
On Tree Congestion of Graphs

Stephen Hruska

August 20, 2004

Abstract

We investigate a theorem relating detours, tree congestion, and span-
ning tree congestion of a graph. Specifically, we calculate exact formulas
for t(G), s(G), and the upper bound |EG| − |VG| + 2 for various families
of graphs, including grids and complete bipartite graphs.

1 Background

The question of cutwidth has been addressed much in the literature because
of its applications to networking and circuit design. Linear cutwidth was first
considered by Chung [2] in 1988. Since then, she has been followed by others
such as Rios [7] and Johnson [5] who worked with linear and cyclic cutwidths,
Clarke [3], Holben [4], and Schröder [9] who also looked at cyclic cutwidth, and
Bezrukov [1], who used a grid as the host graph. We follow Ostrovskii [6] in
using trees as the host graphs, but spanning trees in particular.

2 Introduction

In this paper, G will denote a connected graph with edge set EG and vertex
set VG, and T will be a tree such that VT = VG.

If u and v denote specific vertices in G, then m(u, v) is defined to be the
maximal number of edge-disjoint paths in G connecting those vertices. Con-
sidering all possible pairs of vertices, we determine the maximum over every
m(u, v) and call it mG – that is,

mG = max{m(u, v)|u, v ∈ VG}.

For example, in the complete graph K4, shown in Figure 1 below, there are a
maximum of three edge-disjoint paths between vertices 1 and 3, so m(1, 3) = 3.
Since there is no vertex of degree greater than three, it is impossible to find
four edge-disjoint paths between any pair of vertices, which implies that the
maximum number of edge-disjoint paths we will be able to find between any
pair of vertices is three, or mG = 3.

When discussing edge congestion, it is common to embed a graph into a
line, which simply means that we begin with the same vertices that are in the

1

Figure 1: G = K4

original graph, lay them out in a line in any order, and connect them with edges
in that order. We then draw edges connecting every pair of vertices that were
connected in the original graph. An example of embedding K4 into a linear
host might look like Figure 2, with the dotted lines representing the edges of
K4. After embedding K4 into the line, we would like to count the number of
edges passing between any two vertices (indicated by the vertical lines in Figure
2), find the maximum, and then find the minimum of these maximums over all
possible orders of vertices. This minimum is referred to as the linear cutwidth
(lcw(K4) = 4).

Figure 2: K4 embedded in a linear host

Tree congestion could essentially be thought of as tree cutwidth. Instead of
embedding K4 into a line, we embed it into a tree, which means that we begin
with the same vertices and connect them in such a way that they form a tree. If
we are embedding into a spanning tree, then we can only connect vertices that
are connected in the original graph. The two possible trees, up to isomorphism,
are pictured in Figures 3 and 4.

Figure 3: T1 Figure 4: T2

If we consider an edge g of G, say from 1 to 4, there is a corresponding path

2

in each tree. In T1 the path is from 1 to 3 to 4, while in T2 the path is from 1
to 2 to 3 to 4. Each of these paths is called a detour for g, denoted Pg (again,
the dotted lines in Figures 3 and 4 represent these detours). Likewise, if g is
the edge connecting 2 and 3, then in both trees the detour for g is just the edge
itself. A T-layout L of G is the collection of all detours in a given tree. In this
case,

LT1
= {(1, 3, 2), (1, 3), (1, 3, 4), (2, 3), (2, 3, 4), (3, 4)}

and
LT2

= {(1, 2), (1, 2, 3), (1, 2, 3, 4), (2, 3), (2, 3, 4), (3, 4)}.

Of course, |L| = |EG| for all graphs G and all T-layouts L.
Looking at a specific edge h in T , the congestion of L in h is defined as the

number of times h appears in L or, equivalently, the number of detours of which
h is a part, and it is denoted

c(h, L) = |{Pg ∈ L : h ∈ Pg}|.

In the diagrams, this would be the number of dotted lines following along h. If
we find the maximum c(h, L) by looking at every edge h of T , we obtain the
congestion of L, denoted

c(L) = max{c(h, L)|h ∈ ET }.

Continuing the above example, we obtain Tables 1 and 2.

Table 1: Congestions for T1

h c(h, LT1
)

(1,3) 3
(2,3) 3
(3,4) 3

Table 2: Congestions for T2

h c(h, LT2
)

(1,2) 3
(2,3) 4
(3,4) 3

So c(LT1
) = 3 and c(LT2

) = 4.
Finally, we present the definitions for the tree congestion of G and the span-

ning tree congestion of G. The tree congestion of G is the minimum c(L) that
we can find if we consider every possible tree:

t(G) = min{c(L) : ∀ trees T}.

The spanning tree congestion of G is similarly defined, except we look at all of
the spanning trees only, not every single tree:

s(G) = min{c(L) : ∀ spanning trees T of G}.

Thus, for G = K4, t(G) = min{3, 4} = 3 and (since both T1 and T2 are spanning
trees) s(G) = min{3, 4} = 3.

The following theorem relates these concepts together in order to provide
bounds for t(G) and s(G).

3

Theorem (Ostrovskii, [6]). mG = t(G) ≤ s(G) ≤ |EG| − |VG| + 2

Proof.

• The inequality t(G) ≤ s(G) follows immediately from the fact that the
set of all spanning trees is a (not necessarily proper) subset of the set of
all trees. If a spanning tree is the one that provides the minimum c(L)
for all trees, then t(G) = s(G), but it is possible that a tree that is not a
spanning tree may provide the minimum, in which case t(G) < s(G).

• In obtaining s(G) ≤ |EG|− |VG|+2, we recall that a tree with |VT | = |VG|
vertices has |ET | = |VG| − 1 edges. If we start with the graph G, which
has |EG| edges, we can take away

|EG| − |ET | = |EG| − (|VG| − 1) = |EG| − |VG| + 1

edges to obtain a spanning tree T . For each edge of G that is removed,
we create a new detour through the tree, so |EG| − |VG| + 1 new detours
are created. Since an edge h in the tree can only be part of at most all
of these new detours, and since an edge in a spanning tree is a detour for
itself, the maximum number of detours that any edge can be part of is

(|EG| − |VG| + 1) + 1 = |EG| − |VG| + 2.

• The final part of this proof will be broken into two steps: showing mG ≤
t(G) and mG ≥ t(G), which implies the equality.

1. mG ≤ t(G)Let u, v be the vertices that provide the maximum num-
ber of edge-disjoint paths in a graph G; that is, m(u, v) = mG. Let
Q1, Q2, ..., QmG

be the mG edge-disjoint paths in G joining u and v,
and let P = (u = u1, u2, ..., uk = v) be the path in a tree T joining
u and v. Since T is a tree, every vertex w ∈ VT is either on P or
is connected through some path to a vertex on P . This means that
there is a unique vertex x on P that is a minimum distance from w

(whether it is w itself or the first vertex w is connected to). If dT is
the standard graph-theoretic distance, then x = x(w) satisfies

dT (x, w) = min{dT (z, w)|z ∈ P}.

If we consider Qi = (u = y1, y2, ..., yn = v), we can check each
vertex yj in order, starting at u = y1 and ending at v = yn, to see
if x(yj) = u. If x(yj) = u, we move on to the next vertex, and if
x(yj) 6= u (we can be sure that there is at least one such vertex since
v satisfies x(v) = v 6= u), we let e be the edge (yj−1, yj). Pe, the
detour for the edge e, must include the edge (u = u1, u2). Because
this is true for an arbitrary Qi, it must be true of all of the Qs,
making (u1, u2) used in at least mG detours. Therefore, since the
tree we were looking at was arbitrary, c(L) ≥ mG for every tree, so
t(G) = min{c(L) : ∀ trees T} ≥ mG.

4

2. mG ≥ t(G)Let dv denote the degree of the vertex v, and number the
vertices in such a way that dv1

≥ dv2
≥ dv3

≥ ... ≥ dvn
. Ostrovskii

provides a lemma in his paper that says for any graph G and any
integer M satisfying dv1

> M ≥ mG, there is a tree T with VT = VG

and c(L) ≤ M . If we suppose that dv2
> mG, then M = mG satisfies

the inequality and we know there is a tree T that gives c(L) ≤ mG,
which means t(G) ≤ mG. The only case left to consider is when
dv2

≤ mG.

Suppose dv2
≤ mG. We would like to show that t(G) ≤ dv2

. Pick
a vertex from VG of maximal degree, say v1. Create a tree T by
connecting all other vertices directly to v1; that is,

ET = {(v1, vi) : i 6= 1}.

If an edge in G had v1 as one of its vertices, then the detour in T

for that edge is of length 1, since v1 is still connnected to that other
vertex. If an edge in G, say (vi, vj), does not have v1 as one of its
vertices, then the detour in T for that edge is of length 2, since all
such detours are of the form (vi, v1, vj). Therefore, an edge (v1, vi)
of T is used as part of a detour for g ∈ EG if and only if vi is one
of the vertices of g; thus, each edge (v1, vi) in T is used in exactly
dvi

detours, where i 6= 1. Then the maximum number of detours any
edge of T is used in is dv2

, so c(L) = dv2
, which implies t(G) ≤ dv2

.
Because of the supposition, we know that t(G) ≤ mG.

3 Preliminary Results

Some families of graphs are easy to categorize in terms of t(G) and s(G).

• All trees satisfy mG = t(G) = s(G) = |EG| − |VG| + 2 = 1. Since there is
only one (edge-disjoint) path from a given vertex to another one, mG = 1.
Also, since trees satisfy |EG| = |VG| − 1, |EG| − |VG| + 2 = |VG| − 1 −
|VG| + 2 = 1. Because 1 ≤ s(G) ≤ 1, s(G) = 1.

• All cyclic graphs Cn satisfy mG = t(G) = s(G) = |EG| − |VG| + 2 = 2.
Because G is basically an n-gon, there are two edge-disjoint paths from
one vertex to an adjacent one, making mG = t(G) = 2. |EG| = |VG|, so
|EG| − |VG| + 2 = 2, and s(G) = 2 as well.

• All complete graphs Kn satisfy mG = t(G) = s(G) = n − 1 and |EG| −

|VG|+2 = n2

2
− 3n

2
+2. In order to get the maximum number of edge-disjoint

paths between vertices u and v, we can count the edge going directly from
u to v and then n − 2 more paths that go from u to another point and
then to v, for a total of n− 1 edge-disjoint paths. In complete graphs, all
trees are spanning trees, so t(G) = s(G) trivially. Finally, |VG| = n and

|EG| = (n − 1) + (n − 2) + ... + (n − n)

5

= n · n −
n(n + 1)

2

=
n2 − n

2
.

Hence,

|EG| − |VG| + 2 =
n2 − n

2
− n + 2

=
n2

2
−

3n

2
+ 2.

Note that this is the first example where s(G) is not equal to the upper
bound in all cases. Many of the smaller, simpler cases always have equality,
but as the graphs become larger and more complicated, the two quantities
generally seem to diverge.

• K2,n graphs satisfy mG = t(G) = s(G) = |EG| − |VG| + 2 = n. The
maximum number of edge-disjoint paths between the two vertices in the
left set is n, while the maximum between vertices of the right set is 2 and
the maximum number between one vertex from the left and one vertex on
the right is 2, so mG = n. |EG| = 2n and |VG| = n+2, so |EG|−|VG|+2 =
2n − (n + 2) + 2 = n, and s(G) = n.

4 Main Results

4.1 Complete Bipartite Graphs (G = Km,n, m ≤ n)

Let M denote the left set of vertices, numbered 1, 2, ..., m, and let N denote
the right set of vertices, numbered m + 1, m + 2, ..., m + n.

• Case 1: m = 1

In this case, G is a tree, so all quantities are 1 as explained in the
Preliminary Results.

• Case 2: m ≥ 2

1. mG = t(G) = n

The maximum number of edge-disjoint paths connecting any two
vertices in M is n, obtained by using paths of length two, with each
path using a different vertex from N as the middle vertex of the
path. Between any vertex from M and any vertex from N , we can
only obtain m edge-disjoint paths, one for each vertex in M , and
likewise between any two vertices of N . Since n ≥ m, mG = n.

2. s(G) = m + n − 2

We know that there is no spanning tree with diameter less than
3 because a tree of diameter 2 would have to connect either two

6

vertices in M or two vertices in N , and such a tree is not a spanning
tree. Thus, any spanning tree must have diameter at least 3. Since
this is true, there must be a path in the tree with length at least 3.
We consider such a path P = (m1, n1, m2, n2) (where mi ∈ M and
nj ∈ N) and we denote its middle edge (n1, m2) by g. Edge g is used
in 2 detours so far, namely the detours for (m1, n2) and (n1, m2).
Written in terms of the number of vertices from M and N , we have
2 = 2 + 2 − 2. Notice that g effectively splits the four vertices into
2 distinct sets L = {m1, n1} and R = {m2, n2} such that there is a
vertex from M in each set and a vertex from N in each set. If we
build the spanning tree from this path by adding a vertex v (m3 or
n3) and connecting it with an edge to one of the 2 sets (say L without
loss of generality), we see that g must be used in at least one more
detour (since there is a vertex in R that was connected to v in G).
Therefore, for each vertex we add, we add at least one more detour
to the number that g is part of. If we add p vertices from M (so
m = 2 + p) and q vertices from N (so n = 2 + q), we conclude that
g must be part of at least

2 + 2 − 2 + p + q = (2 + p) + (2 + q) − 2

= m + n − 2

detours. Thus, in any spanning tree, there is always an edge that is
used in at least m + n − 2 detours, which makes s(G) ≥ m + n − 2.

Because of the above inequality, if we can create a spanning tree
where we always have c(L) = m + n − 2, then we will have proved
the equality desired. We conjecture that the spanning tree where
one vertex of M is connected to each vertex of N and the rest of
the vertices of M are each connected to a different vertex of N (see
Figure 5) is a spanning tree that always gives c(L) = m + n− 2. We
consider the tree redrawn as in Figure 6. An edge g = (1, m + 1) is
used:

– once for itself;

– once for each of the n− 1 detours (2, m + 1, 1, ni), where ni ∈ N

and ni 6= m + 1; and

– once for each of the m−2 detours (m+1, 1, ni, mj), where ni ∈ N ,
ni 6= m + 1, mj ∈ M , and mj 6= 1 or 2.

No other edge is used in more detours, so we see that forming the
spanning tree in this way gives 1 + (n− 1) + (m− 2) = m + n− 2 as
the maximum number of detours any edge is part of (which is c(L)).
Thus we have the desired equality.

3. |EG| − |VG| + 2 = mn − (m + n) + 2

Each vertex in M has degree n, so |EG| = mn (since no two
vertices of M are connected to each other. Clearly, the number of
vertices is m + n. The equality follows immediately.

7

1

2

3

m

m+1

m+2

2m-1

m+n

Figure 5: Spanning tree that
minimizes c(L) for Km,n

1
2

3

m
m+1

m+2
2m-1

m+n

Figure 6: Redrawn spanning
tree

4.2 Grids (G = Pm × Pn, m ≤ n)

When dealing with grids, it is convenient to label each vertex with a pair
of coordinates. We let the horizontal numbering range from 1 on the left to n

on the right and the vertical numbering range from 1 at the top to m at the
bottom (see Figure 7). In addition, it will be useful to consider a sort of dual

(1,1) (n,1)

(1,m) (n,m)

Figure 7: Grid Coordinate System

grid D that will be based on the spanning trees that we choose. We begin with
the original grid G, and we place a dual vertex in each region, with one vertex
Ω used for the entire outer region. In creating the spanning tree, each edge
that is removed is replaced with an edge connecting the two dual vertices it had
originally separated. A sample grid G, spanning tree T , and dual grid D are
shown in Figure 8. We would also like to have coordinates for the vertices of D,
so we will label them in the same way as we did for G, such that the upper-left
vertex is (1, 1) and the lower-right vertex is (n − 1, m − 1). Notice that this
means each box in G is essentially associated with its upper-left vertex.

Based on this dual grid, we define an open path in T as a path in D from
one dual vertex to another, but Ω may only be used as an endpoint of this path,
if it is used at all. It is clear that every dual vertex must be part of some open

8

Figure 8: Dual Grid Example

path that connects to Ω, and D must be a tree (otherwise, either T would have
a loop or T would be disconnected).

We also define a dividing path in T as a path that has both of its end vertices
on the boundary of the grid, and we define a dividing edge as any edge that is
part of a dividing path. Equivalently, an interior edge of T is part of a dividing
path if and only if there does not exist an open path from the dual vertex on one
side of the edge to the dual vertex on the other side. Trivially, any boundary
edge is a dividing path.

Finally, if g is a dividing edge, we consider the open paths P1 and P2 from
the dual vertices on both sides of g to Ω. Suppose two vertices are adjacent in
G (connected by edge h1) and one of the open paths for g passes between them,
but g is not in the detour for h1. Then if we are following the open path, as
soon as we cross between those two vertices, we are blocked by the real detour
from getting to Ω, so this open path could not be P1 or P2. Therefore, every
edge in these two open paths must correspond to a different detour of which g

must be a part. Now suppose instead that g is part of a detour for an edge h2

of G. Then there must be a path in T connecting one vertex of g to one vertex
of h2 and a path connecting the other two vertices such that the two paths do
not cross. Since there would be no other open path to get around these paths
without going between the vertices of h2, we know that any detour of which g

is a part must correspond to a different edge in P1 or P2. Therefore, keeping in
mind that we ignored the fact that g is a detour for itself, the exact number of
detours of which g is a part is exactly l(P1) + l(P2) + 1.

With these definitions, we now prove the quantities for mG = t(G), s(G),
and |EG| − |VG| + 2 for all grids.

• Case 1: m = 1

Again, in this case, G is a tree. All quantities are trivially 1.

• Case 2: m = n = 2

G is C4, so all quantities are trivially 2.

9

• Case 3: 2 = m < n

1. mG = t(G) = 3

No vertex has degree greater than 3, so mG ≤ 3. The vertices
of any inner vertical edge have 3 edge-disjoint paths from one to the
other (the vertical edge itself, a path to the left, and a path to the
right), so mG ≥ 3. Therefore, mG = 3.

2. s(G) = 3

If we remove all of the horizontal edges on the top row, we create
a spanning tree where all of the horizontal edges that are left are used
in 2 detours, the outer vertical edges are used in 2 detours, and the
inner vertical edges are used in 3 detours. Because we have a lower
bound of 3 from mG, we know s(G) = 3.

3. |EG| − |VG| + 2 = n

There are n − 1 horizontal edges in each row and n vertical
edges, so |EG| = 2(n − 1) + n = 3n − 2. Also, there are 2n vertices,
so |EG| − |VG| + 2 = (3n − 2) − (2n) + 2 = n.

• Case 4: m = 3

1. mG = t(G) = 3

Even though there are vertices of degree 4, they all lie in the
middle horizontal line. Since there are only 3 horizontal edges to get
from one side of those edges to the other side, there can only be at
most 3 edge-disjoint paths between the vertices of degree 4. If we
consider any pair of adjacent vertices such that at least one of them
is an inner vertex, we can easily find 3 edge-disjoint paths between
them.

2. s(G) = 3

If we remove all of the horizontal edges on the top row and on
the bottom row, we leave a spanning tree in which the horizontal
edges are used in 3 detours, the inner vertical edges are used in 3
detours, and the outer vertical edges are used in 2 detours. With a
lower bound of 3, we know s(G) = 3.

3. |EG| − |VG| + 2 = 2n − 1

|EG| = 3(n − 1) + 2n = 5n − 3. |VG| = 3n. Therefore, |EG| −
|VG| + 2 = (5n − 3) − (3n) + 2 = 2n − 1.

• Case 5: 4 ≤ m = n

1. mG = t(G) = 4

Pick two adjacent inner vertices. There are 4 edge-disjoint paths
between them, and there cannot be more than 4 because no vertex
has degree greater than 4.

10

2. s(G) = m

In any given spanning tree T , there exists a dividing path P

from (1, 1) to (m, m). At least one of the vertices on the path must
lie on the diagonal from (1, m) to (m, 1). If we follow P from (1, 1)
to (m, m), there is a first such vertex, say (p, q). Every vertex on the
diagonal is of the form (r, s) such that r+s = m+1, so p+q = m+1
as well.

Consider the edge g on P previous to (p, q) and assume without
loss of generality that it is horizontal (since we could reflect the grid
over the diagonal from (1, 1) to (m, m) if it were vertical). Then g is
[(p − 1, q), (p, q)] There exist open paths from both dual vertices on
either side of g to Ω.

Suppose the open paths go to opposite sides of the grid. Then
the sum of the lengths of the two open paths must be m − 1, and
since g is a detour for itself, g must be used in at least m detours.

Suppose instead that they go to adjacent sides of the grid. Be-
cause P effectively splits the boundary of the grid into two sets (top
and right in one set and bottom and left in the other set), the open
path above g must go to the top and the one below must go left, or
the open path above must go right and the one below must go down.
In the former case, the open path above is at least q − 1 edges long
and the open path below is at least p− 1 long, so (including g itself)
g is used in at least

(q − 1) + (p − 1) + 1 = p + q − 1

= m + 1 − 1

= m

detours. In the latter case, the open path above is at least m− p + 1
long and the open path below is at least m − q long, so g is used in
at least

(m − p + 1) + (m − q) + 1 = 2m − (p + q) + 2

= 2m − (m + 1) + 2

= m + 1

detours. Therefore, no matter what the spanning tree looks like, we
know that there is an edge that must be used in at least m detours,
so s(G) ≥ m.

We can always create a spanning tree that gives c(L) = m, so
s(G) = m. If m is odd, we create this tree by removing all horizontal
edges from G except the middle row and leaving all of the vertical
edges intact (in Figure 9, the bold edges are the ones used in m de-
tours). If m is even, the tree is formed by removing all horizontal

11

edges except the middle two rows and leaving all vertical edges out-
side the middle rows and only one of the middle edges between the
rows (Figure 10).

Figure 9: m odd Figure 10: m even

3. |EG| − |VG| + 2 = m2 − 2m + 2

|EG| = m(m − 1) + m(m − 1)

= 2m2 − 2m,

and |VG| = m2, so

|EG| − |VG| + 2 = (2m2 − 2m) − m2 + 2

= m2 − 2m + 2.

• Case 6: 4 ≤ m < n, m odd

1. mG = t(G) = 4

See Case 5.

2. s(G) = m

Because of the proof for Case 5, we cannot obtain a lower s(G)
by adding more columns of vertices. Also, since the same method for
creating the spanning tree still gives c(L) = m, we have s(G) = m.

3. |EG| − |VG| + 2 = mn − (m + n) + 2

|EG| = m(n − 1) + n(m − 1)

= 2mn − (m + n),

and |VG| = mn, so

|EG| − |VG| + 2 = [2mn − (m + n)] − mn + 2

= mn − (m + n) + 2.

• Case 7: 4 ≤ m < n, m even

1. mG = t(G) = 4

See Case 5.

12

2. s(G) = m + 1

Unfortunately, the method in Case 5 for creating a spanning
tree with c(L) = m, m even, causes the central vertical edge to be
used in at least m + 1 detours if m < n, so we need to prove that is
the lower bound and come up with a method that will always give
c(L) = m + 1.

Consider the section of the grid with (1, 1) and (m + 1, m) as
the corners. In any spanning tree T , there is a dividing path P1 con-
necting these two vertices, and a second dividing path P2 connecting
(1, m) and (m + 1, 1). Assign an orientation to the paths so that the
positive direction for P1 is from (1, 1) to (m + 1, m) and the positive
direction for P2 is from (1, m) to (m + 1, 1). P1 and P2 can only
intersect one time, either sharing some number of edges or crossing
so that a vertex of degree 4 is formed. Also, P1 and P2 could be
thought of as dividing the boundary of the grid into four sets: top,
left, right, and bottom.

If P1 and P2 share a vertical edge g anywhere, then T looks
essentially like one of the three trees in Figure 11. When this happens,

Figure 11: P1, P2 share a vertical edge

from the dual vertices on both sides of g there is either an open
path crossing the left boundary and an open path crossing the right
boundary or there is an open path crossing the top and one crossing
the bottom. When they go left and right, the lengths of the open
paths sum to at least m and the total number of detours g is part
of is at least m + 1. When they go up and down, the lengths of the
open paths still sum to at least m, and g is still part of at least m+1
detours.

We suppose, then, that P1 and P2 do not share a vertical edge.
Because m is even, there is a middle row of vertical edges. We assume
without loss of generality that the intersection of the dividing paths
occurs completely above this middle row. If we follow P1 and P2 in
their positive directions away from the intersection, the next vertical
edge g1 on the middle row must be part of P1, oriented down, so
there is an open path that goes from the dual vertex on the right
side of this edge to the right boundary. Likewise, if we follow the

13

paths in the opposite direction, the next edge g2 on the middle row
is part of P2, oriented up, so there is an open path that goes from
the dual vertex on the left side of this edge to the left boundary.

Consider these two dividing edges. If there is no other dividing
edge between them, then there is an open path from the dual vertex
on the right of g2 to the dual vertex on the left of g1 and there is
an open path from each to Ω crossing the bottom of the boundary.
We would like to minimize the maximum number of detours these
edges are part of, and this will happen when the open paths cross
the boundary as close to the middle as possible. Since m + 1 is odd,
we suppose that the missing edge is

[(m

2
+ 1, m

)

,
(m

2
+ 2, m

)]

.

Then the open paths from the dual vertices to the left and right of g2

use at least m
2

horizontal edges (including the edge crossing the left
boundary) and at least m

2
vertical edges (including the edge crossing

the bottom). Combining these with g2 itself, the number of detours
g2 is part of is at least m

2
+ m

2
+ 1 = m + 1. By making this number

smaller, we would only increase the number of detours g1 must be
part of to at least this many.

If there is another dividing edge between g1 and g2 on the middle
row that is not part of P1 or P2, it must be part of a different dividing
path. Then on either side of this dividing edge there must be an
open path from the left dual vertex to Ω crossing the bottom of the
boundary and another open path from the right dual vertex to Ω
crossing the bottom. These two paths are each m

2
long, so this other

dividing edge must be used in at least 2 · m
2

+ 1 = m + 1 detours.

Finally, if there is another dividing edge between g1 and g2 that
is part of P1 or P2, then we have a situation similar to the one where
there is no dividing edge between. In this case, the dividing path has
curved around some, but that only forces g1 or g2 to be used in even
more detours.

Therefore, s(G) ≥ m + 1. Because the spanning tree formed by
removing all horizontal edges except for those in one of the middle
two rows and leaving all vertical edges intact always has c(L) = m+1
no matter what n is (Figure 12), we have s(G) = m + 1.

Figure 12: Spanning Tree for Pm × Pn, m < n, m even

14

3. |EG| − |VG| + 2 = mn − (m + n) + 2

See Case 6.

5 Conclusion

Table 3 below details all of the results proved in this paper for the various
families of graphs. Because of the applications of cutwidth, it would be useful
to compare these results with those obtained using other host graphs. In some
cases, using a spanning tree as the host graph can provide great savings in terms
of congestion. For example, the linear cutwidth of a complete bipartite graph
Km,n is either mn

2
or mn+1

2
(depending on whether mn is even or odd), while

s(Km,n) = m + n − 2. However, in other cases such as grids, there are no or
only very little savings. Rolim [8] shows that for 2 ≤ m ≤ n,

lcw(Pm × Pn) =

{

2 if m = n = 2
m + 1 otherwise

,

which is very close to the numbers for s(G).

Table 3: Summary of Results

G mG = t(G) s(G) |EG| − |VG| + 2

Trees 1 1 1
Cn 2 2 2

Kn n − 1 n − 1 n2

2
− 3n

2
+ 2

Km,n(2 ≤ m ≤ n) n m + n − 2 mn − (m + n) + 2
P1 × Pn 1 1 1
P2 × P2 2 2 2

P2 × Pn(n > 2) 3 3 n

P3 × Pn 3 3 2n− 1
Pm × Pm(4 ≤ m) 4 m m2 − 2m + 2

Pm × Pn(4 ≤ m < n, m odd) 4 m mn − (m + n) + 2
Pm × Pn(4 ≤ m < n, m even) 4 m + 1 mn − (m + n) + 2

Possibilities for further work with tree congestion and spanning tree conges-
tion include determining what these quantities would be for other families like
n-cubes, complete and general n-partite graphs, and cylindrical meshes. For
the first and last of these, we conjecture that s(Qn) = 2n−1 and s(Cm × Pn) =
min{2m+ 2, 2n}. One might also consider the bound |EG| − |VG|+ 2 and when
it is equal to s(G) (so far, it seems that if these two quantities are equal, then
t(G) = s(G)).

15

Acknowledgements

The author would like to thank Dr. Joseph Chavez and Dr. Rolland Trapp
for leading the REU at California State University, San Bernardino, as well as
the rest of the participants for their input and support. This research was done
at the 2004 REU in Mathematics, jointly sponsored by CSUSB and NSF-REU
Grant DMS-0139426.

References

[1] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Röttger, U.-P. Schroeder. The
Congestion of n-Cube Layout on a Rectangular Grid, Discrete Mathematics.
213 (2000) 13-19.

[2] F.R.K. Chung. Labelings of Graphs, Selected Topics in Graph Theory, Vol.
3, Academic Press, San Diego, 1988. 151-168.

[3] D.W. Clarke. The Cyclic Cutwidth of Mesh Cubes, Masters Thesis, Cal
State Univ., San Bernardino, 2002.

[4] M.L. Holben. The Cyclic Cutwidth of Complete Bipartite Graphs, REU
Project, Cal State Univ., San Bernardino, 2003.

[5] M. Johnson. The Linear and Cyclic Cutwidth of the Complete Bipartite
Graph, REU Project, Cal State Univ., San Bernardino, 2003.

[6] M.I. Ostrovskii. Minimal Congestion Trees, Discrete Mathematics. 285
(2004) 219-226.

[7] F.R. Rios. Complete Graphs as a First Step Toward Finding the Cyclic
Cutwidth of the n-Cube, Cal State Univ., San Bernardino McNair Scholar’s

Program Summer Research Journal, 1996.

[8] J. Rolim, O. Sýkora, I. Vrťo. Optimal Cutwidths and Bisection Widths of 2-
and 3-Dimensional Meshes, Graph-Theoretic Concepts in Computer Science,
Springer, Berlin, 1995. 252-264.

[9] H. Schröder, O. Sýkora, I. Vrťo. Cyclic Cutwidth of the Mesh, SOFSEM’99:

Theory and Practice of Informatics, Springer, Berlin, 1999. 449-458.

16

