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Abstract

The cyclic cutwidth of the complete tripartite graph Kr,s,t is explored.
Previous work has been done on the cyclic cutwidth of complete bipartite
graphs as well as the linear embedding of tripartite graphs. These results
will be used to build on the cyclic cutwidth of the complete tripartite
graph. The cyclic cutwidth of complete tripartite and n-partite graphs is
found for some cases. An upper bound and lower bound for other cases
is also explored.

1 Introduction

A graph G consists of a set of vertices and a set of edges that join pairs of
vertices.

A complete tripartite graph Kr,s,t consists of three disjoint sets of vertices
A,B, and C, with |A| = r, |B| = s, and |C| = t, such that every vertex is joined
to every other vertex except those that are in their own set. Unless otherwise
stated, vertices from set A are denoted by white circles, vertices from set B are
denoted by black circles and vertices from set C are denoted by gray circles for
ease of interpretation. Figure 1 is one possible representation of K1,2,3.

Figure 1

A linear embedding of a graph G is a representation of G with all of the
vertices and edges of G embedded onto a line. The linear cutwidth of complete
tripartite graphs has been explored. These findings help in the exploration of
the cyclic cutwidth of complete tripartite graphs.

A cyclic embedding of a graph G is a representation of G with all of the
vertices and edges of G embedded onto a circle. Any edges that connect vertices
in the non-cyclic representation of G will also connect the same vertices in the
cyclic embedding of G. To simplify the representation of a cyclic embedding

1



on paper, we draw the edges inside the circle on which they are embedded.
However, no edges on this paper-representation can pass through the exact
center of the circle. That way we will know exactly which regions the edge is
contributing to. Figure 2 is an example of a cyclic embedding of K1,2,3.

A region in a cyclic embedding is the wedge-shaped area created by the
center of the circle, two consecutive vertices, and the edge of the circle as in
Figure 2 where one wedge shaped region is shaded.

Figure 2

For a cyclic embedding the cut of a region is the number of edges that cross
the region. The cut of the shaded region in Figure 2 is 3. The maxiumum
cut of a particular embedding of a graph is the largest cut that occurs on the
embedding. The maximum cut of Figure 2 is 5. The cutwidth of a graph
G is the minimum of all maximum cuts of all possible embeddings on G. So
there is probably a different way to draw Figure 2 so that the cutwidth is less
than 5. The difference between cyclic and linear embeddings is that with cyclic
embeddings one can decide which way the edges go around the middle vertex.
For example in Figure 2, some of the diagonals could be moved around the other
side of the center to create a lower cyclic cutwidth.

2 Background

Graph theory has proven to be a useful tool for analyzing situations in which
two sets of elements are joined by some sort of edge. These situations include
electrical networks, telephone communication, road maps, oil pipelines, and
subway systems. There are also other forms with which a graph can be used such
as flow charts, organizational charts, computer data structures, evolutionary
trees in biology, and the scheduling of tasks in a complex project (Tucker, 1995).

This paper is primarily concerned with finding the cyclic cutwidth of com-
plete tripartite and n-partite graphs. It will build upon the works of others who
have found the linear cutwidth of complete tripartite and n-partite graphs and
the cyclic cutwidth of complete bipartite graphs. We will also explore ideas of
how linear cutwidth of graphs relate to the cyclic cutwidth of graphs.
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2.1 Some Known Cyclic Cutwidths

Many different people have worked with the problem of cyclic cutwidths. Fran-
sisco Rios [6] developed a formula for the cyclic cutwidth of a complete graph
Kn. The following results were proven by Rios:

For any complete graph Kn on n vertices,

lcw(Kn) =

{
n2

4 , n even
n2−1

4 , n odd

A two-dimensional mesh Pm x Pn is a rectangular graph that has dimen-
sions m by n. Concerning the cyclic cutwidth of two-dimensional meshes Heiko
Schroder [7] made some progress which Dwayne Clark [3] later amended. Dwayne
Clark found that for a graph G which is a Pm x Pn mesh where m ≤ n ≤ 3,

ccw(G) =





n− 1, m = n even
n, m = n, n + 1, and n odd or m = n + 1, n + 2, and n even
n + 1, otherwise

A tree (T ) is a connected a-cyclic graph. Joe Chavez and Rolland Trapp [2]
have proven that for any tree T ,

lcw(T ) = ccw(T ).

2.2 Linear Cutwidth and Cyclic Cutwidth of Complete
Bipartite Graphs

Matt Johnson [5] has proven the following three theorems:

Johnson’s Theorem 1:

lcw(Km,n) =
{

mn
2 , mn even

mn+1
2 , mn odd

Johnson Theorem 2: For any graph G,

ccw(G) ≥ lcw(G)
2 .

Johnson Theorem 3:

ccw(Km,n) =
{

mn
4 , m, n both even

mn+3
4 , m = n odd

Of these three theorems the one we will use the most is Theorem 2: For any
graph G,

ccw(G) ≥ lcw(G)
2 .

Since this idea is used so much throughout this paper, I will show Johnson’s
proof of it.
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Proof of Johnson’s Theorem 2

Let y be the linear cutwidth of G. Consider any cyclic embedding of G with
cyclic cutwidth x. Assume that x < y

2 .
We shall number the vertices of the cyclic embedding clockwise from a1 to

an beginning at a region where the cutwidth x occurs. We also number the cuts
of the graph such that the cut counterclockwise and adjacent to ai will be αi

(Figure 3).

X

a1

a2

a3

an

Figure 3

We now transform the cyclic embedding of G into a linear embedding. To
do this we shall arrange each of the vertices, ai in order on a linear embed-
ding, connecting all of the vertices that were connected in the cyclic embedding.
(Figure 4)

a1an a3 a2

Figure 4

Let αi be the cut on the cyclic embedding such that when transformed into
a linear graph a maximum cut occurs at the cut αi. Assume l is the number
that the cut αi increases by in the linear embedding. So the maximum linear
cut is αi + l. We know

αi + l ≤ αi + x since l ≤ x
≤ 2x since αi ≤ x
≤ y by hypothesis

This is a contradiction since αi + l is actually equal to y, but this chain of
inequalities shows that αi + l is less than or equal to y. y cannot be less than
or equal to y.

Thus,

ccw(G) ≥ lcw(G)
2 .
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2.3 Linear Cutwidth of Complete Tripartite Graphs

Stephanie Bowles [1] found the linear cutwidth of a complete tripartite graph.
Bowles’ Theorem states:
Let Kr,s,t be a complete tripartite graph. Then:

lcw(Kr,s,t) =
{

rs+rt+st
2 for two or more r, s, t even

rs+rt+st+1
2 otherwise

Bowles found these results branching off of previous theorems about linear
cutwidth of complete bipartite graphs. She especially built off of Matt Johnson’s
three theorems concerning linear and cyclic cutwidths of complete bipartite
graphs.

2.4 Linear Cutwidth of Complete n-Partite Graphs

Chelsea Weitzel [9] proved the linear cutwidth of a complete n-partite graph.
The Weitzel-Chavez Theorem states:

lcw(Km1,m2,...,mn) =
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

2

⌉

Weitzel discovered this theorem from the results found by Bowles and then
branching out to 4-partite graphs, before exploring n-partite graphs. This is an
important result used later in this paper.

2.5 Cyclic Cutwidth of Complete Bipartite Graphs

Megan Holben [4] extends on the lower bound and upper bounds of the cyclic
cutwidth of complete bipartite graphs by finding exact bounds for many differ-
ent cases. In the end her findings came up with this final set of theorems, where
the first equation is essentially drawn from Johnson’s second theorem:

Holben’s Theorem 1

ccw(Km,n) =





mn
4 , m, n even

mn+j
4 , m odd, j = n

m ,j even
mn+j+2

4 , m odd, j = n
m , j odd

mn+2
4 , m ≡ 2(mod4), n odd, 2n ≥ m

mn+4
4 , m ≡ 0(mod4), n odd, 2n ≥ m

mn+l+2
4 , m even, n odd, 2n < m, l even,

m− ln < 2n, m− ln ≡ 2(mod4)
mn+l+4

4 , m even, n odd, 2n < m, l even,
m− ln < 2n, m− ln ≡ 0(mod4)

mn+l+4
4 , m, n odd, m < n, l odd,

n− lm < 2m, n− lm ≡ 2(mod4).
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3 The Upper and Lower Bounds for Complete
Cyclic Tripartite Graphs

The following lemmas give us and upper and lower bound for the cyclic cutwidth
of any complete tripartite graph.

3.1 The lower bound for the Cyclic Cutwidth of a Com-
plete Tripartite Graph

Lemma 1.
ccw(Kr,s,t) ≥ rs + rt + st

4
.

Proof The lower bound of the cyclic cutwidth of a complete tripartite graph
can be found by combining Bowles’s and Johnson’s already proven theorems.

By Bowle’s Theorem 4 we know that

lcw(Kr,s,t) ≥ rs + rt + st

2
By Johnson’s second theorem it has been established that whenever we have

a graph, G, the ccw(G) ≥ lcw(g)
2 .

So by combining these two theorems, we find that:

ccw(Kr,s,t) ≥ rs + rt + st

4
.

3.2 The upper bound of the Cyclic Cutwidth of a Com-
plete Tripartite Graph

Lemma 2.
ccw(Kr,s,t) ≤ ccw(Kr,s) + ccw(Kr+s,t)

In order to explore the upper bounds for a cyclic embedding of a complete
tripartite graph we can build on the ideas already proven about the cyclic em-
bedding of complete bipartite graphs. We will use Holben’s first and second
lemmas.

Holben Lemma 1. Let A and B be two sets of vertices, such that |A| = m
and |B| = n.

Given any cyclic embedding of Km,n where m is even, n is odd, and m < n,
a line can always be drawn from between a pair of vertices to between a different
pair of vertices such that there are exactly m−2

2 vertices from set A and exactly
n+1

2 vertices from set B on one side of the line.

Holben Lemma 2. Given any cyclic embedding of Km,n, where m is odd, a
line can always be drawn from between a pair of vertices to between a different
pair of vertices such that there are exactly m−1

2 vertices from set A and dn+ n
m

2 e
vertices from set B on one side of the line.
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In order to arrange the vertices in such a way that this is possible we can use
Holben’s first and second lemmas to arrange the two seperate complete bipartite
graphs. We will look at K3,6,15 as an example of how to arrange the vertices
before we investigate any upper and lower bounds.

When investigating K3,6,15 we first look at K3,6. We need to let set |A| = 3,
|B| = 6, and |C| = 15. According to Holben’s Lemma 2, since 3 is odd then
the vertices can be split up so that there are r−1

2 vertices from set A and d s+ s
r

2 e
vertices from set B on one side of a line. So this means a line can be drawn
through the graph so that there is 1 black vertex and 4 white vertices on one
side of the line. This is illustrated in the first graph of Figure 5.

K3,6 K9,15

K3,6,15

Figure 5

Now we need to look at K3+6,15, which equals K9,15. Since 9 is odd we will
use Holben’s second lemma again. The vertices can be split up so that there are
4 black vertices on one side of the line (in this case the black vertices represent
the white and black vertices from the first graph) and 9 gray vertices on the
same side of the line.

Now we can tell from the number of black vertices from the second graph
how we should arrange the black and white vertices around the gray vertices.
Since in the first diagram in Figure 5 there are 5 vertices total on one side of
the line, we can line this up to the side of the line that has a total of 5 black
vertices. So we need to change the black vertices to the corresponding white
vertices. On the other side of the line we can also change the white vertices to
the corresponding ones in the first picture. When we do this combination we
should get the final picture which is below the first two graphs in Figure 5.

This illustration has shown how two complete bipartite graphs can be em-
bedded to yield a complete tripartite graph. The cyclic cutwidths of these two
graphs added together will indeed give us the upper bound for the tripartite
graph it creates such that

ccw(Kr,s,t) ≤ ccw(Kr,s) + ccw(Kr+s,t)

This is definately an upper bound. For most cases it is probably not the best
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upper bound but it does give us a place to start to constrict the upper bound
of the graphs we explore in this paper.

4 The cyclic cutwidth for Kr,s,t for r, s, and t all
even

Theorem 1. ccw(Kr,s,t) = rs+rt+st
4 , for r, s, and t all even.

Proof
Let A, B, and C be sets of disjoint vertices such that |A| = r, |B| = s, and

|C| = t. Assume r ≤ s ≤ t, with r, s, and t even.
To prove that the ccw(Kr,s,t) = rs+rt+st

4 , it is sufficient to show that it is
always possible to cyclically embed Kr,s,t with a maximum cut of rs+rt+st

4 when
r, s, and t are even because of Lemma 1.

We now need to arrange the vertices of Kr,s,t in such a way that each cut
will be no more than rs+rt+st

4 . In order to do this we can split the vertices up
evenly into six hextants labeled I, II, III, IV, V, and VI so that there are r

2
vertices in each of the hextants I and IV, s

2 vertices in each of the hextants II
and V and t

2 vertices in each of the hextants III and VI, as in Figure 6.

III

IV

V

VI

I

II

Figure 6

Then we can first look at the cuts between any two successive hextants.
Since r

2 , s
2 , and t

2 vertices contribute to the cut from each side of the cut then
the contributions from each side will look like Figure 7.

r

r

s

s t

t

222

222

Figure 7

So the cut will be equivalent to:
( r
2 )( s

2 + t
2 ) + ( s

2 )( r
2 + t

2 ) + ( t
2 )( r

2 + s
2 )
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=
rs + rt + st

2
But only half of these contribute since the vertices have to alternate which

way they go around the middle so when then half to divide this in half again to
get:

=
rs + rt + st

4
Since this graph is symmetric the cutwidth will be the same between any

two hextants and also the same between any other two vertices that divides the
total vertices into two equal sets. In Figure 8 we can see that the if we move the
cut from between any two hextants to any two vertices that the same number
of vertices remain on each side of the diagonal. So the same equation applies
no matter where the cut is made.

III

IV

V

VI

I

II

Figure 8

Therefore for a complete tripartite graph, with r, s, t even:

ccw(Kr,s,t) =
rs + rt + st

4
.

5 The cyclic cutwidth for an n-partite graph
Km1,m2,...,mn

where m1,m2, ...mn are all even

The following theorem is an extension from Theorem 1.

Theorem 2. Let an n-partite graph be cyclically embedded such that we have n
sets, called A,B, C, N such that |A| = m1, |B| = m2, ..., |N | = mn.

Assume m1 ≤ m2 ≤ ... ≤ mn and m1,m2, ..., mn are even. If this is the case
then the

ccw(Km1,m2,...,mn) = m1m2+m1m3+...+m1mn+m2m3+...+m2mn+...+mn−1mn

4
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Proof

Assume we have N sets labeled A,B, C, ..., N such that |A| = m1, |B| =
m2, ..., |N | = mn.

Lower Bound
We know from Johnson’s Theorem 2 that for any graph G

ccwG ≥ lcw(G)
2

We also know from the Weitzel Chavez Theorem that

lcw(Km1,m2,...,mn) =
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

2

⌉

.
So if we have vertices m1,m2, ..., mn such that each of these sets has an even

number of vertices then

ccw(Km1,m2,...,mn) ≥
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

4

⌉

.
Since each of the terms in the summation is even, we don’t need the ceiling

function, so we get

ccw(Km1,m2,...,mn) ≥ m1(m2 + m3 + ... + mn) + m2(m3 + m4 + ... + mn) + ... + mn−1mn

4

=
m1m2 + m1m3 + ... + m1mn + m2m3 + ... + m2mn + ... + mn−1mn

4
.

Thus,

ccw(K
m1,m2,...,mn)≥m1m2+m1m3+...+m1mn+m2m3+...+m2mn+...+mn−1mn

4 .

Upper bound
To find the upper bound we need to find the maximum cut at any point of

the diagram. We can arrange the vertices so that we have 2n-tants. It will look
like Figure 9.

m

1 /2

m
1
/2

m

n

/2

m

3

/2

m

3

/2
m

4

/2
m

4

/2
m

n

/2

m
2/2

m
2
/2

Figure 9
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If we do this then at any point we have the same number of vertices from each
group on either side of the cut (similar to the explanation for Figure 8). There
will always be half of the vertices on one side and half on the other.

When we do this then the cut will be equivalent to

(
m1

2
)(

m2 + m3 + ... + mn

2
) + (

m2

2
)(

m3 + m4 + ... + mn

4
) + .... + (

mn−1

2
)(

mn

2
)

=
m1m2 + m1m3 + ... + m1mn + m2m3 + ... + m2mn + ... + mn−1mn

4
.

Thus,

ccw(K
m1,m2,...,mn)≤m1m2+m1m3+...+m1mn+m2m3+...+m2mn+...+mn−1mn

4 .

Since this is the same as our lower bound we can conclude that for an n-
partite graph where m1,m2, ..., mn even

ccw(K
m1,m2,...,mn)=

m1m2+m1m3+...+m1mn+m2m3+...+m2mn+...+mn−1mn
4 .

6 The cyclic cutwidth for Kr,r,r for r odd

Theorem 3. For r odd

ccw(Kr,r,r) =
3r2 + 1

4
.

Proof

In order to prove that this is the cyclic cutwidth for this case we need to
find the upper and lower bounds for the cyclic cutwidth of the graph and find
that they are equal.
Lower bound

Let A,B, and C be sets of disjoint vertices such that |A| = r, |B| = r, and
|C| = r. Let r be an odd integer.

We know by Lemma 1 that

ccw(Kr,r,r) ≥ 3r2

4
.

=
3r2

4
which is not an integer so in order to round up to the next integer we have

=
3r2 + 1

4
.

Therefore,
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ccw(Kr,r,r) ≥ 3r2+1
4 when r is odd.

In order to arrange the vertices so that this holds true we can split the ver-
tices up evenly so that they alternate every third vertex as in Figure 10. This
figure will also be used to explore the upper bound of this case.

r1

Figure 10

Upper bound
In order to find the upper bound of the cyclic cutwidth of this tripartite

graph we need to find a maximum cut. In order to do this we can single out
one cut that is the greatest. In this case the cuts are all going to be equal at
any point since the layout of the graph is the same all around the circle. The
vertices are spaced evenly throughout and since there are an equal number of
each, an equal number of vertices will contribute to each cut.

So in order to look at one cut we will position a graph so that a black vertex
is on top. As an example we will look at K7,7,7 (Figure 11).

Figure 11

Since the number of vertices in all will be odd in any case, we do not need
to worry about edges being drawn on either side of the middle since there will
be no diameters. So there is no confusion about which way an edge contributes
to a cut.

So if we look at our first cut as being to the left of the top black vertex we
need to see what edges contribute to the cut. First we add the number of edges
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contributed by each black vertex to the white and gray vertices, and then from
each white vertex to each gray vertex.

For any odd number r that summation will be as follows:
r

}
edges contributed by top black vertex

+r − 2
+r − 4
+r − 6
+
.
.
.
+1





edges contributed by the left black vertices from top to bottom

+r − 2
+r − 4
+r − 6
+
.
.
.
+1





edges contributed by the right black vertices from top to bottom

= (2

r+1
2∑

n=1

2n− 1)− r

Now we need to look at the edges contributed by each white vertex to each
gray vertex:

r−1
2

+ r−3
2

+ r−5
2

+
.
.
+1





edges contributed by left white vertices from top to bottom

+ r−1
2

+ r−3
2

+ r−5
2 +

.

.

.
+1





edges contributed by right white vertices from top to bottom
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= (2

r−1
2∑

n=1

n)

So finally we need to add these edges together to get our final upper bound:

≤ (2

r+1
2∑

n=1

2n− 1)− r + (2

r−1
2∑

n=1

n)

≤ 2( r+1
2 )2 − r + 2( ( r−1

2 )( r−1
2 +1)

2 ))

≤ 3r2+1
4

Thus,

ccw(Kr,r,r) ≤ 3r2+1
4 when r is odd.

Since the upper bound is the same as the lower bound we have found the
cyclic cutwidth for this case.

Therefore,

ccw(Kr,r,r) = 3r2+1
4 when r is odd.

It is also useful to note that the

ccw(Kr,r,r) = 3r2

4 when r is even.

but this case is simply implied by Theorem 1 which proves the cyclic cutwidth
for when r, s, and t are all even.

7 The Cyclic Cutwidth for n-Partite Graphs Kr,r,r,...,r,
when r is odd

Theorem 4. For n odd,

ccw(Kr,r,r,...,r) =

⌈(
n
2

)
r2 + 1
4

e

For n even
(
n
2

)
r2

4
≤ ccw(Kr,r,r,...,r) ≤

(
n
2

)
r2 + n

2

4

Proof

Lower bound
Recall from the Weitzel-Chavez Theorem that

lcw(Km1,m2,...,mn) =
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

2

⌉
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if m1 = m2 = ... = mn and m1 = r when r is odd then,

lcw(Kr,r,...,r) =
n−2∑

i=0

⌈
(r + ... + r)r

2

⌉

=
r(r + r + ... + r) + r(r + r + ... + r) + ... + r(r)

2

=
(n− 1)r2 + (n− 2)r2 + ... + (n− (n− 1))r2

2

=

(
n
2

)
r2

2
This holds true if n is even. If n is odd then this number isn’t an integer.

So we can define the linear cutwidth to be

=

⌈(
n
2

)
r2 + 1
2

e

Now recall from Johnson’s Theorem 2 that for any graph G

ccw(G) ≥ lcw(G)
2 .

Now by combining these two theorems we get that the:

ccw(Kr,r,r,...,r) ≥
⌈(

n
2

)
r2 + 1
2

e

where n is the number of sets of vertices we have.
Upper bound
When we look at the cut of the graph Kr,r,r,...,r we will consider a diagram

similar to the one in Figure 12. For the maximum cut and optimal arrangement
we can arrange the vertices so that the vertices alternate from set 1 through set
n until all the vertices are used as in Figure 12. To find the upper bound of this
graph we must find a line that gives the maximum cut. Since at every cut the
same number of vertices contribute to the cut (similar to the graph in section
5) the maximum cut will occur between any two consecutive vertices.

Figure 12

For the upper bound we have to look at two different cases, when n is even
and when n is odd.

Case 1 n even where n is the number of sets of vertices.
In this case we have a diagram like Figure 9 where there are an even number

of vertices, since r is odd and n is even. If that is the case then we have
nr

2
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vertices on both sides of the cut. But since r is odd the number of vertices from
each set on each side differ by 1. So we have a cut like Figure 13.

r+1

r-1
2

.......

r-1

r-1

r-1

r+1

r+1

r+1

2

2

2

22

22
.......

+ ++
+

++++

=

=

nr

2

nr
2

Figure 13

So to figure the cutwidth from this diagram we have the following equation:

(
r + 1

2
)(

nr

2
−r − 1

2
)+(

r − 1
2

)(
nr

2
−r + 1

2
)+....+(

r + 1
2

)(
nr

2
−r − 1

2
)+(

r − 1
2

)(
nr

2
−r + 1

2
)

= n(n−1)r2+n
4

=
n(n−1)

2 r2+ n
2

2

=

(
n
2

)
r2 + n

2

2
.

We must then divide this in half again since only half of these vertices actu-
ally contribute to the cut since the edges go different ways around the middle
vertex. So we get

ccw(Kr,r,r,...,r) ≤
(
n
2

)
r2 + n

2

4
Case 2 n is odd, where n is the number of sets of vertices.
To find the upper bound where n is odd is similar to the previous case, where

n is even. But now our diagram will look like Figure 14.

r+1

r-1
2

.......

r+1

r+1

r-1

r-1

r-1

r+1

2

2

2

22

22
.......

+ ++
+

++++

=

=

nr-1
2

nr+1
2

Figure 14

So now the equation we look at to find the upper bound for this case is as
follows:

(
r + 1

2
)(

nr − 1
2

− r − 1
2

)+(
r − 1

2
)(

nr − 1
2

− r + 1
2

)+....+(
r + 1

2
)(

nr − 1
2

− r − 1
2

)

= n(n−1)r2+2
4
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=
n(n−1)

2 r2+1

2

=

(
n
2

)
r2 + 1
2

we must then divide this in half again since only half of these vertices actually
contribute to the cut. So we get

ccw(Kr,r,r,...,r) ≤
(
n
2

)
r2 + 1
4

Now since this matches the lower bound we can conclude that for n being
odd,

ccw(Kr,r,r,...,r) =

⌈(
n
2

)
r2 + 1
4

e

We have to include the ceiling function here since for different values
(
n
2

)
and r we will get numbers that are not integers, so the ceiling function allows
us to round up to an integer value.

We cannot conclude the cyclic cutwidth for n being even, but we do have
the bounds,

(
n
2

)
r2

4
≤ ccw(Kr,r,r,...,r) ≤

(
n
2

)
r2 + n

2

4
.

8 The Lower Bound of the Cyclic Cutwidth of
the Complete n-Partite Graph

Theorem 5.

ccw(Km1,m2,...,mn) ≥
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

4

⌉

Proof
By Johnson’s second theorem we know,
For any graph G,

ccw(G) ≥ lcw(G)
2 .

By the Weitzel-Chavez theorem we know,

lcw(Km1,m2,...,mn) =
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

2

⌉

Thus we can conclude,

ccw(Km1,m2,...,mn) ≥
n−2∑

i=0

⌈
(mn + ... + mn−i)mn−i−1

4
.

⌉
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9 Conjectures

This paper does not cover every case for the cyclic cutwidth of tripartite and
n-partite graphs. But we do have some conjectures on other cases.

9.1 An Upper bound for Tripartite Graphs

An upper bound can be found for any tripartite graph by splitting a graph
Kr,s,t into two complete bipartite graphs, Kr,s and K(r+s),t, and adding their
cyclic cutwidths together. We can find an upper bound for any graph by using
Holben’s results to find the cyclic cutwidth of these bipartite graphs since she
found the results for all bipartite graphs. The sum of these graphs does give an
upper bound but we believe it is not the best upper bound. It should be able
to be improved for each case.

9.2 The Cyclic Cutwidth of the Complete Tripartite Graph
Kr,jr,kr, where r is odd

We found the cutwidth of many examples of graphs when the numbers are all
multiples of the first number. A definite upperbound seems to be:

ccw(Kr,jr,kr) =
jr2 + kr2 + jkr2 + j + k

4

This matches the lower bound for some cases, which leads us to believe it
may be the cyclic cutwidth for the multiple case. The cases where the lower
bound does not match this upper bound are K1,3,4, K1,3,5, K1,3,6, K1,5,6, K1,5,7,
K3,9,12, K3,9,15, and K3,9,18. For cases higher than K3,9,18 the upper bound and
lower bound were equivalent to the conjectured cyclic cutwidth. So maybe these
cases are special or we need to find a different lower bound.

10 Conclusion

We found the upper and lower bounds for any complete tripartite graph. We
also found the lower bound of an n-partite graph. We were also able to find the
cyclic cutwidth of Kr,s,t when r, s, t are all even and when they are all equal and
odd. We then extended these cases to the n-partite graph, but we were only
able to find an upper and lower bound for the cyclic cutwidth when n is even
for the equal and odd case.

There are still many unknown cases, especially since there are many more
cases for a complete tripartite graph compared to the cases of a complete bipar-
tite graph. The next step would seem to be to try and find the cyclic cutwidth
of the complete tripartite graph Kr,s,t where s and t are multiples of r. Does
this case have to be further split into different cases?

We also should try to find an upper bound for the n-partite case in general.
Maybe the upper bound can be found by combining graphs similar to the method
we used for finding the upper bound of complete tripartite graphs. Maybe an
induction proof would be useful to find this.

We also need to figure out exactly what all of the different cases are for the
tripartite graph and try to extend those cases to the n-partite graph.
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