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Abstract

The crossing probability energy UCP is defined and properties are

explored. The energy is based upon the probability that non-adjacent

edge pairings of a polygonal knot Pn do not cross. UCP is found to

be asymptotically finite, but not asymptotically smooth. An algorithm is

presented to compute UCP as well as minimize the energy using a gradient

flow.

1 Introduction

Knot energies were first introduced in 1988 by Fukuhara [3, 4] and deal with
measuring the complexity of knot conformations. Within mathematics, energy
functions are studied to obtain measures of complexity that turn out to be
useful knot invariants [7]. One hopes that energy minimizers will yield ideal
knot conformations. Within the scientific world, knot energies are hoped to
be applicable to situations found in DNA knotting and polymer science [4, 7].
Further motivation includes the study of electrophoretic mobility of knotted
DNA and the knotted flow and field lines in fluids and electromagnetism [4].

Let S be the set of either simple closed curves or polygonal curves. A function
f is scale invariant if for any n ∈

� + then f(nS) = f(s) for any S ∈ S. This
implies that any increase or decrease in scale of any knot does not change the
value of the function f .

A knot energy is a scale invariant function from S into the positive real
numbers:

f : S →
� +

The knot energy f(S) is the energy of the knot S ∈ S [2, 4].
In Section 2 we begin with the background needed to further explore knot

energies and develop some intuition for properties that knot energies may pos-
sess. Definitions for knot energy properties such as basic, charge, and strong
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are provided and a precise definition of the crossing probability energy UCP is
given. In Section 3 some basic results are shown, such as the property that UCP

is minimized only for a planar trivial knot. We delve further into UCP proper-
ties in Section 4. Here we provide a special construction of a knot, namely a
near diagram knot, to aid in proving that UCP is asymptotically finite. We also
show that UCP is not asymptotically smooth based upon the results in Section
3.

In Section 5 we present an algorithm to compute and locally minimize UCP .
The algorithm calculates the value of UCP for the initial knot inputted then
attempts to minimize the energy for the given knot representation and type
using a gradient flow. Along with discussion of the experimental behavior of
UCP , a data table is included for four different knot energies of knots from
three to eight crossings. This table provides a side by comparison of UCP

with Simon’s minimum distance energy UMD [7], as well as two other potential
energies discussed in Section 6. Within Section 6, we conclude by discussing
two potential knot energies as well as proposing conjectures about UCP . The
two potential energies were arrived upon in the investigation of UCP . They are
based upon probabilities, but it is not clear what the probabilities are as of yet.

2 Background

Here we provide definitions needed and notational conventions used throughout
the paper. A knot’s complexity often revolves around how twisted the knot is
or how many times the knot crosses over itself, which is denoted as the crossing
number of the knot, defined here. Certain desirable knot energy properties are
defined.

Definition 2.1. A knot is a simple closed curve in 3-dimensional space.

Definition 2.2. The crossing number of a knot type K, denoted c(K), is the
least number of crossings over all projections of the knot type.

Example 2.3. The crossing number of the unknot is 0. The crossing number
of the trefoil knot is 3.

Unknot Trefoil

Definition 2.4. The stick number of a knot type K, denoted s(K), is the least
number of sticks, or edges, needed to construct a knot of type K.

Example 2.5. The unknot has stick number 3 and the trefoil has stick number
6.

2.1 Properties

Define Pn to be the set of all polygonal knots with n-edges. Define Kn to be the
set of all knots of knot type K with n-edges. Note that Kn ⊆ Pn. Throughout
the paper, K or Pn is used to denote an arbitrary knot.

Here we define properties that knot energies may possess as in [2, 4].
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Definition 2.6. Let f : Pn →
� + be an energy function of polygons. The

n-energy of a knot type K is an infimum over all n-gons in Kn:

fn(K) = inf {f(Pn) | for all Pn ∈ Kn}

The energy of a knot type K over all polygons is the infimum:

f(K) = inf
n>0

fn(K)

Notation: We denote the infimum of UCP of a knot type K as UCPn
(K) and

call it the n − crossing probability energy.

Definition 2.7. Let f : Pn →
� + be an energy function of polygons. Then,

(a) f is called a basic energy function if f(Pn) is the absolute minimum within
Pn iff Pn is the regular polygon of n-edges (denoted by Rn);

(b) f is called a strong energy function if for any given positive number a > 0
there are only finitely many knot types K such that f(K) ≤ a. In this
case f(K) is defined to be the infimum of f over Pn(K);

(c) f is called a charge energy function if f(Pn) → ∞ as Pn approaches a
singular polygon (a polygon with self intersections);

(d) f is called semi-ideal energy function if it satisfies conditions (a), (b), and
(c).

One expectation of a knot energy is that if we increase the number of edges
of a knot, K, of a specified knot type, K, we expect the energy sequence of K

not to diverge. In otherwords, we want the infimum of the energy of K to be
bounded. This keeps the knot energy from tending to infinity as we increase the
edge number without bound. We call this property asymptotically finite and
define it below.

Definition 2.8 (Asymptotically Finite). Let f be a knot energy function
for S = Pn. Let fn(K) be the infimum of the energy of polygons of length
n-edges and knot type K. Then f is asymptoticallly finite if

lim sup
n→∞

fn(K) < ∞

for any knot type K.

Another desirable property of a knot energy is that of being asymptotically
smooth.

Definition 2.9 (Asymptotically Smooth). Let f be a knot energy function
for S = Pn and f(Pn) be the energy of a polygon Pn ∈ Pn. Let the edges of Pn

be labeled {e1, e2, . . . , en}. Let θi be the excluded angle between the edges ei

and ei+1 and θn be the excluded angle between en and e1. The energy function
f is asymptotically smooth if there exists M > 0 such that for all Pn ∈ Pn and
all n > 0,

θ = max
i

(θi) ≤

[

M

n

]

f(Pn)

If an energy, f , is asymptotically smooth, then the total curvature of any
knot K (defined as the sum of the θi’s) is bounded by M ·f(K). It is important
to note that the converse of this statement is not always true [2].
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2.2 Crossing Probability Energy

The crossing probability energy deals with the probability of whether or not pairs
of edges cross. We will first define n(a, b), the probability that the edges a, b

don’t cross, using two differing definitions to build an intuition for the energy.
One definition defines n(a, b) using the dihedral angles of a formed tetrahedron
between the edges a, b and the other utilizes a double integral to find the average
number of times a crosses b in a given projection. The definition of the total
energy immediately follows from the definition of n(a, b).

2.2.1 Dihedral Definition of n(a, b)

Let a and b be two non-adjacent edges of Pn ∈ Pn. Two edges are defined
to be non-adjacent if they do not share any vertices. The vertices of a and b

create a tetrahedron. We will be concerned with the four dihedral angles along
the edges of the tetrahedron other than the knot edges a, b, as shown in the
following figure:

a

b

d1

d2

d4d3

If we take each face of the tetrahedron and slice the unit sphere through the
origin with each face, then the intersection between the faces of the tetrahedron
and the surface of the sphere will create a quadrilateral on the sphere’s surface:

r=1

The probability that the two edges, a and b, cross is the surface areas of the
quadrilateral and its reflection through ~0 divided by the total surface area of
the sphere, which is 4π. The area of the quadrilateral is just the sum of the four
angles minus 2π. Each of the quadrilateral’s angles are equal to π−di, where the
di’s are the dihedral angles we defined above. We multiply the quadrilateral’s
surface area by 2 because of the diametrically opposed quadrilateral on the
sphere. Then the probability that the two edges cross p(a, b) is:

p(a, b) =
1

4π
· 2 · Area of Quadrilateral

=
1

2π

(

(π − d1) + (π − d2) + (π − d3) + (π − d4) − 2π
)

= 1 −
d1 + d2 + d3 + d4

2π
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where each di is the dihedral angle between the two faces of the tetrahedron
that share the edge i. There are only four of them because we exclude the two
edges, a and b, of the knot. The probability, n(a, b), that the two non-adjacent
edges a, b do not cross is given by n(a, b) = 1 − p(a, b), or:

n(a, b) =
d1 + d2 + d3 + d4

2π

2.2.2 Integrand Definition of n(a, b)

In [7], Simon uses the Gauss map to show that the probability that two edges
of a knot cross to be:

1

2π

∫

I×I

|J(f)| ds dt

where f(s, t) is the map f : I × I → S2, I = [0, 1], and S2 is the unit sphere.
J(f) is the Jacobian of f and the integrand term multiplied by 1

2π
is the average

number of times two edges are seen to cross over each other in the projection
onto S2. This is the probability that two edges cross, i.e. p(a, b). Then since
n(a, b) = 1 − p(a, b):

n(a, b) = 1 −
1

2π

∫

I×I

|J(f)| ds dt

2.2.3 The Crossing Probability Energy - UCP

Now we define the crossing probability energy as:

UCP (Pn) =
1

∏

a,b

n(a, b)

where the product is taken for each non-adjacent edge pairing a, b of Pn.
In [8], Trapp showed that UCP is strong by proving that for K ∈ Pn,

UCP (K) ≥ ec where c = c(K), the crossing number of the knot K, and that
UCP is not charge.

3 Basic Results

In Section 2.1 we stated that a knot energy is basic if and only if the energy is
minimized on regular n-gons. Here we present a theorem that not only distin-
guishes the trivial knot from non-trivial knots but also distinguishes between
the planar trivial knot and the non-planar trivial knot. We prove that if K is
a planar trivial knot, then UCP (K) = 1. This says nothing about K being a
regular polygon, therefore UCP is not basic.

Although UCP is not minimized only on regular polygons, it is nice that the
energy is minimized on the trivial knot and that any non-trivial knot has energy
UCP > 1, a result that directly follows from the following theorem.

Theorem 3.1. For K ∈ Pn, UCP (K) = 1 iff K is a planar trivial knot.
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Proof. Let K ∈ Pn.
i.) Let UCP (K) = 1. Since UCP (K) = 1 ≥ ec, c=0. Then K is a trivial

knot. Assume K is non-planar. Then some non-adjacent edge pairing will yield
a non-planar tetrahedron. This tetrahedron will yield a volume greater than
zero and when each of the four faces of the tetrahedron are embedded into a
sphere, the resulting quadrilateral will have a surface area greater than zero.
Then p(a, b) > 0 and n(a, b) < 1. This implies UCP (K) > 1, contradicting the
fact that UCP = 1. Therefore K is a planar trivial knot.

ii.) Let K be a planar trivial knot. Then every edge of K will lie in the same
plane. For any two non-adjacent edge pairing a, b, the tetrahedron resulting
from connecting the vertices of the edges will also be planar. Then two of the
dihedral angles we consider, d1 and d2, will be π and the other two, d3 and d4,
will be 0, as made evident by the following figure:

a

b

d1
d2

d4

d3

Then n(a,b) for every non-adjacent edge pairing will be:

n(a, b) =
d1 + d2 + d3 + d4

2π
=

π + π + 0 + 0

2π
= 1

UCP (K) is the reciprocal of the product of n(a, b) for each non-adjacent edge
pairing. Therefore UCP (K) = 1.

Therefore UCP (K) = 1 iff K is a planar trivial knot. ¤

Corollary 3.2. If K ∈ Pn is a non-planar trivial knot, then UCP (K) > 1.

Proof. Let K ∈ Pn be a non-planar trivial knot. Since UCP ≥ ec and c = 0,
then UCP (K) ≥ 1. Since K is non-planar, by Theorem 3.1, UCP (K) 6= 1.
Therefore UCP (K) > 1. ¤

Corollary 3.3. If K ∈ Pn is a non-trivial knot, then UCP (K) > 1.

Proof. Proof is similar to Corollary 3.2. ¤

Theorem 3.4. UCP is not basic.

Proof. By Theorem 3.1, a regular polygon, Rn, has energy UCP (Rn) = 1 as
well as any other planar trivial knot. Therefore UCP is not minimized only for
regular n-gons. ¤

4 UCP Properties

At this point, we know that UCP is strong, though not basic or charge. Here
we present a special construction of a knot, given enough sticks, to aid in the
presentation that UCP is asymptotically finite. From Theorem 3.1, it follows
that UCP is not asymptotically smooth. Through this discussion we arrive at
tight bounds for UCPn

, the inf UCP for a knot type K, bounded below and
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above by ec and
(

256
81

)c
≈ 3.16c. This leads to the fact that UCP is really just

the crossing number when we bound the n-crossing probability energy, UCPn
, by

showing c ≤ ln (UCPn
) ≤ 1.151c.

4.1 Near Diagram Knot and UCPn

According to [5], the stick number of a knot is at most twice the crossing number,
i.e. s ≤ 2c. We create a planar graph of the knot Pn by turning all crossings
to intersections. Each vertex of the graph corresponds to a crossing of Pn. For
example, we obtain something like the following for the trefoil knot (note the
resulting diagram has 2c-edges):

This construction can be done for an arbitrary knot, we just use the trefoil
as the example here. If we construct each crossing by laying the undercrossing
edge in the plane of the graph (all the non-crossing edges of the graph lie in
the same plane) and use two edges for each overcrossing we obtain something
similar to:

Edges
 of graph

Now insert a vertex on the undercrossing edge so that the new vertex is
directly under the crossing vertex. If we continue this way, we will use 4 sticks,
or edges, for every crossing of the knot Pn. So the total amount of sticks needed
to create this representation of the knot Pn will be 2c + 4c = 6c. This will be
the minimum number of sticks assumed for each knot in the following proofs,
i.e. n ≥ 6c.

Definition 4.1 (Near Diagram Knot). Let K ∈ Pn. Let each crossing of K

be respresented as:

a b

c

d

where the crossing vertex, the shared vertex between edges a and b, is exactly
above the undercrossing vertex, the shared vertex between the edges c and d.
Every vertex except the crossing vertex lies in the same plane as the edges c

and d. This plane also contains all undercrossing edges, two vertices from each
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crossing edge pair, and all non-crossing planar edges. Also, we assume the edge
a is orthogonal to the edges c and d, similarly with the edge b. Let ε > 0 be the
distance between every crossing vertex and undercrossing vertex. We define a
knot represented this way as a near diagram knot.

Example 4.2. Here is an example of a near diagram knot representation of the
trefoil:

Note that there are 6c, or 18, sticks used. Recall that the straight undercross-
ing edges contain vertices directly below the crossing vertices, giving 3 sticks
not shown in the picture.

The fact that UCP is not charge [8] is what allows us to exploit a near dia-
gram knot representation by taking the limit of UCP as ε → 0, i.e. as a vertex
approaches another vertex. Even though the fact that UCP is not charge is
dissapointing, the following theorem will lead us into a proof that UCP asymp-
totically finite, a property some energies lack. One such example is Simon’s
minimum distance energy, UMD, which is charge though not asymptotically fi-
nite [4]. It is good to note here that the appropriate normalization of UMD does
seem to be asymptotically finite [6].

Theorem 4.3. Let Pn be a near diagram knot, c(Pn) = c, and ε > 0 be the
distance between every crossing vertex and undercrossing vertex, then

lim
ε→0

(

UCP (Pn)
)

=

(

4

3

)4c

≈ 3.16c.

Proof. Let the polygonal knot Pn be a near diagram knot. Near each crossing,
the knot looks like:

a b

c

3 1
2

4

For each crossing, label the two overcrossing edges a and b and label the two
undercrossing edges c and d, as above.

To determine UCP (Pn) there are four different non-adjacent edge pairing
types that we have to consider:

• crossing edge - undercrossing planar edge

• crossing edge - planar edge
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• crossing edge - crossing edge

• planar edge - planar edge

Case i. (crossing edge - undercrossing edge) We will first look at the probability
n(a, c). Construct a tetrahedron as in the figure above by connecting the vertices
of a to those of c. Remember, we are only concerned with the dihedral angles
along the edges that are not a or c. Label every other edge of the tetrahedron
1 through 4 as in the above figure. The triangular faces {12c} and {23a} are
perpendicular to the plane that c lies in. As ε decreases, the crossing vertex
lowers along the shared edge of the triangles {12c} and {23a}. This causes the
dihedral angles along the edges 1, 2, and 3 to approach π

2 and the dihedral along
the edge 4 to approach 0. Thus, the probability that the two non-adjacent edges
a and c don’t cross approaches the following limit:

lim
ε→0

n(a, c) = lim
ε→0

d1 + d2 + d3 + d4

2π
=

π
2 + π

2 + π
2 + 0

2π
=

3π
2

2π
=

3

4

where each di is the dihedral angle along the edge i.
The probabilities n(a, d), n(b, c), n(b, d) → 3

4 following the same construc-

tion. The crossing contributes a factor of
(

4
3

)4
≈ 3.16 to the lim

ε→0
(UCP (Pn)).

Since each crossing of Pn will contribute a factor of
(

4
3

)4
to UCP (Pn), there will

be a total factor of
(

4
3

)4c
for all crossings.

Case ii. (crossing edge - planar edge) Now we take a look at the same limit
between a crossing edge and another planar edge besides the undercrossing edge,
as shown:

x

y

z

where ε > 0 is again the distance between the crossing vertex, shared between
the edges x and y, and the plane in which z lies. As ε approaches 0 the edge
pairings {x, z} and {y, z} approach planar edge pairings. The probability that
two planar edges cross is 1, as shown in the proof of Theorem 3.1. So as ε

approaches 0, n(x, z) → 1 and n(y, z) → 1. The contribution to UCP (Pn) is a
factor of 1.

Case iii. (crossing edge - crossing edge) Here we have to consider two non-
adjacent crossing edge pairings and their energy as ε → 0. As ε approaches 0
the crossing edges approach planar edge pairings. The contribution to UCP (Pn)
is a factor of 1.

Case iv. (planar edge - planar edge) For every planar edge pairing, the prob-
ability n(a, b) = 1 and as each crossing height approaches 0, n(a, b) = 1. The
contribution to UCP (Pn) is a factor of 1.
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Now we have looked at every possible non-adjacent edge pairing in Pn and
their contribution to the product in the calculation of UCP (Pn) as each of the
crossings approach a height of 0. We have:

lim
ε→0

UCP (Pn) =

(

4

3

)4c

· 1 · 1 · 1 =

(

4

3

)4c

≈ 3.16c
¤

This theorem allows us to say that UCPn
(K), the infimum of UCP for a

given knot type K, is bounded above by
(

4
3

)4c
, leading into the proof that UCP

is asymptotically finite.

Theorem 4.4. If K ∈ Kn, then UCP (K) is asymptotically finite.

Proof. Let K ∈ Kn. For n ≥ 6c, Theorem 4.3 shows that UCPn
(K) ≤

(

4
3

)4c
.

Therefore:
lim sup

n→∞

UCPn
(K) < ∞

and UCP (K) is asymptotically finite. ¤

Theorem 4.5. If K ∈ Pn, then UCP (K) is not asymptotically smooth.

Proof. We will prove this theorem by illustrating a specific example where UCP

is not asymptotically smooth.
Let K be a planar trivial knot. Then K ∈ Pn. By Theorem 3.1, UCP (K) =

1. Let θ = max
i

(θi) where each θi is the excluded angle between the edges ei

and ei+1 and θn is the excluded angle between en and e1. We can construct a
representation of K where θ is near π, similar to:

Leave θ fixed near π as n → ∞, where n is the number of edges of K. Then
there is no constant M > 0 such that nθ ≤ M and since UCP (K) = 1 then
there is no M > 0 such that

θ ≤
M

n
UCP (K)

Therefore UCP (K) is not asymptotically smooth. ¤

4.2 UCPn
Bounds

We can now discuss bounds for UCPn
(K), the n-crossing probability energy

for any K ∈ Kn. Since UCP (K) ≥ ec [8], where c = c(K), we know that

UCPn
(K) ≥ ec. From Theorems 4.2 and 4.3 we have that UCPn

(K) ≤
(

4
3

)4c
.

Then the bounds for UCPn
(K) are:

ec ≤ UCPn
(K) ≤

(

4

3

)4c

The following theorem uses this fact to shed some light on what energy UCP

actually is.
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Theorem 4.6. Is K is a knot type, n ≥ 6c, and U ′

CP = ln (UCP ), then c ≤
U ′

CPn

(K) ≤ 1.151c.

Proof. Assume the given above. From Theorems 4.2 and 4.3 and [8],

ec ≤ UCPn
(K) ≤

(

256

81

)c

ln ec ≤ ln (UCPn
(K)) ≤ ln

(

256

81

)c

c ≤ U ′

CPn

(K) ≤ c

(

ln
256

81

)

≈ c · 1.150728

∴ c ≤ U ′

CPn

(K) ≤ 1.151c ¤

This is interesting because it shows that the infimum of the crossing proba-
bility energy is essentially the crossing number of a knot. The upper bound for
U ′

CPn

is tight enough at 1.151c that it is hopeful that the infimum of U ′

CP is
actually lower, closing in on c.

In fact, in the following section, we conjecture that U ′

CP of the inscribed poly-
gons of a smooth knot approaches the average crossing number of the smooth
knot as the inscribed polygons approach the smooth knot.

4.2.1 Conjecture that ln (UCP (K)) → ACN(K)

The average crossing number, or ACN(K), of a polygonal knot K is defined as:

ACN(K) =
∑

n(n−3)
2

1

2π

∫

I×I

|J(f)| ds dt

(Refer to the Integrand Definition of n(a, b) in Section 2.2.2 and [7].)
If we look at a knot K through all possible projections, we see the knot

crossing over itself. For example, if we look at the trefoil knot over all of it’s
projections, most of the time it appears to cross over itself 3 times. But, through
some projections of the knot it may appear to have 4 or 5 crossings. The average
of all these crossing numbers over all projections is the average crossing number
of the knot.

For the following discussion, the notation of kp − q denotes a knot with
p-crossings and q is a sequencing number to distinguish between knot types.

For a given parameterization of the trefoil knot, k3 − 1, we inscribe polyg-
onal approximations of k3 − 1 and increase the number of edges of the in-
scribed polygons, denoted Ki. We look at what happens to UCP (Ki), or rather
ln (UCP (Ki)), as the Kis approach the smooth curve of k3−1. We already know
that the average crossing number, ACN , of the Kis should approach the ACN

of the smooth curve k3 − 1. It turns out for this example, that ln (UCP (Ki))
seems to approach ACN(k3 − 1). The specific parameterization of k3 − 1 we
use is:

~c(t) =
[

cos(2t) · (2 + cos 3t), sin(2t) · (2 + cos 3t), sin 3t
]

for 0 ≤ t ≤ 2π

For n-edges, we parameterize n-vertices by substituting t = 2π
n

i, for i =
{1, 2, . . . , n}, into ~c(t). The following data table shows the results.
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Polygonal → Smooth Approx. of k3 − 1

n-edges UCP ln (UCP ) ACN

10 178.77492 5.18613 4.43745
15 107.85290 4.68077 4.42233
20 95.86474 4.56294 4.42801
25 91.53649 4.51674 4.43300
30 87.82454 4.47534 4.41812
40 89.24765 4.49142 4.45971
50 89.28829 4.49187 4.47172
60 89.07112 4.48944 4.47549
70 88.85005 4.48695 4.47673
75 88.87794 4.48726 4.47837
80 88.91590 4.48769 4.47988
90 88.92345 4.48778 4.48161
100 88.78545 4.48622 4.48123
150 88.80006 4.48639 4.48417
200 88.76220 4.48596 4.48472

The data was computed by a procedure written in Maple, following the
algorithm described in the next section.

By looking at the table above, the data shows that as we increase the number
of edges of the inscribed polygons, ln (UCP (Ki)) → ACN(K) where K is a
specific parameterization of k3 − 1.

Let C2 be the set of smooth curved knots.

Conjecture 4.7. If K ∈ C2 and {K1,K2,K3, . . . ,Km} is a sequence of K −
inscribed polygonal knots, Ki, that approaches K as edges of the inscribed poly-
gons are increased, then ln (UCP (Ki)) → ACN(K).

5 Algorithm / Experimental Behavior and Data

Here we will present a computing algorithm to calculate the value of UCP for a
given knot conformation. This algorithm also uses a negative gradient flow to
locally minimize the energy.

We also discuss the behavior of UCP for different knots as they flowed to
local energy minima. We include a table of data that provides values of UCP for
certain knots, as well as comparisons to the minimum distance energy, UMD,
and two potential energies discussed in Section 6.

5.1 Algorithm

(a) Input : The vertices, {v1, v2, v3, . . . , vn}, of a polygonal knot, K, are input
in order.

That the vertices are input in order means you begin with v1 and travel
around the knot labeling the vertices consecutively to vn. The edges, ei,
are defined as below:
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e(1)

e(n-1)
e(n)

e(3)
e(2)

v(n)

v(1)

v(2)

v(3)

(b) For each n(n−3)
2 non-adjacent edge pairing a, b of K compute n(a, b):

(i) Utilize crossproducts to find the normal vectors to each face of the
tetrahedron.

(ii) Using dotproducts between the normal vectors, solve the following
equation:

cos θi =
nx · ny

||nx|| · ||ny||

for θi and i = 1, 2, 3, 4, where nx, xy are the normal vectors to the
faces x and y. θi is the dihedral angle between the faces x and y.
Refer to Section 2.2 for the definition of UCP .

(iii) Sum the θis to get:

n(a, b) =

∑

θi

2π

(c) The reciprocal of the total product is taken to obtain UCP :

UCP =
1

∏

a,b

n(a, b)

There should be n(n−3)
2 factors in the product of n(a,b), corresponding to

the amount of non-adjacent edge pairings of K.

(d) For the gradient of UCP , we first take the natural logarithm of the energy
for ease of derivation:

ln (UCP ) = ln

(

1
∏

n(a, b)

)

= −
∑

(ln n(a, b))

Then with respect to each coordinate, xi, of the ordered vertices of K we
take the partial derivative of ln (UCP ). The vector of the coordinates of
K looks like Kcoord = [x1, x2, x3, x4, . . . , x3n], where (x1, x2, x3) are the
coordinates of v1 and so on. The gradient of UCP is then computed by:

5UCP =

[

∂

∂x1
UCP ,

∂

∂x2
UCP ,

∂

∂x3
UCP , . . . ,

∂

∂x3n

UCP

]

where
∂

∂xi

UCP = −
∑

n(n−3)
2

(

1

n(a, b)
·

∂

∂xi

n(a, b)

)
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for i = 1, 2, 3, . . . , 3n. Then the gradient 5UCP is normalized and mul-
tiplied by (−1 × ε × {minimum of all MD(a, b)}). The term MD(a, b) is
the minimum distance between two non-adjacent edges a, b [7]. We take
the negative to go in the minimizing gradient direction. The ε is chosen
small enough so as not to change the knot type when moving the knot.
This modified gradient gives a vector, Kmove, which is added to Kcoor,
the coordinates of the original knot K, to give us a new knot, K ′. The al-
gorithm is then started over with K ′ as the input knot. The minimization
is then iterated as desired.

5.2 Experimental Behavior

With the presented algorithm and a procedure in Maple, we experimented with
the minimization of 3 and 4 crossing knot representations, namely the trefoil
and figure-eight knots. The gradient flow seemed to take vertices to vertices,
and in the case where not enough sticks was given, vertices moved toward edges.
It is good to note here that the energy will not tend to infinity in either case
for these are the cases where UCP fails to be charge. This behavior gave the
inspiration for augmenting our definition of a near diagram knot, which in turn
tightened our bound for UCPn

. We originally had the crossing vertex directly
above the undercrossing edge, rather than the crossing vertex directly above the
undercrossing vertex.

Since vertices were approaching each other, each knot flattened out, as
viewed in the following picture of a 10-stick trefoil knot:

5.3 Experimental Data

Using the procedure in Maple, we looked at some values for the UCP energy
function. Starting with the coordinates of well-conformed knots, we calculated
the energy of the given knots. The knot conformations are close to being energy
minimizers for UMD and the values presented in the following table are all for
the same knot conformations over all energy functions for a given knot.

The energy functions ULM and UMM are potential new knot energies and
have not been explored at any depth. These functions are presented in Section
6.

Recall that the notation of kp − q denotes a knot with p-crossings and q is
a sequencing number to distinguish between knot types.
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Table of Knot Energy Functions

Knot UCP lnUCP UMD ULM UMM

k3-1 1.644E+03 7.40473 189.87420 8.12639 0.87163
k4-1 1.125E+05 11.63086 459.60736 12.35743 1.54699
k5-1 3.890E+05 12.87137 401.42316 16.41840 3.43179
k5-2 8.388E+05 13.63968 415.59828 16.71347 3.14407
k6-1 6.141E+07 17.93303 1047.44376 16.51381 3.10040
k6-2 7.390E+07 18.11828 879.22558 17.67741 2.21096
k6-3 1.990E+09 21.41124 1133.78786 18.77077 1.22018
k7-1 2.191E+08 19.20515 836.74345 21.05681 5.61575
k7-2 9.537E+08 20.67581 1115.95756 21.52058 5.02846
k7-3 2.327E+08 19.26533 808.66922 21.37211 5.34382
k7-4 1.283E+09 20.97261 1074.63556 23.27893 3.54120
k7-5 7.627E+08 20.45239 1105.25779 21.91794 4.69760
k7-6 8.517E+09 22.86531 1218.41207 22.48299 4.28959
k7-7 1.410E+10 23.36948 1288.90856 24.78095 1.97130
k8-1 9.464E+10 25.27331 1316.51512 28.01840 6.35780
k8-2 1.478E+10 23.41642 992.70256 27.68798 6.99736
k8-10 3.450E+11 26.56678 1642.11212 30.91567 3.92452
k8-11 4.444E+11 26.81997 1811.83416 28.49527 6.22090
k8-12 2.813E+12 28.66525 1785.68026 29.66231 4.93641
k8-13 8.602E+10 25.17789 1224.17291 29.62817 5.16532
k8-14 4.543E+10 24.53937 1453.29254 29.58777 4.93601
k8-15 1.179E+12 27.79557 1766.10962 30.52967 4.19358
k8-16 2.423E+11 26.21330 2265.81992 25.09231 1.82768
k8-17 6.306E+11 27.16998 2539.80301 25.18404 1.75426
k8-18 3.807E+12 28.96798 2923.48082 25.14591 1.65347
k8-19 9.621E+10 25.28978 1230.54271 19.11277 0.88665
k8-20 9.276E+11 27.55582 2200.24966 19.27186 0.71792
k8-21 3.672E+09 22.02409 1062.18104 24.15931 2.65249

6 Conclusion

Here we list some questions and potential problems, as well as definitions for
potential knot energies.

6.1 Potential Problems and Knot Energies

While investigating the properties and the behavior of UCP we came across
some interesting questions about UCP . Some were simply questions and others
were propositions that we were unable to prove.

The first question is that of the following:

• Can we find an upper bound of UCP involving UMD, Simon’s minimum
distance energy [7]?

We started with the following relationship for some knot K ∈ Pn:
∑

n(a, b) =
∑

(1 − p(a, b))

=
n(n − 3)

2
− ACN(K)
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Note that we are summing n(n−3)
2 terms, ACN(K) is the average crossing

number of K, and a, b are non-adjacent edges of K. In [7], Simon found the
relationship that 2πACN(K) ≤ UMD(K). We apply this to the above equality
to find:

∑

n(a, b) ≥
n(n − 3)

2
−

1

2π
UMD(K)

where

UMD(K) =
∑

a,b

l(a) · l(b)

MD(a, b)2

The edges a, b are non-adjacent, l(a) is the length of edge a, and we again have
n(n−3)

2 terms in the sum.
From this we sought out to minimize n(a, b) and came across the following

conjecture:

Conjecture 6.1. If a, b are two non-adjacent edges of some knot K ∈ Pn, then
n(a, b) is minimized when a ⊥ b and MD(a, b) is the distance along the shared
perpendicular between endpoints of a and b.

Experimentally we found this to be the case but were unable to prove that
this truly is the minimizing conformation for n(a, b). We found a generalized
formula for n(a, b) and an inequality involving UMD(a, b) for this situation.
UMD(a, b) is the energy for the edges a and b. The formula involves the length
of the two edges a, b, l(a) and l(b), and the minimum distance along the shared
perpendicular between endpoints of a and b, MD(a, b):

n(a, b) =
3π
2 + θ

2π

where

cos(θ) =
l(a) · l(b)

√

l(a)2 + MD(a, b)2 ·
√

l(b)2 + MD(a, b)2
< UMD(a, b)

We know that 0 ≤ cos(θ) ≤ 1, so the term involving l(a), l(b), and MD(a, b)
seems like it might be a probability. If we let that probability be p′(a, b) we can
define an energy, ULM , as follows:

ULM (K) =
∏

a,b

(

1

1 − p′(a, b)

)

where the product is taken for each non-adjacent edge pairing of K.
ULM is quickly shown to be scale invariant and is charge. It would be

interesting to determine if ULM satisfies other knot energy properties as well as
to know what the probability:

p′(a, b) =
l(a) · l(b)

√

l(a)2 + MD(a, b)2 ·
√

l(b)2 + MD(a, b)2

actually is.

Theorem 6.2. ULM is charge.
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Proof. Let K ∈ Pn. As K approaches a singular polygon, for some edges a, b of
K, MD(a, b) → 0. Then p′(a, b) → 1 and thus ULM (K) → ∞. Therefore ULM

is charge. ¤

Alternatively we can define p′′(a, b) to be:

p′′(a, b) =
MD(a, b)2

√

l(a)2 + MD(a, b)2 ·
√

l(b)2 + MD(a, b)2

which is also scale invariant and define the energy UMM as:

UMM (K) =
∏

a,b

(

1

1 − p′′(a, b)

)

Further investigation into these energies would be interesting and could pos-
sibly provide meaningful knot energies.
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