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Abstract

A model of the pretzel knot is described. A method for predicting the
ropelength of pretzel knots is given. An upper bound for the minimum
ropelength of a pretzel knot is determined, and shown to improve on
existing upper bounds.

1 Introduction

A (p,q,r) pretzel knot is composed of 3 twists which are connected at the tops
and bottoms of each twist. The p, q, and r are integers representing the number
of crossings in the given twist. However a pretzel knot can contain any number,
n, of twists as long as n ≥ 3, where the knot is denoted by (p1, p2, p3, ..., pn),
and defined by a diagram of the form shown in figure 1.

Fig. 1: A 2-dimensional representation of a pretzel knot.

The goal of this paper is to find a model where the knot is tightest and the
ropelength is minimized. The ropelength of a knot is determined by the ratio
of the length of the rope to its radius.

Rop(K) = L

r
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It follows from corollary 1 of [1] that the ropelength of the unknot is 2π . The
lowest known provable upper bound for the trefoil knot is 32.7433864 [2], while
a lower bound for the ropelength of the trefoil knot is also known to be 31.32
[3]. An upper bound for ropelength for all types of knots is given in a paper by
Cantarella, Faber, and Mullikin [4]. This upper bound is a function of crossing
number, c(L), and is given by the following equation for prime links:

Rop(L) ≤ 1.64c(L)2 + 7.69c(L) + 6.74

The main theorem of this paper is an upper bound on ropelength for any
(p1, p2, p3, ..., pn) pretzel knot.

Theorem 1. If K is a pretzel knot defined by (p1, p2, p3, ..., pn), then

Rop(K) ≤ π (2
√

2(

n
∑

i=1

pi) + 3n + (

n−1
∑

i=1

|pi − pi+1|) + |pn − p1|) + 1.014263831(n)

A direct corollary of this theorem is an equation for an upper bound on rope-
length of the (p,q,r) pretzel knot.

Corollary 1.1 If k is a pretzel knot defined by (p,q,r), then

Rop(k) ≤ π (2
√

2(p + q + r) + 9 + |p − q| + |q − r| + |r − p|) + 6.085582986

It should be noted that one can use Theorem 1 to give an upper bound in terms of
the crossing number as well. One naive approach follows. For (p1, p2, p3, ..., pn)

where all pi’s are positive, the crossing number is given by c =
n

∑

i=1

pi. If all pi’s

are negative, then c = −
n

∑

i=1

pi. Since

n−1
∑

i=1

(|pi − pi+1|) + |pn − p1| ≤
n−1
∑

i=1

(|pi| + |pi+1|) + |pn| + |p1| , and

n−1
∑

i=1

|pi| + |pi+1|) + |pn| + |p1| = 2c,

we can simplify the upper bound to

Rop(K) ≤ 15.1689 c + 10.4390 n

As mentioned above, the previously known upper bound is a quadratic function
of the crossing number. While ours is linear. Of course, the bound given in
Theorem 1 is much better than that of equation 1.

2 Constructing the Twists

In order to prove Theorem 1, we first analyze the construction of the twists.
Two different models were considered for constructing the twists of the pretzel
knot. The first model was a double helix constructed with rope of radius 1. The
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second model was a single helix constructed of rope of radius 1 wrapping around
a straight rope also of radius 1. For the purpose of this paper, we let the radius
of the rope be equal to 1. The second model was taken into consideration due
to the analysis of the (59,2) torus knot in the paper by Baranska, Pieranski,
Przybyl, and Rawden [2]. The construction of one helix wrapping around a
straight rope appeared in the torus knot and seemed to perhaps minimize the
ropelength necessary. In the first model, the pitch of the helices must remain 1
to prevent the helices from overlapping. In the second model, since we did not
have to worry about one helix running into another, the pitch could be reduced
to at most 0.3225. The length of a twist with a single crossing for this model is
about 9.67. However, when compared with the length of the double helix model
for a twist with a single crossing, 8.89, this was not enough to provide a shorter
length than the first model so the second model was thrown out.
Therefore the twists are modeled by the double helix and given by the parametric
equations: (cost, sint, t) and (cos(t+π), sin(t+π), t). There are a few concerns
to ensure that no ropes overlap when minimizing ropelength. These are shown
in both [2] and [4]. The following are the requirements as they apply to the
construction of a double helix:

1. The distance between the two helices is at least twice the radius.

2. The distance between doubly-critical points must be at least twice the
radius.

3. The radius of curvature must be at least the radius of the rope.

Lemma 1: The double helix with pitch 1 and radius 1 satisfies all three of the
above requirements.

Proof. To satisfy requirement 1 we find the minimal distance between one helix
to the other helix. Let the first helix, (cost, sint, t), be H1 and the second helix
(cos(t + π), sin(t + π), t), H2. Let t = 0 in H2, so that H2(0) = (−1, 0, 0). The
distance between H1 and H2(0) is d(t) =

√

(cost + 1)2 + (sint)2 + t2. When
this distance is minimized, t = 0 and d(0) = 2. Since the radius of the rope is
one, condition a is satisfied.

Doubly-critical points occur when (x, y) ∈ K and
−−−−→
(x − y) is orthogonal to both

the vector tangent to x and the vector tangent to y. To show that requirement
2 is true when radius is 1, we must find the vector on H1 orthogonal to the
tangent vector of H1(0). Thus we solve (~c(t) − ~c(0)) − ~c′(0) = 0.

In our case:
~c(t) = (cost, sint, t)
~c(0) = (1, 0, 0)
~c′(t) = (−sint, cost, 1)
~c′(0) = (0, 1, 1).
The vector between ~c(t) and ~c(0) is (cost-1, sint, t). If we take the dot product
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of this vector and the vector tangent to the curve at t = ~c′(0) and set this value
equal to 0 we will find a vector orthogonal to both. In this case the dot product
gives us sint + t = 0 which gives us t = 0. Since this is the same as our original
point, this tells us that there are no doubly-critical points when the pitch is
equal to 1.

To satisfy requirement 3 the radius of curvature of a single helix must be at
least 1. The curvature formula is

κ =
‖~c′ (t0)× ~c”(t0)‖

‖~c′(t0)‖3

and the radius of curvature is 1

κ
For the double helix the curvature is κ(~c) = 1

2

and the radius of curvature equals 2. So the curvature of the double helix will
not be a problem.

Fig. 2: A double-helix with radius of 1 and pitch of 1.

The length of one twist of a single helix is found by

l =
∫

π

0

√

(− sin(t))2 + (cos(t))2 + 1 dt =
√

2π

The length of a double helix with one crossing is equal to twice the above value.
Therefore the length of a double helix with n crossings is L = n2

√
2π and the

length of the double helices in any pretzel knot is

lhelix = (p + q + r) 2
√

2 π

3 Proof of Theorem 1

The following section explains the construction of a (p,q,r) pretzel knot, or a
pretzel knot with three twists. The pretzel knot was constructed by using partial
circles and straight ropes to connect the helices. The length of each individual
part is denoted by lhelix for the helices, lcirc for the partial circles, lvert for
vertical straight ropes, and lhor for horizontal straight ropes.
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3.1 Placing the Helices

The issue now is to place the 3 seperate twists/double helices in such a way
that minimizes the ropelength needed to connect the helices. Each double helix
is contained within a cylinder of radius 2. By placing the three double helices
in such a way that the cylinders of radius 2 do not intersect, the double helices
are guarenteed not to overlap. Changing the rotation of the double helices will
minimize the distance between the helices to be connected later on. Figure 3
shows the placement of the helices which will reduce the ropelength necessary
to connect the helices while ensuring that no ropes will overlap.

Fig. 3: Placement of the helices as seen looking down the z-axis.

The equations for the helices in these locations are

Helix 1: (cos(t + π

2
) + 4√

3
, sin(t + π

2
), t)

Helix 2: (cos(t + 3π

2
) + 4√

3
, sin(t + 3π

2
), t)

Helix 3: (cos(t + π

3
) − 2√

3
, sin(t + π

3
) − 2, t)

Helix 4: (cos(t + 4π

3
) − 2√

3
, sin(t + 4π

3
) − 2, t)

Helix 5: (cos(t − π

3
) − 2√

3
, sin(t − π

3
) + 2, t)

Helix 6: (cos(t + 2π

3
) − 2√

3
, sin(t + 2π

3
) + 2, t)

5



Fig. 4: The twists of a (2 ,4 ,3) pretzel knot

These equations were obtained by starting with helix 1 and helix 2 and rotating
them by 2π

3
around the z-axis.

3.2 Connecting the Helices

Following the numbering used in figure 3, helix 1 and helix 6, helix 2 and helix
3, and helix 4 and helix 5 must be connected on the top and the bottom of each
helix. The first step to be able to connect the helices is to flatten the tops and
bottoms of each helix. At this point each helix begins and ends at a 45◦ angle
with the horizontal. In order to flatten these, 1

8
th of a circle with radius 1 will

be added to the top and bottom of each helix. These partial circles must satisfy
similar conditions as stated above for the helices. First, the distance between
the centers of the circles must be at least twice the radius. Since the centers of
the circles will be located at the same location on their helix and it has already
been shown that the helices have a distance of 2, the centers of the circle must
be at least 2 units apart. In this case there will be no doubly critical points.
Finally, the radius of curvature must be at least 1. The radius of curvature for
a circle with radius 1 is 1. So these partial circles satisfy all conditions for the
construction of this knot.
The length of these 1

8
th circles is l = 1

8
(2π). Since 12 of these 1

8
th circles will

be needed the length that they contribute to the total ropelength is 3π, which
will contribute to lcirc later.

Once the helices have been flattened, it is necessary to make the helices which
are to be connected the same height. So helix 1 must be the same height as
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helix 6, helix 2 the same height as helix 3, and helix 4 the same height as helix
5. This will be accomplished by simply connecting a straight rope to the top
of the shorter of the two helices. This straight rope will not intersect itself or
any other section because it will extend vertically from the attached 1

8
th circles

which are of distance of at least 2 apart. The radius of curvature and doubly-
critical points will not be an issue since this is a straight rope.

The length of this vertical straight rope will be equal to the difference in height
between the two helices. Since each twist has height of π the length contributed
to the total ropelength by these vertical straight ropes is

lvert = (|p − q| + |q − r| + |r − p|)π

Fig. 5: Construction of two double-helices.

Now that the helices to be connected are at the same height, the helices can be
connected. The connections will be constructed by a horizontal straight rope
with a 1

4
circle of radius 1 on either end. It must be shown that both the hor-

izontal straight rope and quarter circles satisfy the conditions given above for
the construction of a knot. The quarter circle will be similar to the 1

8
th circle

described above. The centers of the circles will be on their respective helices,
which are at least distance 2 away from each other, in the direction of the helix
that they are to connect to. Because of the placement of the helices no two
quarter circles will overlap. Again, there are no doubly-critical points and the
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radius of curvature is 1. The horizontal straight ropes will be similar to the
vertical straight ropes described above.
The 1

4
circle connects the top or bottom of the twist with the horizontal con-

necting rope. The 1

4
circles will have length of 1

4
(2π). Once again 12 of these

1

4
circles are needed. So the total length that the 1

4
circles along with the 1

8
th

circles contribute to the total ropelength is

lcirc = 9π

Fig. 6: Connection at the bottom of two helices created by a straight
horizontal rope and two 1

4
circles.

The length of each horizontal rope is the distance between the two 1

4
circles to

be connected. In our construction this distance is 1.014263831 for a (p, q, r)
pretzel knot. Since 6 of these horizontal straight ropes are needed, the length
these contribute to the total ropelength is

lhor = 6.085582986
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Fig. 7: Final construction of a (2,4,3) pretzel knot.

3.3 Total Ropelength

Using this construction an upperbound for (p,q,r) pretzel knots can be found.
When all of the individual parts are added an upper bound for ropelength is give.

Rop(L) ≤ π (2
√

2(p + q + r) + 9 + |p − q| + |q − r| + |r − p|) + 6.085582986

It was found that this construction can be applied to all (p1, p2, p3, ..., pn) pret-
zel knots. We can generalize all parts of the above equation to give an upper
bound on ropelength for all pretzel knots with n twists. The helices are found
by rotating helix 1 and helix 2 by θ = 2π

n
around the z-axis where helix 1 and

helix 2 are placed a distance of 2

sin π

n

along the x-axis. The distance between the

two quarter circles to be connected for a (p1, p2, p3, ..., pn) pretzel knot is

r

| 2

sin
π

n

− 1 +
q

1

2
− cos 2π

n
( 2

sin
π

n

+ 1 −
q

1

2
) − sin 2π

n
|2 + |1 − sin 2π

n
( 2

sin
π

n

+ 1 −
q

1

2
) + cos 2π

n
|2

So the length of the horizontal straight pieces is 2 less than the above distance.
However, since this length decreases as n increases, we can simply use the value
found for the pretzel knot with three twists, 1.014263831, in the upper bound.
The following are the general equations for all parts of the ropelength:

Lhelix = 2
√

2 (

n
∑

i=1

pi) π

Lcirc = 3 n π

Lvert = ((

n−1
∑

i=1

|pi − pi+1|) + |pn − p1|) π

Lhor = (1.01426383) 2n
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Combining these parts gives us Theorem 1.

4 Conclusion

When this upperbound is applied to the (2,4,3) pretzel knot we are given an
upper bound of 126.8981804. The previously known upper bound for knots gives
an upper bound of 208.79. Compared to the previous upper bound, this upper
bound greatly improves upon the upper bound of ropelength for (p,q,r) pretzel
knots. This can also be seen in the equations by the fact that both are functions
of crossing numbers. However, as mentioned before the previously known upper
bound is a quadratic function while the upperbound given in this paper is a
linear function, resulting in a lower value. However, it should be noted that
there is room for improvement on this upper bound. It may be possible to bring
the helices even closer together, which would slightly reduce the upper bound
on ropelength. There could also be a better construction that would minimize
the open space in the middle of the knot, which would also hopefully reduce the
upper bound on ropelength.
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