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Abstract

This paper looks at complete bipartite graphs, Km,n, and complete

tripartite graphs, Kr,s,t. The main focus is cutwidths. By looking at the

linear embedding of these graphs, each cut can be minimized, resulting in

the linear cutwidth.

1 Introduction

1.1 Complete Bipartite and Tripartite Graphs

A graph consists of vertices and edges, where one edge connects two vertices.
When looking at a diagram of a graph, dots represent the vertices and lines
represent the edges. There are many different types of graphs. In this paper,
we focus on complete bipartite graphs and complete tripartite graphs. We will
start by defining a complete bipartite graph, denoted Km,n. A bipartite graph
consists of two sets of vertices A and B, where |A| = m and |B| = n. The
vertices of one set, A, are connected only to the vertices of the other set, B.
To make it a complete bipartite graph, each vertex of A is connected to all the
vertices in B. As shown in Figure 1, the vertices of A are on the left and the
vertices of B are on the right. Each vertex of A is connected to all of the vertices
of B.
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Figure 1: K3,4
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This outline can be extended to a complete tripartite graph, denoted Kr,s,t. In
a tripartite graph, there are three sets of vertices A, B, and C, where |A| = r,
|B| = s, and |C| = t. The vertices of one set, A, are connected only vertices
of the other two sets, B and C. To make it a complete tripartite graph, all
the vertices from one set are connected to all the vertices of the other two sets.
Figure 2 is an example of complete tripartite graph.

Figure 2: K2,3,4

1.2 Linear Embedding

The vertices of a complete n-partite graph can be arranged in a many different
ways. The arrangement we are going to focus on is a linear embedding. This is
a simple arrangement of all of the vertices on a single line, as shown in Figure
3. The vertices that were connected in the original graph will also be connected
in this arrangement.

Figure 3: K2,3,4

The regions of a linearly embedded graph, denoted (a, x − a) for Km,n and
(a, b, x − a − b) for Kr,s,t, is the area between two adjacent vertices, where x

represents the number of vertices to the left of the cut, and there are a vertices
from A, (x − a) or b vertices from B, and (x − a − b) = c vertices from C. The
cut of a region for a complete bipartite linear embedding, denoted cut(a, x−a),
is the number of edges that cross through the area between two vertices, which
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can be found using:

cut(a, x − a) = a(n − (x − a)) + (x − a)(m − a).

For example, in Figure 4, the cut between vertices 1 and 2 is 2. The cut of a
region for a complete tripartite linear embedding, denoted cut(a, b, x − a − b),
is the number of edges that cross through the area between two vertices, which
can be found using:

cut(a, b, x − a − b) = a[(s − b) + (t − (x − a − b))] + b[(r − a) + (t − (x − a − b))]

+(x − a − b)[(r − a) + (s − b)].

For example, in Figure 3, the cut between vertices 2 and 3 is 9.
The maximum cut of a linear embedding is the the region with the most

edges crossing through it. As you can see in Figure 3 the maximum cut is 13,
and in Figure 4, the maximum cut is 3. The linear cutwidth of a graph, is the
smallest maximum cut for all the different arrangements of the vertices within a
linear embedded graph, which is what we are looking at throughout this paper.

Figure 4: K2,3

Many numbers will need to be rounded to their nearest whole numbers. The
function we will be using is [x] = bx + .5c.

2 Background

Graph theory can be applied to many real world applications. Some of these
include circuit layout, code design, and networking. Having the cutwidth of
a graph is helpful when working with some of these applications, particularly
with optimally arranging a network or circuit. A few people have worked with
the cutwidth of graphs. The equations for the linear cutwidth and the cyclic
cutwidth of the complete graph Kn were discovered by F. Rios[10]. D. Clarke[6]
modified H. Schroder’s[11] work on the cyclic cutwidth of two-dimensional mesh,
Pm × Pn, and got results for m ≥ n ≥ 3. These results were extended to three-
dimensional mesh,P2 × P2 × Pn by V. Sciortino[12]. Results were found for the
cyclic cutwidth for trees by J. Chavez and R. Trapp [2]. Together, they also
made a conjectured on the cyclic cutwidth for an n-dimensional cube, Qn[4].
Although the conjecture has not been proven for Qn, Q3 and Q4 have been
proven by B. James[8], Q5 has been proven by R. Aschenbrenner[1], and Q6

has been proven by C. Castillo[3]. M. Holben[7] discovered equations for the
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cyclic cutwidth of a complete bipartite graph, Km,n. Although many people
have studied the cutwidth of many different types of graphs, M. Johnson[9] has
developed the most recent ideas behind the linear cutwidth of complete bipartite
graphs.

2.1 Johnson’s Arrangement of Vertices

Johnson came up with a way to arrange the vertices of a graph Km,n along
the linear embedding, such that the cutwidth for a particular graph would be
minimized. He begins this process by letting x be the number of vertices to the
left of a cut (in Figure 4 x = 2). To find the number of vertices from from A

that are to the left of the cut, he used the equation [ xm
m+n

], and rounded it to
the nearest whole number. To find the number of vertices from B that are to
the left of the cut, he used the equation x− [ xm

m+n
]. In other words, the vertices

from B took the remaining spots to the left of the cut. If you do this for every
cut, starting with the left most cut and continuing to its closest cut to it’s right,
you will end up with Johnson’s arrangement.

2.2 Johnson’s Linear Cutwidth of Km,n

From Johnson’s arrangement of vertices within a linearly embedded complete
bipartite graph, he comes up with two simple equations on how to find the
cutwidth of complete bipartite graphs. To find these equations, he uses the
fact that his arrangement results in the maximum cut of all the regions being
the center cut. Knowing this he can determine the number of vertices from A
and B that will be to the left of the center cut. For example, if m and n were
both even, then the number of vertices from A would be m

2
and the number of

vertices from B would be n
2
. He uses these numbers along with the equation

cut(a, b), where a ∈ A and b ∈ B, to find the cut of the middle region. He looks
at four different cases, where m and n are even or odd, and after simplifying his
equation he concluded for any complete bipartite graph Km,n where m ≤ n,

lcw(Km,n) =

{

mn
2

for mn even
mn+1

2
for mn odd.

Johnson was successful at finding a way to get the linear cutwidth of complete
bipartite graphs, there are many other complete n-partite graphs to which the
cutwidth is unknown. Thus it is important to concentrate on generalizing the
cutwidth of complete n-partite graphs.

3 Linear Cutwidth of Complete Bipartite Graphs

Even though Johnson’s arrangement of vertices gives the cutwidth, it does
not minimize every region’s cut. Together with J. Chavez and E. Hartung, we
discovered a new way to arrange the vertices that does minimize the cut of each
region.
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Theorem 1 (Bowles-Chavez-Hartung (BCH1)): Let Km,n be a complete bipar-
tite graph with two sets of vertices A and B, where |A| = m and |B| = n, and let
m ≤ n. Then the cut of each region of a linear embedding for Km,n is minimized
by placing 2x+m−n

4
vertices from A to the left of the cut.

Proof Let x be the number of vertices to the left of a cut. Given x, suppose
there are a vertices from A to the left of the cut. Thus, there are x− a vertices
from B to the left of the cut. From this we can conclude that on the right side
of the cut there are m− a vertices from A and n− (x− a) vertices from B. We
know that the cut of region (a, x − a) is

cut(a, x − a) = a(n − (x − a)) + (x − a)(m − a)

= an − ax + a2 + mx − ax − am + a2

= 2a2 + a(n − 2x − m) + mx.

Let f(a) = 2a2 +a(n−2x−m)+mx. Notice that f(a) is a continuous function
of a ∈ IR, and that f(a) = cut(a, x−a) for 0 ≤ a ≤ m and a ∈ ZZ. Since f(a) is
a positive quadratic, we know that it is a parabola opening upward. Thus, the
minimum of f(a) is found by taking its derivative and setting it equal to zero.
So,

f ′(a) = 4a + n − 2x − m = 0

⇒ a =
m + 2x − n

4
.

If a is not be an integer, it is rounded to the nearest whole number, denoted
[a]. We then place [a] vertices from A to the left of the cut. Thus for all of
the regions of the linear embedding of Km,n, its cut is minimized by placing
[

m+2x−n
4

]

vertices from A to the left of each cut.

This new arrangement results in the next corollary.

Corollary 1 Let Km,n be a complete bipartite graph whose linear embedding
is arranged by the BCH1 theorem. Then the maximum cut will occur when
x = m+n

2
for m + n even and when x = m+n−1

2
and x = m+n+1

2
for m + n odd.

Also, the cuts to the left of the middle cut will be strictly increasing and the cuts
to the right of the middle cut will be strictly decreasing.

Proof Let

cut(a, x − a) = 2a2 + a(n − 2x − m) + mx

= 2a2 − 4a2 + mx(since a = 2x+m−n
4

gives the minimum cut)

= −2a2 + xm

= −2 ·

(

2x + m − n

4

)2

+ xm

= −
1

8
· (2x + m − n)2 + xm.
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Let f(x) = − 1

8
·(2x+m−n)2+xm be a continuous function of x ∈ IR and notice

that − 1

8
· (2x+m−n)+xm gives the cut of the region for 1 ≤ x ≤ m+n. Since

f(x) is a negative quadratic, we know that it is a parabola opening downward.
Thus, by using f ′(x) = 0 we can show that the maximum cut occurs at the
middle region where x = n−m

2
for m + n even and where x = n−m−1

2
for m + n

odd.

f ′(x) = −
1

4
· (2x + m − n) · 2 + m

= −
1

2
· (2x + m − n) + m

= −x −
m

2
+

n

2
+ m

=
m + n

2
− x = 0

Observe that m+n
2

− x > 0 when 1 ≤ x < m+n
2

, thus f(x) is increasing, and
m+n

2
− x < 0 when m+n

2
≤ x ≤ m + n, thus f(x) is decreasing. So for m + n

even, the maximum cut occurs at m+n
2

, but when m + n is odd, m+n
2

is not an
integer, but is equally spaced between the integers m+n−1

2
and m+n+1

2
, so the

maximum cut of the graph occurs at these two points.

Once we have the arrangement of the vertices we can use this to find the cutwidth
of the complete bipartite graph.

Theorem 2 (Bowles-Chavez-Hartung (BCH2)) Let Km,n be a complete bipar-
tite graph. Then

lcw(Km,n) =

{

mn
2

for mn even
mn+1

2
for mn odd

Proof We have shown that the linear embedding given by BCH Theorem 1
minimizes the cut of each region and that the center cut is the maximum of the
linear embedding. Thus the lcw(Km,n) occurs when x = m+n

2
for m + n even

and when x = m+n−1

2
and x = m+n+1

2
for m + n odd. So we will look at each

case to find the lcw(Km,n).
Case 1: Let m + n be even, then x = m+n

2
. Place [ 2x+m−n

4
] vertices from A

to the left of the center cut. Substituting m+n
2

for x gives [m+n+m−n
4

] = [m
2

].
So a = m

2
when m is even and a = m+1

2
when m is odd. Since m+n is even, we

know that when m is even, n is even, and when m is odd, n is odd. Therefore,
the number of vertices from B on the left is

{

x − m
2

= n
2

for n even
x − m+1

2
= n−1

2
for n odd

Taking the cut of (m
2

, n
2
) gives:

cut(
m

2
,
n

2
) =

m

2
·
n

2
+

n

2
·
m

2

=
mn

2
.
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and taking the cut of (m+1

2
, n−1

2
) gives:

cut(
m + 1

2
,
n − 1

2
) =

m + 1

2
·
n + 1

2
+

n − 1

2
·
m − 1

2

=
mn + 1

2

Case 2: Let m + n be odd. WLOG, let x = m+n−1

2
. Place [ 2x+m−n

4
]

vertices from A to the left of the center cut. Substituting m+n−1

2
for x gives

[m+n−1+m−n
4

] = [ 2m−1

4
] = [m

2
− 1

4
]. So a = m

2
when m is even and a = m−1

2

when m is odd. Since m + n is odd, we know that when m is even, n is odd,
and when m is odd, n is even. Therefore, the number of vertices from B on the
left is

{

x − m
2

= n−1

2
for n odd

x − m+1

2
= n

2
for n even

Taking the cut of (m
2

, n−1

2
) gives

cut(
m

2
,
n − 1

2
) =

m

2
·
n + 1

2
+

n − 1

2
·
m

2

=
mn + m

4
+

mn − m

4

=
mn

2
.

and taking the cut of (m−1

2
, n

2
) gives

cut(
m − 1

2
,
n

2
) =

m − 1

2
·
n

2
+

n

2
·
m + 1

2

=
mn − n

4
+

mn + n

4

=
mn

2
.

Therefore,

lcw(Km,n) =

{

mn
2

for mn even
mn+1

2
for mn odd.

As you can see our optimal values match that of Johnson’s, which was expected.
However, from this new arrangement we can minimize every cut. This is helpful
when looking at generalizing the linear cutwidth of complete n-partite graphs,
which is explained later in the paper. Therefore, this model is broader in its
applications.

4 Linear Cutwidth of Complete Tripartite Graphs

In this section, we minimize the cut of every region, and find the linear
cutwidth of the linear embedding of a complete tripartite graph Kr,s,t. To do
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this, we will refer to the middle and outer regions of the graph. The middle
region consists of r sets of three vertices, each set including one black, one white,
and one gray vertex. The outside consists of the remaining vertices.

Theorem 3 (Bowles-Chavez-Hartung (BCH3)) Let Kr,s,t be a complete tri-
partite graph with three sets of vertices A, B, and C, where |A| = r, |B| = s,
and |C| = t, and let r ≤ s ≤ t. To minimize each cut of the linear embedding
for Kr,s,t, the middle and outer sections of the graph are minimized indepen-
dently. The middle cuts are minimized by placing 2x+2r−s−t

6
vertices from A,

2x+2s−r−t
6

vertices from B, and 2x+2t−r−s
6

vertices from C to the left of each
cut. The outer sections are minimized according to the BCH arrangement for
complete bipartite graphs.

Proof This proof is separated into three sections: the minimizing of the middle
region, the minimizing of the outer regions, and the placement of the middle
region.

Minimizing the Middle Region

Let x be the number of vertices to the left of a cut. Given x, suppose there are
a vertices from A, b vertices from B, and c = x − a − b vertices from C to the
left of the cut. From this we can conclude that on the right side of the cut there
are r−a vertices from A, s− b vertices from B, and t− (x−a− b) vertices from
C. We know that the cut of region (a, b, x − a − b) is

cut(a, b, x − a − b) = a[(s − b) + (t − (x − a − b)] + b[(r − a) + (t − (x − a − b))]

+(x − a − b)[(r − a) + (s − b)]

= as − ab + at − ax + a2 + ab + br − ba + bt − bx + ba + b2

+xr − xa + xs − xb − ar + a2 − as + ab − br + ab − bs + b2

= 2a2 + 2b2 + a(t − r − 2x) + b(t − s − 2x) + 2ab + x(r + s)

Let f(a, b) = 2a2 +2b2+a(t−r−2x)+b(t−s−2x)+2ab+x(r+s). Notice that
f(a, b) is a continuous function of a, b ∈ IR, and that f(a, b) = cut(a, b, x−a−b)
for 0 ≤ a ≤ r and a ∈ ZZ and for 0 ≤ b ≤ s and b ∈ ZZ. Since f(a, b) is a positive
paraboloid, its opening is upward. Thus, we can find the minimum of f(a, b) by
taking its derivative and setting it equal to zero. So,

∂f(a, b)

∂a
= 4a + (t − r − 2x) + 2b = 0 (1)

⇒ 2b = −4a− t + r + 2x. (2)

∂f(a, b)

∂b
= 4b + (t − s − 2x) + 2a = 0 (3)

⇒ 2a = −4b− t + s + 2x. (4)

Substituting the value of 2b from (2) into (3) and gives

0 = 2(−4a− t + r + 2x) + t − s − 2x + 2a
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⇒ 6a = 2x + 2r − s − t

⇒ a =
2x + 2r − s − t

6
.

Substituting the value of 2a from (4) into (1) gives

0 = 2(−4b− t + s + 2x) + t − r − 2x + 2b

⇒ 6b = 2x + 2s − r − t

⇒ b =
2x + 2s − r − t

6
.

Knowing a and b we can get c:

c = x − a − b

= x −

[

2x + 2r − s − t

6

]

−

[

2x + 2s − r − t

6

]

=
2x + 2t − r − s

6
.

If a, b, and c are not integers, it is rounded to the nearest whole number, denoted
[a], [b], and [c]. Now given a, b, and c, let 1 ≤ a ≤ r since we are only concerned
with the middle of the graph where all of the sets are active. If we minimize
the cuts of the middle region, they will not be affected by the arrangement of
the vertices on the outside as long as we know how many vertices from each set
are on the left and right of the middle region. Given the middle region and the
number of vertices to the left and right of it, we know that each vertex in the
middle will be connected to the same number of edges regardless of the structure
of the outside vertices. Therefore we can minimize the inside independently of
the arrangement of the outside vertices.

If a chart of the values a, b, and c is constructed, each vertex may not have
a unique position. Below in Figure 5, the x represents the number of vertices
to the left of a cut. The variables a, b and c represent the number of vertices
from each set A, B, C to the left of a cut. Every time a, b or c increases by
one, a new vertex is added to that spot. For example, in Figure 5, at vertex 5
(x = 5), there are no vertices from A to the left. However, at vertex 6, there is
one vertex from set A, so the sixth vertex will be black.

Since 1 ≤ a ≤ r, there will be r groups of three in the middle region.
Beginning with the first position where a = 1, each group of three vertices will
have one black, one white and one gray vertex, but the arrangement of those
within the group of three is not necessarily unique. So let the three positions of
each group be denoted x1, x2, and x3. There are three cases:

Case 1: Every black, white and gray has a unique position. For every xi

the value of only the vertex from a, b, or c will change and it will be consistent
throughout the r groups. In this case, xi = a + b + c for all xi while 1 ≤ a ≤ r.
For example, in K1,4,7, the order of the middle must be black, white,gray.
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... ...3 4 5 6 7 8 9 10x
a
b
c

0 0 0 1
11

1 1 2

2
22

2 2
11

3
333

33 4
444 5 5

2

x x x1 32

3r

Figure 5: K1,4,7

Figure 6: K1,4,7

Case 2: Either black, white or gray will have a unique position consistently
throughout the r groups. For the remaining two sets, the vertices from those
sets will be interchangeable within each group of three. Again, remember that
for each group of three, we are denoting the three positions x1, x2 and x3. In
this case, either at x1, a + b + c = x1 + 1 or at x2, a + b + c = x2 + 1. For
example, in K4,8,11, the black and the gray vertices can be interchanged between
positions x1 and x2, as shown in Figure 8, but the white vertices are always in
position x3.

... ...4 5 6 7 8 9 10x
a
b
c

0 0 0 1 1 1 2

22

2 2

11

3

33

33 4

444 5 5

2

x x x1 32

12 13 14 15

3 33

44

444

5

555

555

6

666

66

7

777 88

16 17 18 19 20 21

77

98

3r

Figure 7: K4,8,11
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Figure 8: K4,8,11

Case 3: The black, gray and white vertices in each group of three are all
interchangeable. In this case, at x1, a+b+c = x1+2 and at x2, a+b+c = x2+1.
K3,9,13 is an example of this where the whites, grays and blacks can be in any
position within groups of three.

... ...7 8 9 10x
a
b
c

0 0 0 1 1 1 2 2 2

11

4

5 5

x x x1 32

12 13 14 15

3 33

44

444

5

555

6

666

66

7

777 88

16 17 18

77

8 999

19 2120

3 33

3r

Figure 9: K3,9,13

Figure 10: K3,9,13
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So when it is not clear whether a, b or c changes first, the cuts of the regions
are equivalent regardless of which arrangement is chosen as long as there is a
vertex from each set within each group of three. Thus the linear embedding of a
complete tripartite graph Kr,s,t is minimized within the region where 1 ≤ a ≤ r

by placing 2x+2r−s−t
6

vertices from A, 2x+2s−r−t
6

vertices from B, and 2+2t−r−s
6

vertices from C to the left of each cut.

Minimizing the Outer Regions

We will now consider the outer vertices. The chart of a complete tripartite graph
gives the number of vertices from set B and C to the right and left of the middle
region. The number of vertices from B and C to the left of the middle region
is given by b and c at the last position where a = 0. For example, in Figure
5, when x = 5, there are 2 gray vertices and 3 white vertices. The number of
vertices from B to the right of the middle region is given by s − b where b is
the first position where a = r + 1. The number of vertices from C to the right
is given by t − c where c is the first position where a = r + 1. For example, in
Figure 5, when x = 9, b = 3 and c = 4, so there is 1 vertex from B and there are
3 vertices from C to the right of the middle. Also, we have r gray, r white and
r black vertices in the middle region. As previously stated, the arrangement of
the middle does not affect the cuts of the outside. Without loss of generality,
we look at the vertices to the left of the middle region. Let i be the number
of vertices to the left. Observe that each white on the outside is connected to
r gray and r black vertices from the middle region and that each gray on the
outside is connected to r white and r black vertices from the middle region.
This results in the middle vertices contributing i · 2r to the cut of each region.
The same is true of the vertices to the right of the middle region where i is the
number of vertices to the right of each cut. This applies to any arrangement of
the outside vertices. But the outside vertices make up the complete bipartite
graph Ks−r,t−r, thus to minimize the cuts along outside vertices, we can use
the BCH1 arrangement.

Placing the Middle Region Within the Bipartite Graph

We have shown that the middle region can be minimized independently of the
outer regions and the outer regions can be minimized independently of the
middle region. Since we know the number of vertices to the left of the middle
region, we can place the minimized middle region after this number of vertices
of the minimized bipartite graph. Notice that the left outer region consists of
d s−r

2
e vertices from B and d t−r

2
e vertices from C and the right outer region

consists of b s−r
2

c vertices from B and b t−r
2
c vertices from C. This results in the

minimal cut for each region of the complete tripartite graph Kr,s,t.

This new arrangement results in the next corollary.

Corollary 2 Let Kr,s,t be a complete tripartite graph whose linear embedding
is arranged by BCH3. Then the maximum cut will occur when x = r+s+t

2
for

r + s + t even and when x = r+s+t−1

2
and x = r+s+t+1

2
for r + s + t odd.

12



Proof Let

cut(a, b, x − a − b) = 2a2 + 2b2 + a(t − r − 2x) + b(t − s − 2x) + 2ab + x(r + s)

= 2

(

2x + 2r − s − t

6

)2

+ 2

(

2x + 2s − r − t

6

)2

+

(

2x + 2r − s − t

6

)

(t − r − 2x) +

(

2x + 2s − r − t

6

)

(t − s − 2x)

+2

(

2x + 2r − s − t

6

) (

2x + 2s− r − t

6

)

+ x(r + s)

(since a = 2x+2r−s−t
6

and b = 2x+2s−r−t
6

)

=
2xt

3
−

r2

6
+

2xs

3
+

2xr

3
−

2x2

3
+

rs

6
+

rt

6
−

s2

6
+

st

6
−

t2

6
.

Let f(x) = 2xt
3

− r
2

6
+ 2xs

3
+ 2xr

3
− 2x

2

3
+ rs

6
+ rt

6
− s

2

6
+ st

6
− t

2

6
be a continuous

function of x ∈ IR and notice that 2xt
3
− r

2

6
+ 2xs

3
+ 2xr

3
− 2x

2

3
+ rs

6
+ rt

6
− s

2

6
+ st

6
− t

2

6

gives the cut of the region for 1 ≤ x ≤ r + s + t. By using f ′(x) we can show
that the maximum cut occurs at the middle region where x = r+s+t

2
for r+s+ t

even and where x = r+s+t−1

2
for r + s + t odd.

f ′(x) =
−4x + 2r + 2s + 2t

3
= 0

x =
r + s + t

2
.

So for r + s + t even, the maximum cut occurs at r+s+t
2

, but when r + s + t is
odd, r+s+t

2
is not an integer, but is equally spaced between the integers r+s+t−1

2

and r+s+t+1

2
, so the maximum cut of the graph occurs at these two points.

Once we have the arrangement of the vertices and where the maximum occurs
within the arrangement, we can use this to find the cutwidth of the complete
tripartite graph.

Theorem 4 (Bowles)Let Kr,s,t be a complete tripartite graph. Then

lcw(Kr,s,t) =

{

rs+rt+st
2

for two or more s, r, t even
rs+rt+st+1

2
otherwise

Proof We have shown that the linear embedding given by the BCH3 arrange-
ment minimizes the cut of each region and that the center cut is the maximum of
the linear embedding. Thus the lcw(Kr,s,t) occurs when x = r+s+t

2
for r + s + t

even and when x = r+s+t−1

2
and x = r+s+t+1

2
for r + s + t odd. So we will look

at each case to find the lcw(Kr+s+t).
Case 1: Let r + s + t be even, then x = r+s+t

2
. Place [ 2x+2r−s−t

6
] ver-

tices from A to the left of the center cut. Substituting r+s+t
2

for x gives
[ r+s+t+2r−s−t

6
] = [ r

2
]. So a = r

2
when r is even and a = r+1

2
when r is odd.
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Place [ 2x+2s−r−t
6

] vertices from B to the left of the center cut. Substituting
r+s+t

2
for x gives [ r+s+t+2s−r−t

6
] = [ s

2
]. So b = s

2
when s is even, b = s+1

2
when

s is odd and r is even, and b = s−1

2
when s is odd and r is odd. Since r + s + t

is even, we know that when r and s are even or r and s are odd, t is even, and
when one out of r and s is odd, t is odd. Therefore, the number of vertices from
C on the left of the cut is

c =















x − r
2
− s

2
= t

2
for r, s even

x − r+1

2
− s−1

2
= t

2
for r, s odd

x − r
2
− s+1

2
= t−1

2
for r even and s odd

x − r+1

2
− s

2
= t−1

2
for r odd and s even

Now recall that the

cut(a, b, c) = a[(s − b) + (t − c)] + b[(r − a) + (t − c)] + c[(r − a) + (s − b)].

Taking the cut of ( r
2
, s

2
, t

2
) gives:

cut(
r

2
,
s

2
,
t

2
) =

r

2
[(s −

s

2
) + (t −

t

2
)] +

s

2
[(r −

r

2
) + (t −

t

2
)] +

t

2
[(r −

r

2
) + (s −

s

2
)]

=
rs + rt + st

2
.

We will continue this process for all of the combinations for r, s, and t.
Taking the cut of ( r

2
, s+1

2
, t−1

2
) gives:

cut(
r

2
,
s + 1

2
,
t − 1

2
) =

rs + rt + st + 1

2
.

Taking the cut of ( r+1

2
, s

2
, t−1

2
) gives:

cut(
r + 1

2
,
s

2
,
t − 1

2
) =

rs + rt + st + 1

2
.

Taking the cut of ( r+1

2
, s−1

2
, t

2
) gives:

cut(
r + 1

2
,
s − 1

2
,
t

2
) =

rs + rt + st + 1

2
.

Case 2: Let r + s + t be odd, then x = r+s+t−1

2
. Place [ 2x+2r−s−t

6
] ver-

tices from A to the left of the center cut. Substituting r+s+t−1

2
for x gives

[ r+s+t−1+2r−s−t
6

] = [ r
2
− 1

6
]. So a = r

2
when r is even and a = r−1

2
when r is

odd. Place [ 2x+2s−r−t
6

] vertices from B to the left of the center cut. Substitut-
ing r+s+t−1

2
for x gives [ r+s+t−1+2s−r−t

6
] = [ s

2
− 1

6
]. So b = s

2
when s is even,

b = s+1

2
when s is odd and r is odd, and b = s−1

2
when s is odd and r is even.

Since r + s + t is odd, we know that when r and s are odd or r and s are even,
t is odd, and when one out of r and s is odd and the other is even, t is even.
Therefore, the number of vertices from C on the left of the cut is

c =















x − r−1

2
− s+1

2
= t−1

2
for r, s odd

x − r
2
− s

2
= t−1

2
for r, s even

x − r
2
− s−1

2
= t

2
for r even and s odd

x − r−1

2
− s

2
= t

2
for r odd and s even
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Similarly as used in case 1, we use the equation cut(a, b, c).
Taking the cut of ( r−1

2
, s+1

2
, t−1

2
) gives:

cut(
r − 1

2
,
s + 1

2
,
t − 1

2
) =

rs + rt + st + 1

2
.

Taking the cut of ( r
2
, s

2
, t−1

2
) gives:

cut(
r

2
,
s

2
,
t − 1

2
) =

rs + rt + st

2
.

Taking the cut of ( r−1

2
, s

2
, t

2
) gives:

cut(
r − 1

2
,
s

2
,
t

2
) =

rs + rt + st

2
.

Taking the cut of ( r
2
, s−1

2
, t

2
) gives:

cut(
r

2
,
s − 1

2
,
t

2
) =

rs + rt + st

2
.

Therefore,

lcw(Kr,s,t) =

{

rs+rt+st
2

for two or more s, r, t even
rs+rt+st+1

2
otherwise

Results

In conclusion, we were able to minimize every cut of the linear embedding
for complete bipartite and tripartite graphs. We also derived equations for the
lcw(Km,n) and for the lcw(Kr,s,t). To continue in this topic we could generalize
the linear cutwidth for complete n-partite graphs. This idea lead to our conjec-
ture:

Conjecture:

Let Ka1,a2,..,an
be a complete n-partite graph. Then

lcw(Ka1,a2,..,an
) =























∑ aiaj

2

ai < aj , i 6= j, i, j ∈ {1, 2, ..., n} ∀i, j,

with at most one a1, a2, ..., an odd

∑ aiaj

2
+ 1

2

ai < aj , i 6= j, i, j ∈ {1, 2, ..., n} ∀i, j,

otherwise

Two possible ideas to prove this conjecture is through induction, or through
looking at c(n, 2) bipartite graphs. When looking at the c(n, 2) bipartite graphs
we can find the linear cutwidths of each bipartite graph then add them together
to get the linear cutwidth for the n-partite graph.
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