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Abstract

This paper investigates 3 and 4-bandwidth critical graphs. It concludes
Holly Westerfield’s proof that only six types of 3-bandwidth critical graphs
exist, including one infinite family. It classifies families of 4-bandwidth
critical cyclic graphs, and examines other kinds of 4-bandwidth critical
graphs. Also, all 4-bandwidth critical trees of height two are found.

1 Introduction

1.1 Background

Definition A graph G = (V, E, δ) consists of a set of vertices V , a set of edges
E that connect pairs of vertices, and a function δ that identifies the vertices
incident to an edge.

Holly Westerfield has attempted to categorize all 3-bandwidth critical graphs
in her work entitled “On 3-Bandwidth Critical Graphs” [4]. This paper fin-
ishes Westerfield’s proof that only six types of 3-bandwidth critical graphs exist
(including one infinite family), and examines 4-bandwidth critical graphs.

1.2 Terminology

A simple graph contains no loops or multiple edges.

A directed graph denotes a graph where the edges have a specific direction.

The degree of a vertex is the number of edges incident to that vertex.

A graph is complete if and only if there is an edge between every pair of vertices.
This is denoted by Kn for a complete graph with n vertices.
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Example A K5 graph:

A cyclic graph Cn (for n > 2) has n vertices of degree two which form a single
cycle.

A tree is an undirected, connected, simple graph containing no cycles.

A leaf or pendant is a vertex of degree one.

A path is a graph with two end vertices of degree one and all remaining vertices
of degree two.

A caterpillar is a tree which becomes a path when all pendant vertices (leaves)
are removed. That path is called the spine of the caterpillar.

A linear embedding of a graph G is a representation of G where all the vertices
and edges of G are placed along a line.

The bandwidth of a linear embedding of graph G is the length of the longest
edge in the embedding. Distance is measured by finding the number of vertices
in between the edge’s end vertices and adding 1. The bandwidth of G, denoted
bw(G), is the minimum bandwidth out of all possible linear embeddings.

A graph G′ is a subdivision of G if new vertices of degree two can be inserted
into G to obtain G′. Two graphs are homeomorphic if they are subdivisions of
the same graph. G is homeomorphcally minimal if it is not a subdivision of any
simple graph. For example, G′ and H are homeomorphic because they are both
subdivisions of G.

G’G H
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1.3 Critical bandwidth

One subcategory of the bandwidth problem investigates critical bandwidth.

Definition A graph G is n-bandwidth critical if:

• G has bandwidth n

• G is homeomorphically minimal

• for every proper subgraph G′ of G, bw(G′) < n

Proposition 1.1 (Westerfield)
If G′ is a subgraph of a graph G, then bw(G′) ≤ bw(G).

2 3-bandwidth critical graphs

Westerfield found six 3-bandwidth critical graphs, one of which contains an
infinite family. The graphs are pictured below:

G1 G2

G4

G5 G6

G3

Additionally, the G4 graph can be expanded into an infinite family by adding
a caterpillar consisting of degree three vertices between the two degree four
vertices.
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Theorem 2.1 (Westerfield and Kilzer) There are only six types of 3-bandwidth
critical graphs, including one infinite family. They are G1 through G6 and the
G4 infinite family.

Proof The following proof will break down all graphs into the three categories
of trees, unicyclic graphs, and polycyclic graphs, examining all remaining cases
of possible 3-bandwidth critical graphs.

2.1 Known Results: Trees and Unicyclic Graphs

Westerfield proved that the only 3-bandwidth critical trees are G1, G3, and G4.
She also showed that G5 and G6 are the only unicyclic graphs.

2.2 Polycyclic Graphs

Westerfield suggests that K4 (G2) is the only polycyclic, 3-bandwidth critical
graph, and makes several conjectures about different kinds of polycyclic graphs.
This section will complete Westerfield’s proof.

There are three categories of polycyclic graphs; those containing:

1. Independent cycles connected by single caterpillars or trees

2. Cycles with shared edges

3. Cycles with a shared vertex

2.3 Bad subgraphs

We know that any graph containing a proper 3-bandwidth subgraph is not 3-
bandwidth critical. Therefore, we can eliminate any graph containing any of G1

through G6. It is also useful to study other possible subgraphs which can never
be a part of a 3-bandwidth critical graph. The following diagrams categorize
several “bad subgraphs” which will help us reduce our search. All are bandwidth
three, and all but j (an expansion of G6) are not homeomorphically minimal.
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2.4 Independent cycles connected by single caterpillars or
trees

Westerfield examined the case of independent cycles connected by single cater-
pillars, and determined that none are 3-bandwidth critical.

Any independent cycles connected by a non-caterpillar tree must contain a
G3 subgraph. Thus, there are no 3-bandwidth critical graphs in the category of
independent cycles connected by single caterpillars or trees.

2.5 Cycles with shared edges

This category contains numerous cases to examine. We examine this problem
using brute-force, and by eliminating larger cases by finding “bad subgraphs”
of bandwidth three that are not critical. Thus any graph containing a “bad
subgraph” cannot be 3-bandwidth critical.

Lemma 2.2 Pentagons and larger cycles (not composed of triangles and rect-
angles) will not be included in any 3-bandwidth critical polycyclic graph.
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Proof Imagine a polycyclic graph contains a cycle Cn where n > 4 (Cycles
formed by adjacent triangles and rectangles are excluded). If Cn shares one
edge with another cycle, it must contain either subgraph 1 or 2:

1) 2) 3)

Graph 1 contains bad subgraph i, while graph 2 contains bad subgraph j.
Suppose Cn shares multiple edges with another cycle. Attaching two sides

of a triangle to the Cn cycle would divide it into a triangle connected to a Cn−1

cycle at one edge. If n > 5, graph 1 must be a subgraph. If n = 5, then the
cycle is really just a rectangle and triangle joined at one edge, which is covered
in a later case. Now suppose a rectangle is connected at two edges to the Cn

cycle. Graph 3 must be a subgraph, and it contains bad subgraph l. Attaching
multiple edges of any larger cycle forces j to be a subgraph.

If an independent cycle Cn is connected only at a vertex, then it contains
bad subgraph j. This is also true with a Cn cycle linked to another cycle via
a caterpillar or tree. Therefore, there are no polycyclic graphs containing Cn

cycles where n > 4 and Cn is not composed of triangular and rectangular cycles.

Now we have narrowed down our search to polycyclic graphs composed of only
triangular and rectangular subgraphs.

Case 1: No more than two cycles connnected at any one edge
A: Cycles added around a central triangle, added cycles not connnected

By adding only triangles and necessary edges to a central triangle, the fol-
lowing homeomorphically minimal candidate graphs are found:

A1) A2) A3)

Graphs A1 and A2 are bandwidth two chains and are discussed in part E. A3
contains bad subgraph a.

By adding only rectangles and necessary edges to a central triangle, the
following homeomorphically minimal candidate graphs are found:
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A4) A5) A6)

Graphs A4 and A5 are bandwidth two chains. Graph A6 contains a G5 sub-
graph.

By adding both rectangles and triangles with necessary edges to a central
triangle, the following homeomorphically minimal candidate graphs are found:

A7) A8) A9)

Graph A7 is a bandwidth two chain, discussed in part E. Graphs A8 and A9
contain bad subgraph c.

B: Cycles added around a central rectangle, added cycles not connected
By adding only triangles and necessary edges to a central rectangle, the

following homeomorphically minimal candidate graphs are found:

B1) B2) B3)

B4) B5)

Graphs B2, B3, and B4 contain bad subgraph a. Graphs B1 and B5 are
currently bandwidth two and fall into the category of chain graphs, which will
be discussed in part E.
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By adding only squares and necessary edges to a central rectangle, the fol-
lowing homeomorphically minimal candidate graphs are found:

B6) B7)

B9) B10)

B8)

Graphs B7, B9, and B10 contain bad subgraph c. Graphs B6 and B8 are
bandwidth two and can be categorized as chain graphs. They will be discussed
in part E.

By adding both rectangles and triangles with necessary edges to a central
rectangle, the following homeomorphically minimal candidate graphs are found:
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B11) B12) B13)

B14) B15) B16)

B17) B18)

B19) B20)

Graphs B12 is a bandwidth two chain, discussed in part E. All other graphs
(B11, B13-B20) contain bad subgraph c.

C: Cycles added around a central triangle, some added cycles are connnected
By adding rectangles and triangles around a central triangle, and by con-

necting at least two of the new cycles, one of the three following subgraphs must
be generated:
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C1) C2) C3)

C1 is the result of joining two new triangles attached to the central triangular
cycle. This is the K4 (G2) 3-bandwidth critical graph. C2 will occur when-
ever a triangle is attached to a rectangle and both are attached to the central
triangular cycle. This case contains bad subgraph e. Finally, C3 is the result
of joining two rectangles attached to the central triangular cycle. Joining two
sides of one rectangle to a triangle is equivalent to connecting two triangles in
a chain. This contains bad subgraph f . Thus, only one graph in this category
(G2) is 3-bandwidth critical.

D: Cycles added around a central rectangle, some added cycles are connected
By adding rectangles and triangles around a central rectangle, and by con-

necting at least two of the new cycles, one of the five following subgraphs must
be generated:

D2) D3)

D4)

D1)

D5)

D1 and D2 are the two possible results of joining two new rectangles attached
to the central rectangular cycle. They contain bad subgraphs g and h, respec-
tively. D3 will occur whenever a triangle is attached to a rectangle and both are
attached to the central cycle. This case contains bad subgraph f . Finally, D4
is the result of joining two triangles attached to the central cycle. This contains
bad subgraph e. If one added square is attached to two sides of the central
rectangle, D5 is a subgraph, which means bad subgraph k is also a subgraph.
Thus, no graphs in this category may be 3-bandwidth critical.

E: Chains of squares and triangles

Lemma 2.3 If a chain composed only of squares and triangles is bandwidth
three, then it contains a 3-bandwidth critical subgraph.

Proof Suppose the chain consists of only squares. Then the bandwidth of the
chain is two. Now consider a chain with only one triangle and any number of
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squares. The bandwidth is still two. Finally, consider a chain with at least
two triangles. The following arangements are possible. First, consider the case
where two triangles are adjacent:

The uppermost graph is bandwidth two. However, the lower graph contains a
G1 subgraph and is bandwidth three.

Next, consider the case where the triangles are separated by any number of
squares:

The uppermost graph is bandwidth two. However, the lower graph contains a
G4 infinite caterpillar subgraph and is bandwidth three.

This exhausts all possible cases of chain graphs. Therefore, the only band-
width three chains already contain 3-bandwidth critical subgraphs.

Suppose the chain is bandwidth two. Then we must add pendants or trees
to search for 3-bandwidth critical graphs.

Adding pendants to the interior:

4

3
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If one pendant is added to an interior rectangular cycle, bad subgraph c is cre-
ated. If a single pendant is added to a degree four vertex of a triangular cycle,
a G1 subgraph is formed. Lastly, if a single pendant is added to a degree three
vertex of a triangular cycle, a G5 subgraph is formed. Therefore, we cannot add
any pendant inside a chain to find a 3-bandwidth critical graph.

Adding pendants and trees to the ends: We now attempt to find 3-
bandwidth critical graphs by adding pendants and trees to the ends of the
chains. All bandwidth two chain graphs contain a rectangular (C4) subgraph.
Even if the chain is composed soley of triangles, any two adjacent triangles form
a rectangle. The bandwidth of a rectangle is always two. Now suppose we add
pendants and trees to the end of the chain to increase the bandwidth to three.
We know that the bandwidth three portion of the embedding will only occur on
one side of the chain, or the graph will not be critical. For example, the follow-
ing diagram shows an arbitrary chain graph with a rectangular cycle. Without
loss of generality, the bandwidth three portion is embedded to the right:

bw-31 2 3
 4

In order to be critical, we must be able to reduce the bandwidth three portion
and embed at least one vertex toward the right by removing a single edge. If
the rectangle is formed by two triangles (connect vertex 2 to 3), we can remove
the diagonal edge of the rectangle and not reduce the graph’s bandwidth, as in
graph 1:
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Now suppose we examine the rightmost rectangular cycle found in our embed-
ding (WLOG). If the rectangle is not formed from triangles, as in case 1, three
cases remain: 2) a triangular cycle exists to the right of the rectangle 3) a rect-
angular cycle lies to the left of the rectangle 4) A triangular cycle lies to the left
of the rectangle, and no cycles lie to the right.

In Case 2, a triangle exists to the right of the rectangle. Removing the
edge beginning at either vertex 1 or 2 and extending left will not decrease the
bandwidth of the graph. In Case 3, removing the edge from 0 to 5 will not
decrease the bandwidth of the graph. In Case 4, any combination of pendants
or trees added to the rectangular cycle will create bad subgraph b, c, d, m, or
n. Therefore, the graph cannot be critical.

Thus, no 3-bandwidth critical graphs exist in the case of chains.

Case 2: Multiple cycles along a shared edge (“book” graphs)
Let a book graph denote a polycyclic graph where three or more cycles share

one edge. The cycles form the pages of the book. All book graphs must have
fewer than four pages to avoid containing a G1 subgraph. Furthermore, every
three-page book graph must contain at least one triangular cycle in order to
avoid containing a G4 subgraph. These cases are illustrated below:
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On the left is a four-page graph, which will always have a vertex of degree
five and therefore contain G1. On the right is a three-page graph composed
of rectangular cycles, which has a G4 subgraph. Therefore, all possible book
graphs which are candidates for 3-bandwidth critical graphs must contain one
of the following subgraphs:

1) 2) 3)

Graph 1 contains bad subgraph k, graph 2 contains bad subgraph l, and graph
3 contains bad subgraph c. Therefore, no book graphs are 3-bandwidth critical.

2.6 Cycles with a shared vertex

If three or more cycles share a vertex, a K1,5 (G1) subgraph will be formed:

Therefore, we must only examine cases where two cycles share a vertex but
no edges.

Case 1: Two triangles with a shared vertex
Two triangles with a shared vertex have bandwidth two. Suppose we add

pendants and trees to the graph to find 3-bandwidth critical candidates. There
is only one way to minimize the embedding of this two-triange formation, as
shown below. The two triangles must be embedded to each side of the central
vertex:

2

1

3

4

5 21 3 4 5
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Therefore, in an optimal embedding, any pendants or trees attached to the right
triangle must be embedded toward the right, and any pendants or trees attached
to the left triangle must be embedded to the left (WLOG). What is attached to
one triangle will have no effect on the embedding of anything attached to the
other triangle. Thus, we must only consider cases where pendants and trees are
added to one triangle:

1.1) 1.2) 1.3)

1.4) 1.5) * *

a caterpillar of degree-3 spine
vertices may be placed between 
the starred vertices

If we only add pendants to one triangle to obtain a minimal 3-bandwidth graph,
graph 1.1, 1.2, or 1.3 must be a subgraph. Graphs 1.1 and 1.3 contain G1 sub-
graphs, while graph 1.2 contains a G5 subgraph. By adding trees and pendants
to one triangle to obtain a minimal 3-bandwidth graph, graph 1.4, 1.5, or G1

will always be a subgraph. However, graph 1.4 contains bad subgraph o, and
graph 1.5 contains bad subgraph m.

Case 2: Two rectangles with a shared vertex

Any two connected rectangular cycles in this case contain bad subgraph c.

Case 3: A triangle and square with a shared vertex
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Any connected rectangular and triangular cycles in this case contain bad sub-
graph c.

Therefore, there are no 3-bandwidth critical graphs in the case of cycles with
a shared vertex.

2.7 Conclusion

The problem of finding 3-bandwidth critical polycyclic graphs has been broken
down into three main categories: 1) independent cycles connected by caterpillars
or trees 2) cycles with shared edges 3) cycles with a shared vertex only. No
graphs excepting G2 have been found. All cases have been examined, and
Westerfield’s claim has been proved: G1 through G6 and the G4 infinite family
are the only 3-bandwidth critical graphs.

3 Expansion of 3-bandwidth results

By observing characteristics of 3-bandwidth critical graphs, many similar 4-
bandwidth critical results can be discovered.

3.1 Complete graphs

Lemma 3.1 (Westerfield)
For n > 1, the complete graph Kn is (n− 1)-bandwidth critical.

Thus, K4 (G2) is 3-bandwidth critical, and K5 is 4-bandwidth critical.

3.2 Stars and Bipartite Graphs

Lemma 3.2 (Westerfield)
For n odd and positive, the complete bipartite graph K1,n is (n+1

2 )-bandwidth
critical.

By this lemma, K1,5 (G1) is 3-bandwidth critical, and K1,7 is 4-bandwidth
critical. Also, the K3,3 graph is 4-bandwidth critical.

4

1 2

3

5 6

Proof K3,3 only contains vertices of degree three, and thus is homeomorphically
minimal. All edges and vertices are identical in this graph. Without loss of
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generality, we select vertex 1 to embed on the far left. Next, we place each
connected vertex (2, 4, and 6) to the right of vertex 1 and draw in edges. The
order is arbitrary.

1 2

2

2

1

1

4

4

4

6

6

6

3

3 5

Then we add vertex three (WLOG) on the right of the embedding and con-
nect vertices with edges. Vertex 5 remains. However, adding this final vertex
increases the bandwidth of the graph to 4.

As all edges and vertices are identical in this complete bipartite graph, we
must only show that removing one edge results in a bandwidth less than four. In
this example, if we remove the edge between vertices 2 and 5, the embedding is
reduced to a bandwidth of three. Thus, every proper subgraph has a bandwidth
of less than four. Therefore, K3,3 is 4-bandwidth critical.

3.3 Expansion of G4 and the infinite tree family

By adding pendants to G4, a 4-bandwidth critical graph and infinite tree family
can be obtained. Furthermore, a similar infinite family can be formed between
any combination of the left and right subtrees pictured below:
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A

6 5

4 3 5

3 3T T

B

C D

Left side: Right side:

Interior:

Infinite caterpillars and trees can be formed by adding blocks of

(A) degree four vertices

(B) degree three followed by degree five vertices

(C) degree three followed by a tree T : a degree three root vertex with two
leaves attached to the pendant

(D) a tree T : a degree three root vertex with two leaves attached to the
pendant followed by a degree three vertex

in any combination between any left side and right side subtree. Without loss of
generality, these blocks must be assembled from left to right as pictured above.

4 Trees

This section explores 4-bandwidth critical trees.

Remark In order to remain homeomorphically minimal, no tree may have a
vertex of degree two. Therefore, the root vertex of a tree must have degree of at
least three. Additionally, the maximum degree of the tree ∆ must be less than
seven or the graph will contain a K1,7 subgraph.

20



4.1 4-bandwidth critical trees of height two

Theorem 4.1 There exist twelve 4-bandwidth critical trees of height two.

Proof Let Ti denote the ith 4-bandwidth critical tree with height two. Ti must
contain the following subtree:

B2
B1 B3

A

C12

C11

Let A, B, and C denote the three different levels of the tree. The B and C level
vertices are numbered for clarification. The tree shown above has a bandwidth
of two. By adding leaves to the subtree, we can search for all height two, 4-
bandwidth critical trees which may be candidates for Ti.
Case 1: Consider the set of candidates for Ti created by exclusively adding
leaves to vertex A. In order to create a 4-bandwidth graph, four vertices must
be added to vertex A. However, the degree of A is now seven, meaning that A
has a K1,7 subgraph and thus is not 4-bandwidth critical.
Case 2: Consider the set of candidates for Ti created by adding leaves only
to vertices A and B1. We will not yet consider adding leaves to newly formed
vertices on level B, as these will be covered in Cases 3 and 4.

Pictured below is a layout for an optimal embedding of any member of
this set. We can add up to four vertices while maintaining bandwidth three.
The dotted circles denote possible locations for the new vertices. However, the
addition of a fifth vertex results in a 4-bandwidth graph and a possible candidate
for Ti.

B2B1 B3AC12C11

Note: no more than three vertices may be added to vertex A or B1 without
obtaining the 4-bandwidth critical K1,7 subgraph.

Let X + n for some integer n denote the addition of n leaves to vertex X.
There is only one candidate for Ti, which turns out to be 4-bandwidth critical.
Note that T1 is the same graph as the G4 expansion.

A + 3, B1 + 2 / (A + 2, B1 + 3)
A A

B1

B1

B2
B2

B3

B3

Subtree:

T1
C12

C11 C12

C11
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Case 3: Consider the set of 4-bandwidth trees generated by adding leaves to
A, B1, and B2. The following tree must be a subgraph:

B2
B1 B3

A

C12

C11

C22C21

The optimal embedding layout of bandwidth three is pictured below, with dotted
circles denoting the five possible locations for new vertices while maintaining
bandwidth three. The addition of a sixth vertex will cause the tree to have
bandwith four, and will create a candidate for Ti.

B2B1 B3AC12C11 C21 C22

Through a stepwise process of adding six leaves to the subtree, we can obtain
seven candidates for 4-bandwidth critical trees with fourteen vertices. Of these,
only one (T2) is found to be 4-bandwidth critical. The other graphs contain T1

or its infinite caterpillar family as a subgraph, and thus are not 4-bandwidth
critical.
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A + 3, B1 + 3

A + 3, B1 + 2, B2 + 1 A + 2, B1 + 3, B2 + 1

A + 2, B1 + 2, B2 + 2 A + 1, B1 + 3, B2 + 2

A + 1, B1 + 3, B2 + 2 B1 + 3, B2 + 3

A A

A A

A A

A A

B1

B1

B1B1

B1

B1
B1

B1

B2

B2

B2

B2

B2

B2

B2

B2

B3

B3

B3

B3

B3

B3

B3

B3

Subtree:

T2

(T  subgraph)1

(T  subgraph)1

(T  subgraph)1

(T  subgraph)1 (T  subgraph)1

(T  subgraph)1

C11

C11

C11

C11

C11

C11

C11

C11

C12

C12

C12

C12

C12

C12

C12

C12

C21

C21

C21

C21

C21
C22

C21
C22

C21

C22

C21 C22

C22

C22

C22

C22

Case 4: Consider the set of 4-bandwidth trees generated by adding leaves to
A and all B level vertices. The following tree must be a subgraph:

B2
B1 B3

A

C12

C11

C22C21

C32

C31

It is notable that Westerfield found this tree, known as G3, to be 3-bandwidth
critical.
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A 4-bandwidth critical tree must have a 3-bandwidth critical subgraph. The
G3 tree can be embedded while maintaining bandwidth three by placing vertices
in their widest arrangement. Adding three vertices will create the largest 3-
bandwidth graph within this arangement. At least four leaves must be added
in order to obtain a 4-bandwidth graph. If any fewer are added, the graph will
remain at bandwidth three. An optimal embedding is shown below, with space
for three more vertices while maintaining bandwidth three:

B2B1 B3AC12C11 C21 C22C31 C32

If we add five vertices without widening the embedding, there will be at
least two edges of bandwidth four in an optimal embedding. Removing one
will leave a 4-bandwidth graph, and thus the graph will not be 4-bandwidth
critical. Thus, the only way to add more than four vertices to the G3 tree and
obtain a candidate for Ti would be to place new vertices to either side of the
embedding. First, we want to find a “full” bandwidth three tree. This means
that we will find a tree such that we can obtain a 4-bandwidth graph by adding
one more vertex. New vertices added to the left or right of the embedding
must be attached to a C vertex in order to remain bandwidth three. However,
the height of the resulting tree would exceed two. Thus, the only remaining
candidates for Ti contain the subtree G3, and are examined in this final case.

Through a stepwise process of adding four leaves to the 3-bandwidth critical
tree, we can obtain eleven candidates for 4-bandwidth critical trees with fourteen
vertices. Of these, only ten are found to be 4-bandwidth critical:
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A + 3, B1 + 1

A + 2, B1 + 2 A + 2, B1 + 1, B2 + 1

A + 2, B1 + 1, N + 2 A + 1, B1 + 1, B2 + 1, B3 + 1
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N

N

G  Subtree3

T3 T4
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T10

T12

(not 4-bandwidth critical)
C21

C21

C21

C21

C21

C21
C21

C21

C21

C21

C21

C21 C22

C22

C22

C22

C22

C22
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C22

C22

C22

C22
C12

C12

C12

C12

C12

C12

C12

C12

C12

C12

C12

C12

C11

C11

C11

C11

C11

C11

C11

C11

C11

C11

C11

C11

C31

C31

C31

C31

C31

C31

C31

C31

C31

C31

C31

C31

C32

C32

C32

C32

C32

C32

C32

C32

C32

C32

C32

C32

Ten of the eleven trees found by the expansion of G3 are 4-bandwidth critical.

As we cannot widen the embedding without increasing the height of the tree, this
exhausts all cases. Only the twelve trees T1...T12 of height two are 4-bandwidth
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critical.

5 Cyclic graphs

5.1 Expansion of 3-bandwidth critical cyclic graphs

The G5 graph can be expanded by adding leaves to the C3 subgraph to form 4
and 5-bandwidth critical graphs. It might be worth looking into whether this
pattern can be continued to form graphs with higher bandwidth criticallity.

1 2

3

4

5 6

7

8 9

1011

The graph pictured above is 4-bandwidth critical.

Proof The graph is homeomorphically minimal, containing only vertices of
degrees one, three, and four. To embed the graph optimally, first place the
vertices of the cycle (3, 7, 11), such that the vertices of highest degree (7, 11)
are to the outside.

7 3 11

7 3 11

7 3 11

4 5 6 8 9 10

4 5 6 8 9 101 2

Next, embed the leaves of vertices 7 and 11 to the outside of the cycle. Finally,
embed the leaves of vertex 3. Any placement of these final vertices will increase
the bandwidth to at least four.

Next, we must show that every proper subgraph has a smaller bandwidth
than four. There are three cases for removing a single edge: A) removing a leaf
edge from vertex 3 B) removing a leaf edge from vertex 7 or 11 C) removing an
edge of the cycle. The optimal embeddings of each case are pictured below:
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7 3 114 5 6 8 9 101 2

7 3 114 5 6 8 9 101 2

7 3 114 5 6 8 9101 2A)

B)

C)

Because all three cases have bandwidth three, every possible subgraph has band-
width smaller than four. Thus, the graph is 4-bandwidth critical.

1 2 3

4
5

6

7 8

9

10
11

12

13

14

By adding more pendants to G5, we can create the 5-bandwidth critical graph
pictured above.

Proof The graph is homeomorphically minimal, containing only vertices of
degrees one, four, and five. To embed the graph optimally, first place the vertices
of the cycle (4, 9, 14), such that the vertices of highest degree (9, 14) are to the
outside.

9 4 14

9 4 145 6 7 8 10 11 12 13

9 4 145 6 7 8 10 11 12 131 2 3

Next, embed the leaves of vertices 9 and 14 to the outside of the cycle. Finally,
embed the leaves of vertex 4. Any placement of these final vertices will increase
the bandwidth to at least five.

Next, we must show that every proper subgraph has a smaller bandwidth
than five. There are three cases for removing a single edge: A) removing a leaf
edge from vertex 4 B) removing a leaf edge from vertex 9 or 14 C) removing an
edge of the cycle. The optimal embeddings of each case are pictured below:
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9 4 145 6 7 8 10 11 12 131 2 3

9 4 145 6 7 8 10 11 12 131 2 3

9 4 145 6 7 8 10 11 12 131 2 3A)

B)

C)

Because all three cases have bandwidth four, every possible subgraph has band-
width smaller than five. Thus, the graph is 5-bandwidth critical.

More work is left to be done to see if these G5 expansion graphs form an
infinite family of n-bandwidth critical graphs.

The following graph, modeled after G6, is 4-bandwidth critical. This graph
consists of a C9 subgraph with a leaf attached to each vertex in the cycle.

1

2
3

4

5

6

78

9

10

11

12

13

14

15

1617

18

Proof This graph contains only vertices of degree three and degree one, and
thus is homeomorphically minimal. All pendant edges and vertices are identical
in this graph. Furthermore, all edges and vertices on the cycle are identical.
Without loss of generality, we first embed the cycle in a bandwidth two ar-
rangement. Next, we place six pendants (10, 11, 13, 14, 15, 18) on both sides
of the embedded cycle. This increases the bandwidth to 3.

1 2 39 8 7 4 56

1 2 39 8 7 4 56

1 2 39 8 7 4 56

14

14

1513

1513

10

10

11

11

18

18 17 12 16
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Three pendant vertices (12, 16, 17) remain. We can safely place 16 and 17 and
maintain bandwidth three. However, adding vertex 12 will raise the graph’s
bandwidth to four, no matter what arrangement the three vertices are placed.
Thus, the graph has bandwidth four.

As pendant edges are identical and cycle edges are identical, we must demon-
strate that two cases result in a bandwidth less than four: A) removing one
pendant edge B) removing one cycle edge. Without loss of generality, we re-
move the pendant edge from vertex 3 to 12, and the resulting subgraph has
bandwidth three. In the second case, the edge from vertex 1 to 9 is removed.
The cycle is broken and now forms a path with pendants, or a caterpillar. The
resulting caterpillar is embedded below with bandwidth two:

1 2 3 9874 5 614 151310 11 181712 16

Thus, every proper subgraph has a bandwidth of less than four. Therefore, the
G6 expansion is 4-bandwidth critical.

5.2 Cubes

The cubic graph Q3 is 4-bandwidth critical.

1

2

3

4

5

6

7

8

Proof Q3 only contains vertices of degree three, and thus is homeomorphically
minimal. All edges and vertices are identical in this graph. Without loss of
generality, we select vertex 1 to embed on the far left. Next, we place each
connected vertex (2, 3, and 4) to the right of vertex 1 and draw in edges. The
order is arbitrary.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Then we add vertex 8, the most distant vertex from 1, to the far right of the
embedding. Connected vertices (5, 6, and 7) and their edges are placed to the
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left of vertex 8. Finally, the remaining edges are added, creating a 4-bandwidth
graph. No matter what order vertices 2 through 7 are placed, the embedding
cannot be improved.

As all edges and vertices are identical in this cubic graph, we must only show
that removing one edge results in a bandwidth less than four. In this example,
if we remove the edge between vertices 1 and 2, the embedding is reduced to a
bandwidth of three.

12 34 56 78

Thus, every proper subgraph has a bandwidth of less than four. Therefore, Q3

is 4-bandwidth critical.

6 Conclusion

This paper concludes Westerfield’s work on 3-bandwidth critical graphs, demon-
strating that G1 through G6 and the G4 infinite family are the only 3-bandwidth
critical graphs. The paper also categorizes many types of 4-bandwidth critical
graphs, including trees of height two. New infinite families have been explored.
It may be of interest to continue studying 4-bandwidth critical graphs. More
work needs to be done in classifying unicyclic and polycyclic graphs, as well
as larger trees. However, this problem is NP-complete, and the set of all 4-
bandwidth critical graphs is likely much larger than that of 3-bandwidth critical
graphs.
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