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Abstract

The two dimensional bandwidth problem under the distances of

L∞-norm and L1-norm has only been studied for a limited number of

graphs. In this paper, I analyze the two dimensional bandwidth for a few

different families of graphs.

1 Introduction

Below are some basic graph theory definitions that are necessary for under-
standing bandwidths.

A graph G=(V,E) is a set of V vertices and E edges. Each edge must start
at a vertex and end at a different vertex. The degree of a vertex is defined as
the number of edges incident to the vertex.
The complete graph Kn with n ε Z+ is a graph in which every pair of vertices
is connected by an edge. In a complete graph there are a total of n vertices,
each of degree (n-1). Below is a representation of the graph K4 with vertex set
{1, 2, 3, 4}.

The product graph of two complete graphs, Kn × Km, is simply a
collection of m copies of Kn. Vertices in different copies of Kn are adjacent
if and only if they are corresponding vertices. The product graph has a total
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of (nm) vertices, and all of the vertices have degree (n+m-2). Figure 2 is a
representation of K4 ×K2. As you can see there are two copies of K4. Between
the two copies, only the corresponding vertices are adjacent.

The complete bipartite graph, Kn,m, consists of two sets of vertices.
The first set has n vertices, and the second set has m vertices. There are a total
of (n+m) vertices with n vertices of degree m and m vertices of degree n. Every
vertex in one set is connected by an edge to all the vertices of the other set.
Also, no two vertices in the same set are connected by an edge. Below is K2,4.

A path, Pm, is a graph of a sequence of distinct vertices (x1, x2, x3, ..., xm)
such that xi is adjacent to xi+1 [6].

2 Background

2.1 B, B2, and β2

B, B2, and β2 represent the bandwidths under one-dimensional distance, two-
dimensional L1-norm distance, and two-dimensional L∞-norm distance respec-
tively.

2.1.1 B

Let G = (V (G), E(G)) be a connected graph with n vertices. An embedding
of G into a path Pn can be represented by a bijection f : V (G) → {1, 2, ..., n}
[4]. Now, let a, b ε V (G), and (a, b) ε E(G). The distance between a and b is
defined as the difference between f(a) and f(b), D(a, b) = |f(a) − f(b)|.

For any nontrivial graph there are many linear embeddings. The bandwidth
of the embedding f for graph G is [4]
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B(G, f) = max
uvεE(G)

|f(u) − f(v)|.

The overall bandwidth of G is the minimum bandwidth over all embeddings,
[4]

B(G) = min
f

B(G, f).

Bandwidth under the one-dimensional distance can be thought of as the
longest edge between two adjacent vertices in a graph. The following is an
example of the above bandwidth. In Figure 3, which is an optimal linear em-
bedding of K4, the longest edge is the edge between vertices 1 and 4. The
differnce between vertex one and vertex four is three. Hence, B(K4) = 3.

The above figure is an optimal embedding of K4 since any other embedding
yields a bandwidth of at least 3.

2.1.2 B2

Under L1-norm, the distance between two vertices (i, j) and (i′, j′) in grid graph
H is defined as [7]

dH ((i, j), (i′, j′)) =| i − i′ | + | j − j′ |,

called the rectilinear distance in the plane. Simply stated, the distance between
two vertices under L1-norm is the sum of the distances in the horizontal and
vertical directions.
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In the above figure, the distance between vertex A and vertex B is 7, 4 in the
horizontal direction and 3 in the vertical direction. The bandwidth of a labeling
f of graph G is defined by [8]

BH(G, f) = max
(u,v)εE(G)

dH(f(u), f(v)).

The of graph G is [8]
BH(G) = min

f
BH(G, f)

where the minimum is taken over all labelings f.

2.1.3 β2

In comparison, the distance between two vertices under the distance of L∞-
norm is defined below. Given two points in a grid graph H , (i, j) and (i′, j′),
the distance between them, ∂H , is defined by [1]

∂H((i, j), (i′, j′)) = max{|i − i′|, |j − j′|}.

In other words, the distance between two vertices under L∞-norm is the
maximum of the distances between the vertices in the horizontal and vertical
directions. Refering back to Figure 4, ∂H(A,B)=max{4, 3}.

For any graph G, there are many different ways of embedding the graph into
a grid. Each embedding, f, yields a bandwidth. Two-dimensional bandwidth of
(G, f) under L∞-norm is defined by [1]

β2(G, f) = max
uvεE(G)

∂H(f(u), f(v)),

where f is a one-to-one mapping from V (G) to V (H), i.e, an injection
f : V (G) → V (H). The overall bandwidth of the graph G is the minimum
bandwidth of every embedding of G, defined by [1],

β2(G) = min
f

β2(G, f).

2.2

How do B, B2, β2 relate?

3 Previous Findings

3.1

There has been little work on two-dimensional bandwidth under the distance
of L∞-norm. The results are specialized, only classifying several families of
graphs. For example, the two-dimensional bandwidth of a complete graph is
given below.
Theorem 3.1 [4] For a complete gragh Kn of n vertices,

β2(Kn) = d√n − 1e.
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The two-dimensional bandwidth of the product of a complete graph and a
path, (Kn × Pm), is known:
Theorem 3.2 [1] Let m, n ≥ 2, denote d = d√n − 1e.

1. If d2 < n ≤ d(d + 2) = (d + 1)2 − 1, we have β2(Kn × Pm) = d;

2. If n = (d + 1)2, we have β2(Kn × Pm) = d + 1.

Another family of graphs for which the two-dimensional bandwidth is known
is the product graphs of any complete graph times any cycle graph of three or
more edges, (Kn × Cm).
Theorem 3.3 [1] Let n, m ≥ 3, denote d = d√n − 1e.

1. If n = d2 + 1, we have β2(Kd2+1 × C3) = d.

If d2 + 2 ≤ n ≤ (d + 1)2, we have β2(Kn × C3) = d + 1.

2. If m ≥ 4, we have d ≤ β2(Kn × Cm) ≤ d + 1.

One other previous finding that’s interesting when studying two-dimensional

bandwidth under L∞-norm is K1,n. The theorem says [4], β2(K1,n) =
⌈√

n+1−1
2

⌉

.

3.2

Under the distance of L1-norm, the bandwidth B2 is known for many graphs.
Some of the bandwidths that are known are B2(Kn) and B2(Kn,m). However,
stating their theorems here is not important to explaining my work.

4 β2 of Product Graphs of Complete Graphs

4.1 β2(Kd2 × K4)

Theorem 4.1 Let d ≥ 1.

β2(Kd2 × K4) = d

Proof: First, we know β2(Kd2 × K2) = β2(Kd2 × P2) since K2 = P2. By
Theorem 3.2, β2(Kd2 × P2) = d, which implies that

β2(Kd2 × K2) = d.

From the above equation and the fact that (Kd2 × K2) is a subgraph of
(Kd2 × K4),

β2(Kd2 × K4) ≥ d.

From this equation we know that the two-dimensional bandwidth of K4

times any Kd2 is at least d. Now, I will show that the upper bound is also d.
Consider the embedding of (Kd2 ×K4) in the grid as shown below. The vertices
in each of the four copies of Kd2 are numbered. Each copy of K4 is in its own
d×d square. For the sake of clarity, there are no edges drawn. However, within
each copy of K4 all vertices are adjacent, and between the four copies the 1’s
vertices are adjacent, 2’s vertices are adjacent, etc.
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By Theorem 3.1, β2(Kd2) = d− 1. Therefore, within each copy of Kd2 the
bandwidth is d-1. Looking at the 1’s vertices, all edges between the 1’s vertices
have size d. Likewise, all edges between the 2’s vertices have size d. This pattern
continues for all sets of adjacent vertices. Hence, the longest edge in the entire
graph of (Kd2×K4) has size d. For this embedding the bandwidth is d. Overall,
we now have an upper bound of d, which is also the lower bound. Therefore,

β2(Kd2 × K4) = d.

4.2 β2(Kd2 × Kc2)

Conjecture: If 2 ≤ c ≤ d, then β2(Kd2 × Kc2) = d(c − 1).

From Theorem 3.1 we know that β2(Kd2) = d−1. To acheive this bandwidth,
Kd2 could be embedded into a d × d square grid as shown below.

Now, in the graph (Kd2 × Kc2) there are c2 copies of Kd2 . These c2 copies
should be arranged in a c × c square as shown below.
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If we look at the 1’s vertices, the distance from the upper left 1 vertex and
the upper right 1 vertex is d(c-1). Likewise, the distance from the upper left
1 vertex to the lower right 1 vertex is d(c-1). This pattern continues for each
vertex 1 thru d. Therefore, in this embedding the bandwidth is d(c-1). Hence,
this is an upper bound for (Kd2 × Kc2).

Upper Bound:
β2(Kd2 × Kc2) ≤ d(c − 1)

The lower bound follows directly from this theorem [4], β2(G) ≥
⌈√

n−1
D(G)

⌉

where D(G) is the diameter of the graph G.
Lower Bound:

β2(Kd2 × Kc2) ≥
⌈

dc − 1

2

⌉

Therefore,
⌈

dc − 1

2

⌉

≤ β2(Kd2 × Kc2) ≤ d(c − 1)

.

4.3 β2(Kn,m)

Theorem 5: Let 1 ≤ n ≤ m.

1. If (d + 1)2 − d ≤ n ≤ (d + 1)2 for some d ε N, then

β2(Kn,m) =

⌈√
m + n + d√n − 2e

2

⌉

2. Otherwise,

β2(Kn,m) =

⌈

√

4(m + n) + 1 + d√n − 2e + b√n − 2c
4

⌉

Proof: Let β2(Kn,m) = b such that 1 ≤ n ≤ m.

Let A = {a1, a2, ..., an} denote the set of n vertices, and let B = {b1, b2, ..., bm}
denote the set of m vertices.
Let d(r) = {x ε H | ∂H(x, r) ≤ b} where H is a grid graph. d(r) is simply a
closed ball of radius b.
Given n and b, we want to maximize |B| such that the bandwidth b is main-
tained.
Let’s look at the example of n = 1, that is A = {a1}. Since the bandwidth b is
fixed there is a limit to the number of vertices in the set B.
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The grid above has a total of d(a1) = (2n + 1)2 grid points. There are
d(a1) − 1 grid points available for the vertices of set B to be embedded into
such that the bandwidth b is maintained. 1 is subtracted from d(a1) because
the vertex a1 is already occupying one of the grid points.
The next example to look at is n=2. The set A = {a1, a2}. We want to embed
a1 and a2 in such a way that maximizes |B|, which is equivalent to trying to
maximize |d(a1) ∩ d(a2)|.

The highlighted lines in the above figure represent d(a1)∩ d(a2). As one can
see, the vertices lost in the transition from n = 1 to n = 2 total 2b + 1, one
column. |B| ≤ |d(a1)∩ d(a2)| − 2. In other words, m ≤ (2b)(2b+ 1)− 2. Placing
a1 as close as possible to a2 maximizes the number of vertices in the intersection
of the two closed balls of radius b. For clarification, consider the non-optimal
embedding below.

This embedding is non-optimal because |d(a1) ∩ d(a2)| is not maximized.
In the above figure we lose two columns of d(a1) as opposed to losing just one
column in Figure 5.
There is also the extreme non-optimal case of |d(a1)∩ d(a2)| = φ. This example
is below.

The closed ball of a1 never intersects the closed ball of a2. Thus, in this
embedding there is no positive value for m that would maintain the bandwidth
b. For example, consider B = {b1}. Recall that in a compete bipatite graph,
Kn,m, every vertex in the set of size n is adjacent to all the vertices in the set
of size m. In this case, a1 and a2 are both adjacent to b1. If b1 is embedded
inside the closed ball of a1, then the distance from a2 to b1 would be greater
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than b. Therefore, the above arrangement is another example of an embedding
of the vertices of a1 and a2 that does not maximize |B|.

Now, here is one further example of an embedding of A that does maximize
|B|. Let’s look at the case of A = {a1, a2, a3}.

As seen above, |d(a1) ∩ d(a2) ∩ d(a3)| is maximized when a3 is embedded
above a2 instead of embedding it to the right of a2.
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