangle,
that short stick will not cross any other sticks.

Figure 10: According the line of sight L, the short stick in the viewing rectangle
cannot cross any others.

Exactly π degrees around the circle from P , Q is subtended by an arc that
contains two vertices, each of which must connect to some other vertices to form
two short sticks, call them R and S. Since these neccessary connecting vertices
must be consecutive vertices around the circle, then one of the vertices must
connect to the vertex just clockwise of it and the other vertex must connect
to the one just counterclockwise of it. Construct four parallel lines to the line
of sight, two that go through the vertices of R and two that go through the
vertices of S. Although R and S cannot cross their adjacent edges, they must
cross each other and each long stick that is parallel to the other small stick. In
each of their viewing rectangles, R and S each cross exactly two other sticks,
while the rest of the small sticks cross 3 each at φ = 90.
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Figure 11: According to L, R and S each cross exactly 2 other sticks in their
viewing rectangles.

4.3 Long Sticks

Lemma 5 In any T2,q knot, by Jin’s construction, when q is odd, q ≥ 5 and
φ = 90, by any given non-degenerate line of sight,exactly 2 long sticks will each
cross 3 other sticks and exactly 1 long stick will cross 2 other sticks. The rest
of the long sticks will each cross exactly 5 other sticks.

Proof:
Follow the construction by the previous lemma. Consider the long stick, call

it J , that is parallel to the 0-crossing short stick. By constructing a viewing
rectangle, which intersect the vertices of J , one can see 3 potential crossings.
However, one of these sticks is always adjacent to J , so J cannot cross it.
Therefore J will cross the two sticks adjacent to the 0-crossing short stick.

Figure 12: J will cross exactly 2 other sticks.
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Next, consider two long sticks, call them M and K, that are each parallel
to the two short sticks with 2 crossings each, described in the previous lemma.
Although M and K are parallel to one of the short sticks each, the other short
stick that they are not parallel to, they are adjacent to. In viewing rectangles
under any non-degenerate line of sight, at most 4 crossings are apparent for
each long stick. However, M and K cannot cross either of their adjacent short
sticks, therefore they must cross 3 other sticks, while the rest of the long sticks
cross 5 each at φ = 90.

Figure 13: M and K will cross exactly 3 other sticks each.

The following diagram is a representation of the leftmost and rightmost sticks
of any T2,q knot under Jin’s construction, with q odd and φ = 90. On one side,
1 0-crossing and 1 2-crossing sticks exist while on the other side, 2 2-crossing
and 2 3-crossing sticks exist. Since these special cases exist for all of Jin’s knots,
their supercrossing numbers can be quantified and found by a formula.
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Figure 14: one side of a T2,q

knot, φ = 90
Figure 15: the other side of a
T2,q knot, φ = 90

4.4 Supercrossing Number and Index of T2,q

Theorem 1 Under Jin’s Construction, scr(T2,q) = 4q − 6, when q is odd and
q ≥ 5.

Proof: This comes from the fact that, for T2,q from any non-degenerate line
of sight, and at φ = 90, q-3 long sticks cross exactly 5 other sticks and q-3 short
sticks cross exactly 3 other sticks. Additionally by Lemma 4, 4 more crossings
exist for the short sticks because of the 1-0 crossing and 2- 2 crossings short
sticks. Dividing by two to dismiss crossings counted twice, the supercrossing
number of short sticks is (4(q− 3)+4)/2. Similarly, Lemma 5, 8 more crossings
exist for the long sticks because of the 1-2 crossing and 2-3 crossing long sticks.
Dividing by two to dismiss crossings counted twice, the supercrossing number
of long sticks is (5(q − 3) + 8)/2. By adding these quantities together, the
supercrossing number of Jin’s T2,q knots is 4q − 6. 2

Corollary 1 scr[T2,q] ≤ 4q − 6.

Proof:
Since Torus knots of the form T2,q, configured with 2q sticks can be con-

structed to have a supercrossing number of 4q-6, it follows that any Torus knot
of the form T2,q has an index less than or equal to 4q-6.2

This improves the upperbound greatly, since not only is it linear but it comes
directly from an exact stick number of T2,q.
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