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Abstract

This paper investigates the energy UMD of polygonal unknots. It
provides equations for finding the energy for any planar regular n-gon and
for any m-gon, where the vertices lie on the vertices of a regular m

2
-gon and

on the midpoints of each edge. In addition, we show that a regular 4-gon
minimizes the energy for any quadrilateral. Finally, this paper includes a
proof showing that if we have a regular n-gon, Rn, inscribed in a circle
and can move only one vertex of Rn, v, along the circle between its two
adjacent vertices, then the UMD is minimized when v is a vertex on Rn.

1 Introduction

The minimum distance energy for polygonal knots, UMD, was introduced by
Jonathon Simon in [2]. This energy analyzes the minimum distances between
the edges of a knot. Furthermore, Rawdon and Simon in [1] relates this mini-
mum distance energy to the Möbius energy for smooth knots. They show that
UMD(Pn)− UMD(Rn) approaches the Möbius energy of the smooth knot K as
Pn approaches K. It is conjectured that the regular n-gon minimizes UMD for
all knots with n-sticks. If this conjecture holds true, then UMD(Pn)−UMD(Rn)
will never be negative, and according to Jonathon Simon [3], that limiting num-
ber is the same as the minimum Möbius energy for the knot type K. My goal
was to prove this conjecture. This paper provides an introduction to some of
the observations that can be made about the energy of the regular n-gon.
Now we will briefly cover some important definitions that are used throughout
this paper. To start with the basics, a knot is a continuous closed curve/loop
in space. It can be thought of as a knotted strand of string that is connected
at the ends, where the string has no thickness. A polygonal knot is a knot
equivalent to a polygon in R3. It is depicted using straight edges (sticks) and
vertices. This is the type of knot that we will be focusing on. The unknot is a
knot that has a diagram with no crossings and therefore has a crossing number
of zero. One type of unknot is the regular n-gon, which is a polygon that has
n edges of equal length and corresponding angles of equal degree which will be
denoted as Rn throughout this paper.
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Finally, the main topic of this paper is the minimum distance energy.
When given two non-adjacent edges X, Y of a polygonal knot K, we define the
minimum distance energy, UMD, by

UMD(X,Y) = l(X)∗l(Y)
MD(X,Y)2 .

such that l(X), l(Y ) are the lengths of X and Y consecutively, and MD(X, Y )
is the minimum distance between X and Y. Now we define the minimum dis-
tance energy of K by

UMD(K) =
∑

UMD(X,Y).

where the sum is taken over all pairs of non-adjacent edges, X and Y, of polygon
K.

Note: The energy UMD is scale invariant. This holds true because if we
increase the knot by a constant c, then the lengths of all the edges and the
distances between them would all increase by c. Therefore, we have

UMD(X, Y ) = c∗l(X)∗c∗l(Y )
(c∗MD(X,Y ))2 = c2∗l(X)∗l(Y )

c2∗(MD(X,Y ))2 = l(X)∗l(Y )
MD(X,Y )2 .

2 Energy Equations for a Regular n-gon

This section discusses two general equations that can be used to compute the
UMD of a regular n-gon and the methods we used to generate them. One equa-
tion is for when n is odd and the other is for when n is even. The UMD of any
regular n-gon can be obtained easily by just plugging the equation into MAPLE
and changing n accordingly.

For the first step, we decided to view the regular n-gon as inscribed inside
a unit circle (see Figure 1) since UMD is scale invariant. Every vertex of the
n-gon lies on the following circle.

Figure 1 Unit Circle

Thus vertex vj = (cos( 2∗π∗j
n ), sin( 2∗π∗j

n )). For example, v1 = (cos( 2∗π
n ), sin( 2∗π

n )).

We then found the length of an edge, le, by finding the distance between two
consecutive vertices of the polygon. Since the length of each edge is equal by
definition, we can make it simple by just choosing to find the distance between

v0 and v1, where v0 = (1, 0). We have le =
√

(cos( 2∗π
n )− 1)2 + (sin( 2∗π

n ))2,
which can be simplified to

le =
√

2 ∗ (1− cos( 2∗π
n ))
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thus, for the regular n-gon

l(X) ∗ l(Y ) = 2 ∗ (1− cos( 2∗π
n ))

where X and Y are non-adjacent edges.

Next we investigated the minimum distances between the non-adjacent
edges. Due to the symmetry of a regular n-gon, the UMD for e1 and its non-
adjacent edges is the same as the UMD for any other edge and its non-adjacent
edges so we can multiply

∑n−1
j=3 UMD(e1, ej) by n. However, note that the UMD

of each pair of non-adjacent edges have been counted twice, and hence we must
divide by 2. Therefore, the UMD(K) = n

2 ∗
∑n−2

j=3 UMD(e1, ej) where K is the
unknot with n edges. The minimum distance between two edges is the distance
between the ‘head’ of one edge and the ‘tail’ of the other where the ‘head’ is
farther counterclockwise than the ‘tail’.

2.1 The Minimum Distance Energy of Rn When n is Odd

We will now discuss how to find the equation for the UMD(Rn, n = odd). Note
that each edge of a n-gon where n is odd, has an even number of non-adjacent
edges. We can utilize this fact and the symmetry of Rn to make finding the
equation more feasible. Throughout this subsection we can refer to the regular
5-gon in figure 2 as an example.

Figure 2

We noticed that
∑dn

2 e
j=3 UMD(e1, ej) =

∑n−2
j=dn

2 e+1 UMD(e1, ej) therefore we

can just calculate
∑dn

2 e
j=3 UMD(e1, ej) and multiply by two. So the first step is

to find a formula for the UMD(e1, ej) where ej is non-adjacent to e1. We know
that l(e1) ∗ l(ej) = 2 ∗ (1− cos( 2∗π

n )) from earlier. Next we nee to find the mini-
mum distance between the ‘head’ of e1 and the ‘tail’ of ej . Using trigonometry
and geometry, we find that the ‘head’ of e1 is at (cos( 2∗π

n ), sin( 2∗π
n )) and that

the ‘tail’ of ej is at (cos( 2∗π∗(j−1)
n ), sin( 2∗π∗(j−1)

n )). Thus the MD(e1, ej) =√
(cos( 2∗π∗i

n )− cos( 2∗π
n ))2 + (sin( 2∗π∗i

n )− sin( 2∗π
n ))2, where i = (j−1). When

we put it all together, the UMD(Rn, n = odd) = n∗
∑bn

2 c
i=2

2∗(1−cos( 2∗π
n ))

(cos( 2∗π∗i
n )−cos( 2∗π

n ))2+(sin( 2∗π∗i
n )−sin( 2∗π

n ))2
.

Then using some trigonometric identities, we can simplify the equation to the
following.

Proposition 1.1-The minimum distance energy for Rn when n is odd is

UMD(Rn) =
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n ∗
∑bn

2 c
i=2

(sin(π
n ))2

(sin(π∗(i−1)
n ))2

2.2 The Minimum Distance Energy of Rn When n is Even

Throughout this paper, finding a formula for the minimum distance energy is
more complicated when the knot has an even number of sticks than when there
is an odd number of sticks. In this subsection we can refer to the following 8-gon
as an example, where the bolded edge is e1 and the dotted lines represent the
minimum distance between two edges (see Figure 3).

Figure 3

We then can follow the same procedures for when n is even for Rn with
one addition. Unlike when n is odd, a n-gon with an even number of edges
will have an odd number of non-adjacent edges for each edge as seen in the
8-gon above. However, notice that with the exception of the edge opposite
of e1, it follows the same pattern/symmetry as Rn when n is odd. Due to
this difference, the UMD of e1 and all its non-adjacent edges minus the far-
thest edge is the same as when n is odd with different limits. So to complete
the general equation for when n is even, we need to take the product of the
lengths of e1 and e( n

2 +1) and divide it by their minimum distance squared. Af-
ter that, we must multiply the resulting equation by n and divide by 2 to pre-
vent double counting. When we put it all together the UMD(Rn, n = even) =
n ∗

∑n
2 −1
i=2

2∗(1−cos( 2∗π
n ))

(cos( 2∗π∗i
n )−cos( 2∗π

n ))2+(sin( 2∗π∗i
n )−sin( 2∗π

n ))2
+ n∗(1−cos( 2∗π

n ))

2∗(1+cos( 2∗π
n )

. However,
like the previous equation, we can simplify the equation using trigonometric
identities to the following.

Proposition 1.2-The minimum distance energy for Rn when n is even is

UMD(n− gon) =

n ∗
∑n

2 −1
i=2

(sin( π
n ))2

(sin(
π∗(i−1)

n ))2
+ n

2 ∗ (tan(π
n ))2

3 Energy Equations for a Flattened n-gon

In this section, we discuss how to find the UMD for a specific irregular n-gon.
We let Kn

2
be a planar regular n

2 -gon, and let L be the planar n-gon obtained
by taking Kn

2
and adding a vertex on the midpoint of each edge. In other

words, the flattened n-gon is when you take every other outer angle of a regular
n-gon and flatten it to 180◦. The equations for UMD(L) were found by following
the same steps used to find the UMD for Rn. Let e1’s ‘head’ be located on a
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midpoint of a edge in Kn
2
. The minimum distance is still from the ‘head’ of

one edge to the ‘tail’ of the other. Once again we chose to focus on the UMD

of one edge and its corresponding non-adjacent edges. Then we multiplied that
quantity by n

2 . The length of an edge in L is equivalent to the length of an edge

in Rn
2

divided by two. We have le = 1
2 ∗

√
(cos( 2∗π

n
2

)− 1)2 + (sin( 2∗π
n
2

))2, which
can be simplified to

le = 1
2 ∗

√
2 ∗ (1− cos( 4∗π

n ))

therefore, the product of the lengths for two non-adjacent edges, X and Y,
for L is given by

l(X) ∗ l(Y ) = 1
2 ∗ (1− cos( 4∗π

n ))

As in the previous section, the UMD(L) requires two equations, one for
when n

2 = even and one for when n
2 = odd.

3.1 UMD(L, n
2

= odd)

This subsection focuses on L when n
2 is odd. However, the n-gon still has an

even number of edges and thus L has an odd number of non-adjacent edges for
each edge. Once again we can rely on the symmetry of the n-gon to simplify
the problem.

Figure 4

Before we compute the equation, make note that the ‘head’ of e1 is closest
to the ’tails’ of ej when 3 ≤ j ≤ (n

2 + 1). Also note that the ‘tail’ of e1 is
the closest to the ‘heads’ of ej when (n

2 + 2) ≤ j ≤ (n − 1). We can now find
UMD(L, n/2 = odd) by breaking up the problem into four sections by looking
at the four possible cases of non-adjacent edge pairs.

First we find the UMD of e1 and ej when 3 ≤ j ≤ (n
2 + 1) where the ‘tail’

of ej is located on a vertex of the regular n
2 -gon, which equals∑bn

4 c
i=1

(1−cos( 4∗π
n ))

2∗((
cos( 4∗π

n
)+1

2 −cos( 4∗π∗i
n ))2+(

sin( 4∗π
n

)
2 −sin( 4∗π∗i

n ))2)
.

Secondly, we find the UMD of e1 and ej when 3 ≤ j ≤ (n
2 + 1) where the

‘tail’ of ej is located on a midpoint of a edge in Kn
2
, which equals∑bn

4 c
i=1

(1−cos( 4∗π
n ))

2∗((
cos( 4∗π

n
)+1

2 −(
cos( 4∗π∗i

n
)+cos( 4∗π∗(i+1)

n
)

2 ))2+(
sin( 4∗π

n
)

2 −(
sin( 4∗π∗i

n
)+sin( 4∗π∗(i+1)

n
)

2 ))2)

.

Next we find the UMD of e1 and ej when (n
2 + 2) ≤ j ≤ (n − 1) where the
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‘head’ of ej is located on a vertex from the regular n
2 -gon, which equals∑bn

4 c−1
i=1

(1−cos( 4∗π
n ))

2∗((cos( 4∗π
n )−cos(

4∗π∗(i+1)
n ))2+(sin( 4∗π

n )−sin(
4∗π∗(i+1)

n ))2)
.

Lastly, we find the UMD of e1 and ej when (n
2 + 2) ≤ j ≤ (n − 1) where

the ‘head’ of ej is located on a midpoint of a edge in Kn
2
, which equals∑bn

4 c
i=1

(1−cos( 4∗π
n ))

2∗((cos( 4∗π
n )−(

cos( 4∗π∗i
n

)+cos( 4∗π∗(i+1)
n

)
2 ))2+(sin( 4∗π

n )−(
sin( 4∗π∗i

n
)+sin( 4∗π∗(i+1)

n
)

2 ))2)

.

Now after all these computations, we only need to add up these summations,
simplify and multiply the result by n

2 . Therefore, we have

UMD(L, n
2 = odd) =

n
2 ∗ (

∑bn
4 c

i=1
(sin( 2∗π

n ))2

(( cos( 4∗π
n )+1

2 −cos( 4∗π∗i
n ))2+( sin( 4∗π

n )

2 −sin( 4∗π∗i
n ))2)

+∑bn
4 c

i=1
(sin( 2∗π

n ))2

(( cos( 4∗π
n )+1

2 −( cos( 4∗π∗i
n )+cos(

4∗π∗(i+1)
n )

2 ))2+( sin( 4∗π
n )

2 −( sin( 4∗π∗i
n )+sin(

4∗π∗(i+1)
n )

2 ))2)
+∑bn

4 c−1
i=1

(sin( 2∗π
n ))2

((cos( 4∗π
n )−cos( 4∗π∗(i+1)

n ))2+(sin( 4∗π
n )−sin( 4∗π∗(i+1)

n ))2)
+∑bn

4 c
i=1

(sin( 2∗π
n ))2

((cos( 4∗π
n )−( cos( 4∗π∗i

n )+cos(
4∗π∗(i+1)

n )

2 ))2+(sin( 4∗π
n )−( sin( 4∗π∗i

n )+sin(
4∗π∗(i+1)

n )

2 ))2)
)

3.2 UMD(L, n
2

= even)

In this subsection we will show how we find a formula for the UMD(L, n
2 =

even). We follow the same procedures as when finding the UMD(Rn), where
the equation for the case n

2 even builds from the equation used for the when n
2

odd case. Use the 16-gon below as an example for this subsection (see Figure
5). Once again the dotted lines represent the minimum distance between two
non-adjacent edges.

Figure 5

For finding the equation for UMD(L, n
2 = even), we can use the same

method used above when n
2 is odd. Actually we can use the exact same sum-

mands with different bounds to represent the same cases of non-adjacent edge
pairs of the unknot. However, when n is even, we have an odd number of non-
adjacent edges for each edge. Similar to computing the UMD(Rn, n = even),
the UMD(e1, e( n

2 +1)) requires an extra term added on to the formula for when
n
2 is odd. The product of these two edges is the same as the rest of the non-
adjacent pairs. The minimum distance is found by computing the minimum
distance between the ‘head’ of e1 and the ‘head’ of e( n

2 +1), which is equal to
(sin( 2∗π

n ))2

((cos( 4∗π
n )+1)2+(sin( 4∗π

n ))2
. Therefore if we add this quantity to the summations
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found for UMD(L, n
2 = odd) and change the limits appropriately, we end up with

UMD(L, n
2 = even) =

n
2 ∗ (

∑bn
4 c−1

i=1
(1−cos( 4∗π

n ))

2∗(( cos( 4∗π
n )+1

2 −cos( 4∗π∗i
n ))2+( sin( 4∗π

n )

2 −sin( 4∗π∗i
n ))2)

+
bn

4 c−1
i=1

(sin( 2∗π
n ))2

(( cos( 4∗π
n )+1

2 −( cos( 4∗π∗i
n )+cos(

4∗π∗(i+1)
n )

2 ))2+( sin( 4∗π
n )

2 −( sin( 4∗π∗i
n )+sin(

4∗π∗(i+1)
n )

2 ))2)
+ (

sin( 4∗π
n )

2 − sin(4∗π∗i
n ))2) +∑bn

4 c−1
i=1

(sin( 2∗π
n ))2

(( cos( 4∗π
n )+1

2 −( cos( 4∗π∗i
n )+cos(

4∗π∗(i+1)
n )

2 ))2+( sin( 4∗π
n )

2 −( sin( 4∗π∗i
n )+sin(

4∗π∗(i+1)
n )

2 ))2)
+

∑bn
4 c−1

i=1
(sin( 2∗π

n ))2

((cos( 4∗π
n )−cos( 4∗π∗(i+1)

n ))2+(sin( 4∗π
n )−sin( 4∗π∗(i+1)

n ))2)
+∑bn

4 c−1
i=1

(sin( 2∗π
n ))2

((cos( 4∗π
n )−( cos( 4∗π∗i

n )+cos(
4∗π∗(i+1)

n )

2 ))2+(sin( 4∗π
n )−( sin( 4∗π∗i

n )+sin(
4∗π∗(i+1)

n )

2 ))2)
+

(sin( 2∗π
n ))2

(cos( 4∗π
n )+1)2+(sin( 4∗π

n ))2 )

4 Regular 4-gon Minimizes UMD for all Quadri-
laterals

This section provides a proof that the regular 4-gon minimizes the UMD for
all quadrilaterals, which includes irregular, not convex, and non-planar 4-gons.
Before we begin the proof we must calculate the actual value of UMD(R4). Let
the edge lengths of R4 equal a,b,c,d where the edges with lengths a and b are
non-adjacent. WLOG, UMD(R4) is given by

a∗b
d2 + c∗d

a2 .

Since we know that for a regular 4-gon, a=b=c=d,the above quantity can
be written as

a∗a
a2 + a∗a

a2 = a2

a2 + a2

a2 = 1 + 1 = 2.

Theorem 1: The regular 4-gon minimizes the minimal distance energy UMD

for all knots with four edges.

Figure 6

Proof. Let F be any unknot with 4 edges, ea, eb, ec, ed, with edge lengths
a, b, c, d respectively, where ea and eb are non-adjacent and a < b and d < c.

7



Note that for each arbitrary 4-gon above the largest possible MD(ea, eb) equals
d, and the largest possible MD(ec, ed) equals a. Since this maximizes the de-
nominator, it minimizes the UMD(F ). Then we have

UMD(F ) = a∗b
(MD(ea,eb))2

+ c∗d
(MD(ec,ed))2 ≥

a∗b
d2 + c∗d

a2 > a2

d2 + d2

a2 = a4+d4

a2∗d2 .

We know that x2+y2 ≥ 2∗x∗y. Let x = a2 and y = d2. Thus a4+d4 ≥ 2∗a2∗d2.
It follows that

a4+d4

a2∗d2 ≥ 2.

Therefore the UMD(4−gon) is minimized by a regular 4-gon since the UMD(R4) =
2. �

5 Movement of One Vertex Along the Circum-
ference of a Circle

If we have a regular n-gon, Rn, inscribed in a circle, all of its vertices will lie
on the circumference of the circle. Now if we are allowed to move only one of
these vertices, v, along the circle between its two adjacent vertices, how does
this affect the UMD of the knot? In this section we will show that if v moves
from its original position on Rn, it will only increase the minimum distance
energy of the knot.

To start the investigation, let this altered Rn be denoted as An where one
of its vertices have the coordinates (1, 0), and let v be adjacent and located at
(cos(θ), sin(θ)), where 0 < θ < 4∗π

n .

Before computing the minimum distance energy, notice that only two of
the edges, e1 and e2, from Rn will be altered. Therefore, UMD of those two
edges and their corresponding non-adjacent edges will change, while the con-
tributions to UMD of the remaining edge pairs will remain the same. Let
e1 have the endpoints (1, 0) and (cos(θ), sin(θ)), and e2 have the endpoints
(cos(θ), sin(θ)) and (cos( 4∗π

n ), sin( 4∗π
n )). Therefore we have l(e1) = 2 ∗ sin( θ

2 )

and l(e2) = 2 ∗ sin(
4∗π

n −θ

2 ).

5.1 UMD(An, n = odd)

To find the UMD(e1) we need to find UMD(e1, ei), where ei is non-adjacent to
e1, there are two cases to consider: when (1, 0) is the point closest to the non-
adjacent edge and when (cos(θ), sin(θ)) is the closest. The energy for when (1, 0)
is the point nearest to ei equals

∑bn
2 c

i=2 2∗ sin( π
n )∗sin( θ

2 )

sin(
π∗(i−1)

n )2
. The energy for when v is

the closest to ei is equal to
∑bn

2 c
i=2 2∗ sin( π

n )∗sin( θ
2 )

sin( θ
2−

π∗i
n )2

. The sum used for computing

the UMD(e2) is similar to the UMD(e1), but instead of 2 ∗ sin(π
n ) ∗ sin( θ

2 ), the
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numerator changes to 2 ∗ sin(π
n ) ∗ sin(

4∗π
n −θ

2 ). Therefore, the UMD(e2) equals

to
∑bn

2 c
i=2 2 ∗ (sin( π

n ))∗sin(
4∗π

n
−θ

2 )

sin(
π∗(i−1)

n ))2
+

∑bn
2 c

i=2 2 ∗ (sin( π
n ))∗sin(

4∗π
n

−θ

2 )

sin( θ
2−

π∗i
n ))2

. The remaining

edge pairs have the same UMD as if the n-gon were regular, and therefore equal∑bn
2 c

i=2 (n− 4) ∗ (sin( π
n ))2

(sin(
π∗(i−1)

n ))2
. We can now add up these summations to get the

minimal distance energy of the knot. When simplified,

UMD(An, n = odd) =

∑bn
2 c

i=2 (2 ∗ sin( π
n )∗(sin( θ

2 )+sin(
4∗π

n
−θ

2 ))

(sin(
π∗(i−1)

n ))2
+ 2 ∗ sin( π

n )∗(sin( θ
2 )+sin(

4∗π
n

−θ

2 ))

(sin( θ
2−

π∗i
n ))2

+ (n− 4) ∗
(sin( π

n ))2

(sin(
π∗(i−1)

n ))2
).

Figure 7

5.2 UMD(An, n = even)

Once again when finding the equation for UMD(n − gon, n = even), we can
employ the same method used above when n is odd, which will give us the same
summands, but with different limits and some extra terms. The summands
from UMD(An, n = odd) do not include the UMD(ei, e(i+ n

2 )) where ei is any
edge in the n-gon. When ei and e(i+ n

2 ) are not e1 or e2, then we know from
the UMD(Rn) that the UMD(ei, e(i+ n

2 )) = (n
2 − 2) ∗ (tan(π

n ))2. We need to find
the UMD(e1, e( n

2 +1)) and the UMD(e2, e( n
2 +2)). The MD(e1, e( n

2 +1)) is the dis-
tance between (cos(θ), sin(θ)) and (−1, 0). The MD(e2, e( n

2 +2)) is the distance

between (cos( 4∗π
n ), sin( 4∗π

n )) and (cos(π∗(n+2)
n ), sin(π∗(n+2)

n )). Therefore the

UMD(e1, e( n
2 +1)) = (sin( π

n ))∗sin( θ
2 )

(cos( θ
2 ))2

and the UMD(e2, en
2 +2) = (sin( π

n ))∗sin(
4∗π

n
−θ

2 )

(sin(
π∗(n−2)

2∗n ))2
.

We can now add up these equations and simplify to get the following equation.

UMD(An, n = even) =

∑n
2 −1
i=2 (2 ∗ (sin( π

n ))∗(sin( θ
2 )+sin(

4∗π
n

−θ

2 ))

(sin(
π∗(i−1)

n ))2
+ 2 ∗ (sin( π

n ))∗(sin( θ
2 )+sin(

4∗π
n

−θ

2 ))

(sin( θ
2−

π∗i
n ))2

+ (n−

4) ∗ (sin( π
n ))2

(sin(
π∗(i−1)

n ))2
) + (n

2 − 2) ∗ (tan(π
n ))2 + (sin( π

n ))∗sin( θ
2 )

(cos( θ
2 ))2

+ (sin( π
n ))∗sin(

4∗π
n

−θ

2 )

(sin(
π∗(n−2)

2∗n ))2
.

Figure 8

5.3 UMD(An) is Minimized When θ = 2∗π
n

To analyze the UMD(An) further, we will look at the rate of change of θ.
The following proof will use calculus to show that UMD(An) is minimized when
θ = 2∗π

n . However, before the proof we need to find the derivative of UMD(An).
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d
dθ (UMD(An, n = odd)(θ)) =

∑bn
2 c

i=2 (2 ∗ (sin( π
n ))∗( 1

2∗cos( θ
2 )− 1

2∗cos(− 2∗π
n + θ

2 ))

(sin(
π∗(i−1)

n ))2
+ 2 ∗

(sin( π
n ))∗( 1

2∗cos( θ
2 )− 1

2∗cos(− 2∗π
n + θ

2 ))

(sin( θ
2−

π∗i
n ))2

− 2 ∗ (sin( π
n ))∗(sin( θ

2 )−sin(− 2∗π
n + θ

2 ))∗cos( θ
2−

π∗i
n )

(sin( θ
2−

π∗i
n ))3

)

d
dθ (UMD(An, n = even)(θ) =

∑n
2 −1
i=2 (2 ∗ (sin( π

n ))∗( 1
2∗cos( θ

2 )− 1
2∗cos(− 2∗π

n + θ
2 ))

(sin(
π∗(i−1)

n ))2
+ 2 ∗

(sin( π
n ))∗( 1

2∗cos( θ
2 )− 1

2∗cos(− 2∗π
n + θ

2 ))

(sin( θ
2−

π∗i
n ))2

−2∗ (sin( π
n ))∗(sin( θ

2 )−sin(− 2∗π
n + θ

2 ))∗cos( θ
2−

π∗i
n )

(sin( θ
2−

π∗i
n ))3

)+
sin( π

n )

2∗cos( θ
2 )

+ sin( π
n )∗(sin( θ

2 ))2

(cos( θ
2 ))3

− sin( π
n )∗cos(− 2∗π

n + θ
2 )

2∗(sin(
π∗(n−2)

2∗n ))2

Figure 9

Theorem 2: The UMD(An) is minimized when An = Rn.

Proof. Given UMD(An) and d
dθ (UMD(An)), we need to show that the function

UMD(An)(θ) increases if θ starts at 2∗π
n and decreases towards 0 or increases to-

wards 4∗π
n . Due to symmetry (see Figure 9), we can analyze the one-sided deriva-

tive of UMD(An) where θ ≥ 2∗π
n . We want to show that d

dθ (UMD(An))( 2∗π
n ) > 0.

Using trigonometric identities we are able to simplify d
dθ (UMD(An))( 2∗π

n ) where

d
dθ (UMD(An, n = odd)( 2∗π

n )) =
∑bn

2 c
i=2

4∗(sin( π
n ))2∗cot(

(i−1)∗π
n )

(sin(
(i−1)∗π

n ))2

d
dθ (UMD(An, n = even)( 2∗π

n )) =
∑n

2 −1
i=2

4∗(sin( π
n ))2∗cot(

(i−1)∗π
n )

(sin(
(i−1)∗π

n ))2
) + (tan(π

n ))3

Since we proved that the regular 4-gon minimizes the energy UMD for all 4-
gons, we can let n ≥ 5. When we plug in the limits, 2 and bn

2 c, we find that
π
n ≤ (i−1)∗π

n < (n−2)∗π
2∗n . Thus, 0 < (i−1)∗π

n < π
2 . Hence, 4∗(sin( π

n ))2∗cot(
(i−1)∗π

n )

(sin(
(i−1)∗π

n ))2
>

0 and (tan(π
n ))3 > 0 since we know that cot(θ) > 0 and tan(θ) > 0 when

0 < θ < π
2 . So it follows that UMD(An) is increasing as θ is increasing from

2∗π
n . Therefore, UMD(An) is minimized when θ = 2∗π

n . �

Remark: Since d
dθ (UMD(An))( 2∗π

n ) 6= 0, we know that UMD(An) is not
differentiable at θ = 2∗π

n .

6 Conclusion

In conclusion, we have found some equations for computing the minimum dis-
tance energy for the regular n-gon and other types of polygonal unknots. In
addition, we proved that the regular 4-gon minimizes UMD for all unknots with
4 sticks. We also proved that if we have a regular n-gon, Rn, inscribed in a
circle and can move only one vertex of Rn, v, along the circle between its two
adjacent vertices, the UMD of that knot is minimized when the knot is a regu-
lar n-gon. Overall, we employed different methods to analyze the UMD of the
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unknot. We focused on the minimum distance between edges in section 2 and
section 3. Then in section 4 we focused on edge lengths. Finally, for section 5
we focused on the angles between the endpoints.

The minimum distance energy of a regular n-gon has yet be proven to mini-
mize the UMD for all unknots with n sticks. There are definitely different ways
to investigate this conjecture. One direction to go is to find equations for the
regular n-gon and other polygonal unknots that can be compared effectively.
This can maybe be done by investigating whether the unknot is easier to an-
alyze when we are focusing on the edge lengths, minimum distances, angles,
etc. Since this paper discusses mainly planar, non-convex n-gons, maybe we
can analyze convex or non-planar n-gons.

If the regular n-gon is proven to minimize the UMD for all n-gons, then maybe
UMD of other knot types with higher crossing numbers can be minimized by
equalizing the edges and expanding the angles between the edges evenly. Over-
all, it will give us a better understanding of the minimum distance energy UMD

and its properties.
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