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Abstract

Edge congestion can be thought of as the cutwidth of a graph. In

this paper we embed complete tripartite graphs into trees and spanning

trees and determine the tree congestion and the spanning tree congestion.

Considering a known theorem relating detours, tree congestion, and span-

ning tree congestion, we summarize results calculated for trees, complete

bipartite graphs, and grids. In addition, we investigate the congestion for

other families of graphs.

1 Introduction

A graph, G, consists of a set, V , of vertices and a set, E, of edges that join
pairs of distinct vertices together. A graph in which every vertex is connected
to every other vertex is called complete. A complete bipartite graph, Km,n,
consists of two disjoint sets of vertices, M and N , such that every vertex in M

is joined by an edge to every vertex in N , where |M | = m and |N | = n. A
complete tripartite graph Km,n,l contains three disjoint sets of vertices, M ,N ,
and L, with |M | = m, |N | = n, and |L| = l, such that every vertex in M is
joined by an edge to every vertex in N , every vertex in M is joined by an edge
to every vertex in L, and every vertex in N is joined by an edge to every vertex
in L. Figure 1 shows an example of K3,4 and Figure 2 shows an example of
K1,2,2.
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Figure 2: K1,2,2
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A linear embedding of a graph, G, is a representation of G with all of the
vertices and edges of G embedded onto a line. All edges that connect vertices
in the non-linear embedding of G also connect vertices in the linear embedding.
Figure 3 shows an example of a linear embedding of a K3,4.

lcw

Figure 3: Linear Embedding of K3,4

A cyclic embedding of a graph, G, is a representation of G in which all of
the vertices of G are embedded onto a cycle. All edges that connect vertices
in the original representation of G also connect the same vertices in the cyclic
embedding of G. The cyclic embedding of K3,4 is shown in Figure 4.

The cut of a region is the number of edges that cross the region between
two adjacent verticies in the graph. The cut of the shaded region in Figure 3 is
seven whereas the cut of the shaded region in Figure 4 is three. The maximum
cut of an embedding of a graph is the largest cut that occurs on the graph.
Notice that the linear cutwidth, denoted lcw, in Figure 3 is eight and the cyclic
cutwidth, denoted ccw, in Figure 4 is five. The minimum of all of the possi-
ble maximum cuts over all of the possible embeddings is called the cutwidth of G.

ccw

Figure 4: Cyclic Embedding of K3,4

We shall now define the important terms and ideas in this paper. Let G

denote a connected graph in which EG represents set the of edges and VG rep-
resents the set of vertices. Let T denote a tree such that VT = VG. A spanning

tree of a connected graph, G, is a tree, T , where VT = VG and ET ⊆ EG. A path

in G is a sequence of distinct vertices (xi, xi+1, ..., xi+j) in which consecutive
vertices are connected in G.
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Let u and v be vertices in G. Two paths connecting u and v are edge-

disjoint if they share no common edges. The maximal number of edge-disjoint

paths connecting u and v in G is denoted as m(u, v). Considering all possible
pairs of vertices, we determine the maximum over every m(u, v) and define it
as mG:

mG = max{m(u, v)|u, v ∈ VG}.

For example, consider K6. Figure 5 shows a maximum of five edge-disjoint
paths in K6 between vertices 1 and 4, so m(1, 4) = 5. There is no vertex with
degree higher than five, therefore we would never be able to achieve a maximal
edge-disjoint path higher than this. Thus, mG = 5.

1 2

3 4

5 6

Figure 5: K6

Given G = (VG, EG), let T be a tree such that VT = VG. The set of all trees
such that VT = VG is denoted TG. A tree in TG is called a spanning tree if it is
a subgraph of G and connects all the vertices together with ET ⊆ EG. Let SG

denote the set of all spanning trees of G.
Each edge e = (a, b) in G corresponds to a path Pe in T connecting the same

pair of vertices, a and b. We call these paths detours, and denote the set of
detours as L. For a particular edge g in T , we obtain the congestion of g,

c(g, T ) = |{Pg ∈ L : g ∈ Pg}|,

by counting the number of detours that g appears in. The congestion of G

embedded into T is defined as the maximum c(g, T ) over every edge g in T .
More formally,

c(G : T ) = max{c(g, T )|g ∈ ET }.

This paper examines the tree congestion of G and the spanning tree conges-

tion of G. Tree congestion can basically be thought of as tree cutwidth. The tree

congestion of G is defined as finding the the minimum c(G : T ) by considering
every possible tree of G:

t(G) = min
TG

{c(G : T )}.
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Similarly, the spanning tree congestion of G looks at every spanning tree of
G instead of every single tree. That is we consider every possible spanning tree
of G and find the minimum c(G : T ):

s(G) = min
SG

{c(G : T )}.

For example, for K1,2,2 we can create multiple spanning trees. Figure 6
below shows three possible spanning trees for K1,2,2.
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Figure 6: Three spanning trees of K1,2,2

Tables 1, 2, and 3 on the next page list c(g, Si) for each edge in their cor-
responding spanning tree above. In K1,2,2, we must consider every possible
spanning tree for the graph. We are looking at three possible spanning trees
and found s(K1,2,2) ≤ 3. Three is an upper bound for s(G), so S3 may be
the minimal spanning tree for G. It may be possible, however, that G has a
spanning tree with even smaller congestion.

The following theorem relates these concepts together in order to provide
bounds for t(G) and s(G).

Theorem (Ostrovskii, [8]): For any connected graph, G,
mG = t(G) ≤ s(G) ≤ |EG| − |VG| + 2.

The inequality t(G) ≤ s(G) follows from the definitions of t and s. The
set of all spanning trees is a (not necessarily a proper) subset of the set of all
trees. If a spanning tree provides the minimum c(G : T ) for all trees then
t(G) = s(G). However, there may be an instance in which the spanning tree is
not the minimum. In that case, t(G) < s(G). Recall that with trees, |VT | =
|VG| and |ET | = |VG| − 1. For each edge we consider the detour Pg in T . By
starting with a graph, G, we can take away

|EG| − |ET | = |EG| − (|VG| − 1) = |EG| − |VG| + 1

edges to create one spanning tree. For every edge of G that we remove,
there is a new detour in the tree so |EG| − |VG| + 1 detours are created. An
edge, g, in T belongs to at most all of the detours therefore edge g belongs to
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Edge Detours Congestion
g (m1, n1), (m1, n1, l1, n2), (m1, n1, l1), (m1, n1, l1, n2, l2) 4
h (m1, n1, l1, n2), (m1, n1, l1), (m1, n1, l1, n2, l2), (n1, l1), (n1, l1, n2, l2) 5
i (m1, n1, l1, n2), (m1, n1, l1, n2, l2), (n1, l1, n2, l2), (n2, l1) 4
j (m1, n1, l1, n2, l2), (n1, l1, n2, l2), (n2, l2) 3

Table 1: Congestion in S1. c(K1,2,2 : S1) = 5

Edge Detours Congestion
g (m1, n2, l1, n1), (m1, n2), (m1, n2, l1), (m1, n2, l1, n1, l2) 4
h (m1, n2, l1, n1), (m1, n2, l1, n1, l2), (n1, l1), (n2, l2) 4
i (m1, n2, l1, n1, l2), (n1, l2) 3
j (m1, n2, l1, n1), (m1, n2, l1), (m1, n2, l1, n1, l2), (n2, l1), (n2, l1, l2) 5

Table 2: Congestion in S2. c(K1,2,2 : S2) = 5

Edge Detours Congestion
g (m1, n1), (n1, m1, l1), (n1, m1, l2) 3
h (m1, n2), (n2, m1, l1), (n2, m1, l2) 3
i (m1, l2), (n1, m1, l2), (n2, m1, l2) 3
j (m1, l1), (n1, m1, l1), (n2, m1, l1) 3

Table 3: Congestion in S3. c(K1,2,2 : S3) = 3
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at most |ET | = |VG| + 1 detours. Remember, g is also used as a detour for
itself thus the maximum number of detours g is apart of is |ET | = |VG| + 2 so
s(G) ≤ |EG| − |VG| + 2.

Ostrovskii devoted his paper to the minimization of the edge-congestion over
all trees with the same vertex set as G and over all spanning trees of G.

2 Background

Graph theory has been useful in applications such as networking, circuit lay-
out, and code design. Cutwidth is one graph theory problem related to these
purposes by identifying the optimal way to arrange networks or circuits in such
a way that edges are evenly distributed across to minimize the congestion be-
tween locations. Chung [2] was the first to work with linear cutwidth in 1988.
Since then, she has been followed by others such as Fransisco Rios [9], Matt
Johnson [7] and Megan Holben [6] who worked with linear (lcw) and cyclic
(ccw) cutwidths.

Rios proved that for any complete graph, Kn, the cutwidths are equal to the
following:

lcw(Kn) =

{

n2

4
n is even;

n2
−1

4
n is odd.

ccw(Kn) =











n2
+8

8

n
2

is even;
n2

+4

8

n
2

is odd;
n2

−1

8
n is odd.

In 2003, Johnson worked with the linear cutwidth and created an upper
and lower bound for the cyclic cutwidth of complete bipartite graphs. For any
complete bipartite graph Km,n:

lcw(Km,n) =

{

mn
2

if mn is even;
mn+1

2
if mn is odd.

ccw(Km,n) =

{ mn
4

if m and n are both even;
n2

+4

8
if m = n are odd.

Holben extended Johnson’s results by finding the exact bounds for many
different cases. Her results are drawn from Johnson’s second theorem.
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ccw(Km,n) =























































































mn
4

m, n even;
mn+j

4
m odd, j = n

m
, j even;

mn+j+2

4
m odd, j = n

m
, j odd;

mn+2

4
m ≡ 2(mod4), n odd, 2n ≥ m;

mn+4

4
m ≡ 0(mod4), n odd, 2n ≥ m;

mn+l+2

4
m even, n odd, 2n < m, l even,
m − ln < 2n, m − ln ≡ 2(mod4);

mn+l+4

4
m even, n odd, 2n < m, l even,
m − ln < 2n, m − ln ≡ 0(mod4);

mn+l+4

4
m even, n odd, 2n < m, l even and n are both even,
m − ln < 2n, m − ln ≡ 3(mod4);

mn+l+4

4
m, n odd, m < n, l odd,
n − ln < 2m, n − lm ≡ 2(mod4).

Heiko Schröder [11], Dwayne Clarke [3], and S. Bezrukov [1] also looked at
cyclic cutwidth. Schröder worked with the cyclic cutwidth of a two-dimensional
rectangular graph called a mesh, Pm × Pn. Clarke modified the results and
found for a graph, G, which is Pm × Pn mesh where m ≥ n ≥ 3,

ccw(G) =















n − 1 m = n is even;
n m = n, n + 1, and n is odd or;

m = n, n + 1, n + 2, and n is even;
n + 1 if otherwise.

Victor Sciortino [12] explored three-dimensional meshes and proved for a
graph, G, which is P1 × P2 × Pn mesh,

ccw(G) =







1 n = 1;
n + 1 2 ≤ n ≤ 5;

6 n ≥ 5.

Joeseph Chavez and Rolland Trapp [4] have completed the cyclic cutwidth
problem for trees and found that if T is a tree, the lcw(T ) = ccw(T ). In a joint
paper with Bezrukov [1], they embedded the n-dimensional cube onto a line and
a grid in ways to minimize the cutwidth as well.

M.I. Ostrovskii [8] used trees as the host graphs, but spanning trees in par-
ticular. Stephen Hruska [5] has taken Ostrovskii’s theorem and investigated the
results for all trees, cyclic graphs, Cn, complete graphs, Kn, complete bipar-
tite graphs, Km,n, and grids. My paper extends Hruska’s research to complete
tri-partite graphs. Hruska’s results follow:
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2.0.1 Preliminaries

t(G) and s(G) of Some Families

• Trees

mG = t(G) = s(G) = 1
Suppose G is a tree. Since there is only one edge-disjoint path from one
vertex to another, mG = t(G) = 1. In trees, |EG| = |VG| − 1. Therefore
|EG| − |VG| + 2 = (|VG| − 1) − |VG| + 2 = 1. Thus, 1 ≤ s(G) ≤ 1 and so
s(G) = 1.

• Cyclic Graphs

mG = t(G) = s(G) = |EG| − |VG| + 2 = 2
A cyclic graph, G, is a graph with vertices, Vi, where i = 1, 2, ..., n−1 and
edges (vi, vi+1) and (vn, v1). Principally, a cyclic graph is an n-gon. There
are two edge-disjoint paths from one vertex to an adjacent one, therefore
mG = t(G) = 2. |EG| = |VG|, so |EG| − |VG| + 2 = 2 and thus s(G) = 2.

• Complete Graphs

mG = t(G) = s(G) = n − 1

|EG| − |VG| + 2 = n2

2
− 3n

2
+ 2

A graph with an edge between every pair of vertices is called complete.
Notice that in this case s(G) is not always equal to the upper bound.
As graphs become more complicated, mG, s(G), and the upper bound
|EG| − |VG| + 2 diverge.

• Complete Bipartite Graphs

mG = t(G) = s(G) = 1 when m = 1

mG = t(G) = n; s(G) = m + n − 2 when m ≥ 2

|EG| − |VG| + 2 = mn − (m + n) + 2.

• Grids

G mG = t(G) s(G) |EG| − |VG| + 2

P1 × Pn 1 1 1
P2 × P2 2 2 2

P2 × Pn(n > 2) 3 3 n

P3 × Pn 3 3 2n − 1
Pm × Pm(4 ≤ m) 4 m m2 − 2m + 2

Pm × Pn(4 ≤ m < n, m odd) 4 m mn − (m + n) + 2
Pm × Pn(4 ≤ m < n, m even) 4 m + 1 mn − (m + n) + 2
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3 Main Results

3.1 Complete Tripartite Graphs

Recall that a complete tripartite graph, Km,n,l, is a graph that contains
three disjoint sets of vertices M , N , and L, with |M | = m, |N | = n, and |L| = l,
such that every vertex in M is joined by an edge to every vertex in N , every
vertex in M is joined by an edge to every vertex in L, and every vertex in N is
joined by an edge to every vertex in L.

Theorem 1. For G = Km,n,l, with m ≤ n ≤ l:

mG = t(G) =

{

l + 1 if m = 1;
n + l if m ≥ 2.

Proof:
Let G be a complete tripartite graph and let M denote the set of vertices,

numbered 1, 2, ..., m, let N denote the set of vertices numbered m + 1, m +
2, ..., m+n , and let L denoted the set of vertices numbered m +n +1, m+ n+
2, ..., m + n + l, with m ≤ n ≤ l.

• Proof when m = 0

If m = 0 then G yields the complete bipartite graph and results hold
from Hruska’s theorem.

• Proof when m = 1

– Case 1 Same Set: u, v ∈ N or u, v ∈ L

Let u, v be vertices in G such that u, v ∈ N . For each vertex
y in L, we can produce one edge-disjoint path of length two, uyv.
Since |L| = l, this is a total of l paths. Additionally, we produce
one more path, uxv, for the one vertex, x, in M . So, the number of
edge-disjoint paths in G in this case is l+1. Similarly, if u, v ∈ L, the
number of edge-disjoint paths in G is n + 1. Because n ≤ l, l + 1 is
the maximum number of edge-disjoint paths when m = 1 and when
u and v are in the same set.

– Case 2 Different Sets: (u ∈ M, v ∈ N) or (u ∈ M, v ∈ L) or
(u ∈ N, v ∈ L)

Let u ∈ M, v ∈ N . There is one direct path, uv, from u to
v. Additionally, for each vertex x in L we produce one more edge-
disjoint path of length two, uxv. Since |L| = l, this is a total of l

paths, thus, the maximum number of edge-disjoint paths in G in this
case is also l + 1. Analogously, when u ∈ M, v ∈ L the maximum
number of edge-disjoint paths in G is n + 1. When u ∈ N, v ∈ L

there are three ways to create edge-disjoint paths. First, there is the
direct connection between u and v. Next, there is one path of length

9



two, uxv, for the one vertex in set M . Finally, for each set N and L,
choose a distinct vertex y ∈ N (y 6= u) and z ∈ L (z 6= v) and create
(n− 1) paths of length three, uzyv, for every y in set N . Thus, in G

and the maximum number of edge-disjoint paths is 2+(n−1) = n+1.
Because n ≤ l, n + 1 ≤ l + 1 thus l + 1 is the maximum number of
edge-disjoint paths when m = 1 and when u and v are in different
sets.

As a result, no matter what sets u and v are in, the maximum number of
edge-disjoint paths is l + 1.

• Proof when m ≥ 2

– Case 1 Same Set: u, v ∈ M or u, v ∈ N or u, v ∈ L

Let u, v be vertices in G such that u, v ∈ M . For every vertex x

in set N we create one path of length two, uxv, for a total of n paths
and for every vertex y in set L we create 1 path of length two, uyv,
for a total of l paths. The maximum number of edge-disjoint paths
in G in this case is n+ l. Using the same methods, when u, v ∈ N the
maximum number of edge-disjoint paths is m+ l. When u, v ∈ L the
maximum number of edge-disjoint paths is m+n. Because m ≤ n ≤ l,
the maximum number of edge-disjoint paths when m ≥ 2 and when
u and v are in the same set is n + l.

– Case 2 Different Sets: u ∈ M, v ∈ N or u ∈ M, v ∈ L or
u ∈ N, v ∈ L

An example when u and v are in different sets is shown in Figure
7 for K3,4,5. Let u ∈ M, v ∈ N . We have three ways to create edge-
disjoint paths in G. First, there is one direct connection between
u and v. For each set M and N , choose a distinct vertex y ∈ M

(y 6= u) and z ∈ N (z 6= v) and create (m− 1) paths of length three,
uzyv, for every y in set M . We also have one path of length two,
uxv, for every vertex x in set L. This produces a total of l paths.
Thus, we can create a maximum of m + l edge-disjoint paths in this
case. Similarly, when u ∈ M, v ∈ L we can create m+n edge-disjoint
paths and when u ∈ N, v ∈ L we can create m + n edge-disjoint
paths. Because m ≤ n ≤ l, the maximum number of edge-disjoint
paths when m ≥ 2 and when u and v are in different sets is n + l.

The maximal number of edge-disjoint paths in Figure 7 is m + l = 8.
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z3

Figure 7: K3,4,5 Eight edge-disjoint paths.

As a result, the maximum number of edge disjoint paths connecting any
two vertices when m ≥ 2 is n + l.

We conclude that mG = t(G) = l + 1 when m = 1 and mG = t(G) = n + l

when m ≥ 2 which completes the proof of theorem 1.

Theorem 2. For G = Km,n,l with m ≤ n ≤ l:

s(G) =

{

l + 1 if m = 1;
(2m + n + l) − 2 if m ≥ 2.

Proof

• Proof when m ≥ 2:

Let G be a graph and let M denote the set of vertices numbered 1, 2, ..., m,
let N denote the set of vertices numbered m + 1, m + 2, ..., m + n , and let
L denote the set of vertices numbered m + n + 1, m + n + 2, ..., m + n + l,
with m ≤ n ≤ l. At this time we will provide a lower bound for s(G).

A complete tripartite graph with m ≥ 2, has no spanning tree that is a
star. In any spanning tree, S, of such a graph with m ≥ 2, there must be a
path with length of at least three. Consider a path with length of at least
three, P , and denote a subset of the path as P1 = (m + 1, m + n + 1, m +
2, m+n+2). Figure 8 shows how we build the spanning tree. Because P1

has length three, we know there must be a parent edge, g, in middle of our
path. Let g = (m + n + 1, m + 2) and notice that g splits the vertices into
two distinct regions, A = {m+1, m+n+1} and B = {m+2, m+n+2}.
Edge g is used for detours (m+1, m+n+2) and (m+2, m+n+1). Every
remaining vertex in set N contributes one to c(g : S) and every remaining
vertex in set L contributes one to c(g : S) for a total of two counts to
edge g. Without loss of generality, suppose the remaining vertices from
set N and set L are in region A. G is a complete tripartite graph, hence
no matter what region the remaining vertices from set N and set L are in
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they will always need to be connected to the vertices in their opposite set
in the opposite region. Therefore, we can say c(g, S) ≥ 2+(n−2)+(l−2).

Because m ≥ 2, we must continue building our spanning tree using vertices
from set M . As before, no matter what set the vertices from set M are in,
every vertex from set M will always need to be connected to all vertices
from set N and set L in the opposite region. Therefore, g will be used in at
least two more detours for every vertex in set M . Thus, set M contributes
a total of 2m to c(g, S). Therefore, in any spanning tree, there is always
an edge used in at least (2m + (n − 2) + (l − 2) + 2 = (2m + n + l) − 2
detours, making c(G : S) ≥ (2m + n + l) − 2.
The congestion of g is true for any spanning tree of G because there
will always be a path of length of at least three when m ≥ 2, therefore,
s(Km,n,l) ≥ (2m + n + l) − 2.

A B
m+1 m+2m+n+1 m+n+2

g

m+i

1 2 m

. . . . . .

m+n+k
m+n+j

Figure 8: Building the spanning tree.

By creating a minimum spanning tree where c(G : S) = (2m+n+l)−2 we
create an upper bound for s(Km,n,l) to confirm s(Km,n,l) = (2m+n+l)−2.

Once again, G is a graph and M denotes the set of vertices labeled
1, 2, ..., m, N denotes the set of vertices labeled m + 1, m + 2, ..., m + n,
and L denotes the set of vertices labeled m + n + 1, m + n + 2, m + n + l,
with m ≤ n ≤ l. We create the minimum spanning tree, S, as shown in
Figure 9 as follows:

Connect all vertices from set M and all vertices from set L to vertex
m + 1 from set N . Attach vertex (m + i) from set N to (m + n + i − 1)
from set L, for i = 2, 3, 4, ..., n. Consider the parent edge g = (m +
1, m + n + 1). Vertex (m + 2) contributes m + (l− 1) counts to g through
detours (m + 2, m + n + 1, m + 1, x) for every x in set M and in detours
(m+2, m+n+1, m+1, m+n+i) where i 6= 1. Vertex (m+n+1) contributes
m+(n−1) counts to g in detours (m+n+1, m+1, x) for every x in set M

and in detours (m +n +1, m +1, m+ n+ j, m + i) where i 6= 2 and j 6= 1.
Therefore, edge g is used in [m + (n− 1) + m + (l− 1)] = (2m + n + l)− 2
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detours concluding, c(g, S) = (2m+n+l)−2. By inspection, the remaining
parent edges in S have detours equal to that of g.

For every vertex incident to a child edge from set M , h, c(h, S) = n + l.
Similarly, for every vertex incident to a child edge from set N , r, c(r, S) =
m + l. Again, for every vertex incident to a child edge from set L, q,
c(q, S) = m+n. Consequently, since m+n ≤ m+ l ≤ m+n ≤ (2m+n+
l)− 2, c(Km,n,l : S) = (2m + n + l)− 2 and s(Km,n,l) ≤ (2m + n + l)− 2.

 1

m+2

m+n

m+n+(n-1)

m+n+l

m

 2

3

m+1

m+n+1

m+n+2

.

.

.

.

.

.

m+3

                 ....

....

....
.

.
..

. . .

.

.
.

.
.

.
.

.

*

*

*

*

*

*

*M

N

L

Figure 9: Generic spanning tree that minimizes c(G : S) for Km,n,l when
m ≥ 2

We have provided a lower bound and an upper bound for s(G) when
m ≥ 2, thus for any spanning tree we can confirm s(G) = (2m+n+ l)−2.

• Proof when m = 1:

Remember, G is a graph and M denotes the set with one vertex labeled
1. Now let N denote the set of vertices labeled 2, 3, ..., n+1 and L denote
the set of vertices labeled n + 2, n + 3, ..., n + l + 1, with m ≤ n ≤ l. S is
one spanning tree of G.

Recall that in trees, |EG| = |VG| − 1 and in complete tripartite graphs,
m ≤ n ≤ l so when m = 1, n ≥ 1 and l ≥ 1. We will create a minimum
spanning tree where c(G : S) = (l + 1) to provide an upper bound for
s(G). As shown in Figure 10, produce the minimum spanning tree, S, as
follows:

Connect every vertex from set N and every vertex from set L to 1 in set M

to generate a spanning tree that is a star. Consider the edge g = (1, n+2).
Edge g is used in:

– one direct connection from 1 to n + 2.
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– each detour from set N to vertex n+2 of set L through 1, (i, 1, n+2),
for i = 2, 3, ..., n + 1 in set N . So, all the vertices in set N contribute
n counts to g.

Every vertex from sets M and N contribute a total of n+1 to the conges-
tion of g. The congestion on all of the edges incident to the vertices in set
L is n+1. Similarly, all of the edges incident to the vertices in set N is l+1.

Figure 10 shows the spanning tree star that minimizes c(G : S) for Km,n,l

when m = 1. Notice that the longest path has length two. Because m = 1
and n ≤ l, the number of vertices from set L determine how many detours
use edge g. Consequently, since n + 1 ≤ l + 1, c(G : S) = (l + 1) and
s(G) ≤ (l + 1).

2

3

i

n+1

n+2

n+3

n+i

n+l+1

 1

M N

L

Figure 10: Generic spanning tree that minimizes c(G : S) for Km,n,l

when m = 1

At this time we will prove the lower bound for s(Km,n,l) to show that
s(Km,n,l) = l + 1. In any spanning tree, S, there is a path of length at
least three or all paths are of length two. When all paths are of length
two S is a star and c(G : S) = (l + 1). So, now assume S is not a star.
Then there must be a path of length at least three. We will refer to the
lower bound case when m ≥ 2 and use the previous notation to label the
vertices from set M , N , and L.

Recall that in the last case we let P be a path and denoted a subset of
the path as P1 = (m + 1, m + n + 1, m + 2, m + n + 2). As in this case
when m = 1, every vertex in set N contributes one to g and every vertex
from set L contributes one to g for a total of two counts to c(g : S). No
matter what region we add vertices from set N or vertices from set L to
they will always need to be connected to the vertices in the opposite set
in the opposite region. So, again we have c(g : S) ≥ 2 + (n − 2) + (l − 2).
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To be a complete tripartite graph, we must build onto our spanning tree
using vertex 1 from set M . As the case when adding vertices from the
other sets, no matter what region vertex 1 is added to it will always need
use g in a detour to be connected to both vertices in sets N and L the
opposite region. Therefore, g will be used in two more detours for the
one vertex in set M . Thus, vertex 1 from set M contributes 2 to c(g, S).
Therefore, in any spanning tree, there is always an edge used in at least
(2 + (n− 2) + (l − 2) + 2(1) = (n + l) detours, making c(G : S) ≥ (n + l).
Obviously, (l + 1) ≤ (n + l) thus, s(G) ≥ (l + 1).

We have provided an upper bound, s(G) ≤ (l + 1), and a lower bound,
s(G) ≥ l + 1, for s(G), thus, for any spanning tree we can confirm that
when m = 1, s(G) = (l + 1).

We proved that for G = Km,n,l with m ≤ n ≤ l, s(G) = l + 1 when m = 1
and s(G) = (2m + n + l) − 2 when m ≥ 2.

Theorem 3. For G = Km,n,l with m ≤ n ≤ l:

|EG| − |VG| + 2 = (mn + ml + nl) − (m + n + l) + 2

Remember that for any connected graph, Ostrovskii provided bounds for
t(G) and s(G). Recall the upper bound is |EG| − |VG| + 2. Each vertex
in set M has degree m(n + l) and each vertex in set N has degree nl thus
|EG| = m(n + l) = mn + ml + nl. It is evident that the number of vertices is
m + n + l. Therefore, |EG| − |VG| + 2 = (mn + ml + nl) − (m + n + l) + 2.

4 Conclusion

In this paper we have provided the maximum number of edge-disjoint paths,
the tree congestion, and spanning tree congestion for complete tri-partite graphs.
With the many applications that cutwidth is used in, it would be useful to
compare results using spanning trees versus other host graphs. It is interesting
to note that using the spanning tree for the complete bi-partite graph, Km,n,
saves on congestion when compared to the linear cutwidth of Km,n. However,
in other cases such as grids there are no or only very little savings. Further
investigation is still needed for other families of graphs as well such as complete
n-partite graphs, three-dimensional grids, and product graphs.
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