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Abstract

For any crossing knot K, it appears that the minimum stick represen-

tation will not yield the lowest minimum distance energy. Experimentally

it is obvious that this is the case. In fact, by just adding a midpoint to a

minimum stick representation we find that a lower energy results. In an

attempt to show this, we will show that the minimum distance energy of

an edge from knot K will be greater than or equal to the composite sum of

the same knot’s edge divided by a midpoint. We call savings the amount

our UMD decreases for any given edge. We will show what our savings is

after adding a midpoint to an edge. Last we will show our findings for

a rough upper bound describing the contribution of newly non-adjacent

edges.

1 Background

A Stick Knot also known as a Polygonal Knot, is a simple closed curve in
Euclidean space R

3 produced by joining finitely many points, called vertices,
with straight line segments, called edges. See figure 1.
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and NSF-REU grant DMS-0453605
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Figure 1:

Simon introduces the minimum distance energy for a stick knot and we
review his definitions, [1]. The UMD for the stick knot K with n sticks, sums
all unordered pairs of nonconsecutive segments within the knot. We know that

the total number of unordered pairs is n(n−3)
2 . If we let W,Z be disjoint line

segments in R
3 then the minimum distance between W and Z is a positive

number which we denote MD(W,Z). Letting l(W) denote the length of segment
W, and l(Z) denote the length of segment Z. We define the minimum distance
energy as:

UMD(W, Z) =
l(W )l(Z)

MD(W, Z)2

For a stick knot K, we define:

UMD(K) =
∑

W,Z non−consecutivesegments of K

UMD(W, Z)

Note that the UMD of a stick knot is scale invariant. This emphasizes the
shape not the size of the knot. This can be seen through simple manipulations
of the above equation.

1.1 Data and Examples

Ming is a program that allowed us to manipulate knots and determine the
UMD. Using Ming it was observed that adding a stick to any knot, that knot’s
energy is immediately reduced. This can be seen in Table 1. The Knot type
represented by K3,1e explains the knot K. Here the 3 describes the crossing
number, 1 explains where this knot appears in the table of knots with the same
crossing number, and e means this is an equillateral knot. Notice that while the
energy for each knot type goes down, for some knots the decrease in energy is
more significant than others.
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Knot Type Number of Edges UMD

K3,1 7 184.48508082
8 180.72377345

K3,1e 6 1290.89530575
7 1071.74585483

K4,1 8 466.79796198
9 439.76469024

K5,1 8 401.42316488
9 377.01424621

K6,1 8 1047.44375784
9 1003.68536269

Table 1: Ming, experimental data [2]

Our observations from Ming led us to manually determine the minimum
distance energy for ourselves. We began by taking knot coordiantes, found in
Ming, and determining the total energy of that knot. Then we took the same
knot and divided an edge at a midpoint. Using Ming, again we determined
the energy for that knot. Then we went back to the original knot and divided
another edge at it’s midpoint. Throughout this process we realize that there is
one edge, when divided, that will yield the largest decrease in UMD . Once we
knew what edge was best for subdividing, we wrote a program in Maple which
allowed us to look at the contribution of each edge to the total energy. We
compared the original knot with the knot plus its subdivided edge. By doing
this we made several observations which led us to the Lemma’s found in section
2.

Figure 2:
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The above diagram shows us how adding vertex A, we change the edge Z
into Z1, and Z2. We also can see that while Z had been adjacent to X, it division
causes Z1 to be non-adjacent to X. Z2 also has a newly non-adjacent edge.

In an attempt to understand why adding a stick will lower the energy despite
the above knowledge, we will also compare the knot’s energy before and after
the addition of a midpoint. This helped us understand which component of the
knot energy is independent of the equation. Let us begin by viewing table 2,
see below. This table compares the minimum distances and UMD ’s from the
knots K3,1e : 6 and K3,1e : 7. K3,1e : 6 is the original knot and K3,1e : 7 is
K3,1e : 6 with a midpoint added. We see in this table that UMD is the energy
for the combination of edges listed. For example knot K3,1e : 6’s edge (1, 3) has
the UMD of 2.5811 and the corresponding edges in K3,1e : 7 include (1, 3) with
UMD of 1.2905 and (1, 4) with the UMD of 1.2863. Here we see that by dividing
edge 3 the edge (1, 3) in K3,1e : 6 turns into two edges in K3,1e : 7, (1, 3) and
(1, 4). Thus we can see the comparisons of UMD from the original knot and the
knot with the midpoint added.
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K3,1e : 6 UMD K3,1e : 7 UMD

(1, 3) 2.5811 (1, 3) 1.2905
(1, 4) 1.2863

(1, 4) 372.7404 (1, 5) 372.7404

(1, 5) 240.3246 (1, 6) 240.3246

−−−−− —— (2, 4) 3.5891

(2, 4) 11.2088 (2, 5) 11.2088

(2, 5) 35.6330 (2, 6) 35.6330

(2, 6) 11.2105 (2, 7) 11.2105

−−−−− —— (3, 5) 3.0216

(3, 5) 240.3164 (3, 6) 120.1582
(4, 6) 49.0561

(3, 6) 372.7117 (3, 7) 186.3558
(4, 7) 31.7020

(4, 6) 4.1688 (5, 7) 4.1688

TOTAL ENERGY 1290.8953 1071.7459

Table 2: Corresponding Edges

As stated earlier, we divided edge 3. We chose to do this because the lowest
UMD occurs under this division. However, the reasoning behind this will be
explained in later. Notice that following the division of edge 3 the first half will
continue to be called edge 3, while the second half will be renamed 4. Hence the
reason why edge (1, 3) in K3,1e : 6 became the edges (1, 3) and (1, 4) in K3,1e : 7.
The labeling counts up from there, thus we will have one extra edge in the knot
K3,1e : 7.

Over all, we see that the UMD of K3,1e is lower when there are seven sticks.
We also notice that the energies involving the edges 3 and 4 in K3,1e : 7, as a
sum are less than the corresponding edges from K3,1e : 6. For example if we
look at (3, 5) from K3,1e : 6 we see that the energy for that edge is 240.3164.
Now if we look at the corresponding edges in K3,1e : 7 we see that the edge (3, 6)
with energy 120.1582 and (4, 6) with energy 49.0561 totals 169.2143. Clearly
169.2143 is less than the 240.3164 from the original knot.
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2 Structural Properties of UMD

In this section we will describe how inserting a midpoint in knot K, effects the
UMD for the knot. We will denote the knot with the midpoint added, K ′. We
will show how a knot edge’s energy is greater as a whole edge versus adding the
energies of the subdivided edge together. We also find an equation to describe
the savings when a midpoint is added, and also find that the savings is inde-
pendent of the edges length. Through this we determine an upper bound for
the contribution to UMD from the newly non-adjacent edge. Although Lemma
1 doesn’t explain the edges that became newly non-adjacent, it remains useful
as it helps us in furthuring our understanding on how adding a stick lowers the
total energy.

Lemma 1 Let W and Z be disjoint edges in R
3, and let Z1 and Z2 denote edges

obtained by subdividing Z at its midpoint. Then we have:

UMD(W, Z) ≥ UMD(W, Z1) + UMD(W, Z2)

Proof. As we know how to find the energy of any knot we apply the equation

in the following way: UMD = l(W )l(Z)
MD2(W,Z) . Since UMD is scale invarient we can

assume l(W ) = 1. Thus we will compare:

1 · l(Z)

MD(W, Z)2

and

1(1)l(Z)

2MD2(W, Z1)
+

1(1)l(Z)

2MD2(W, Z2)

Now we can factor out l(Z). Thus our equation becomes:

1

MD2(W, Z)

and

1

2MD2(W, Z1)
+

1

2MD2(W, Z2)

We call point on Z that is closest to W, zx. Since Z1 and Z2 are the
subdivisions of Z, without the loss of generality zx will exist on Z1. Thus
MD(W, Z) = MD(W, Z1). We will denote this minimum distance by m.

1

m2

and

1

2m2
+

1

2MD2(W, Z2)
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As we know m ≤ MD(W, Z2) thus 1
m

≥
1

MD(W,Z2) . Therefore we can conclude

that:

1

m2
≥

1

2m2
+

1

2MD2(W, Z2)

�

Now, that we see that the UMD for an edge is lower after adding a mid-
point, let us determine what the savings is from that midpoint. We will use the

notation p in our savings equation, where p = MD(W,Z2)
MD(W,Z) . As in the previous

Lemma, zx will exist on Z1. Again we will call the point on Z that is closest to
W, zx. The point where Z is subdivided will be called po.

Lemma 2

Given the edges W and Z with unit length, the savings for any edge W is:

UMD(W, Z) − (UMD(W, Z1) + UMD(W, Z2)) =
1

MD2(W, Z)

(

p2 − 1

p2

)

Proof. Since W and Z have unit length

UMD(W, Z) − (UMD(W, Z1) + UMD(W, Z2))

can be rewritten

1

MD2(W, Z)
− (

(1)

2MD2(W, Z1)
+

(1)

2MD2(W, Z2)
)

because MD(X, Z2) = pMD(X, Z) where p ≥ 1 we can substitute to get

1

MD2(W, Z)
−

(

1

2MD2(W, Z)
+

1

2p2MD2(W, Z)

)

Since we know that MD2(W, Z) = MD(W, Z1), we can cancel out these mini-
mum distances and factor out the half to get

1

2

(

1

MD2(W, Z)
−

1

p2MD2(W, Z2)

)

when simplified we obtain

1

2

1

MD2(W, Z)

(

1−
1

p2

)

by finding a common denominator we can conclude the savings to be:

1

MD(W, Z)2

(

p2 − 1

p2

)

�
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Now let us consider what specific pieces of our equation cause the knot energy
to decrease when a midpoint is added. Again we will use the same notation as
above to show that Z1 is independent of the savings equation found in Lemma 2.

Lemma 3

Let us show if p is not necessarily the midpoint of Z and if zx is on Z1, then
the savings is independent of l(Z1).

Proof. To show that Z1 is independent we must begin with the equation from
the last Lemma.

UMD(W, Z) − (UMD(W, Z1) + UMD(W, Z2)) =
1

MD2(W, Z)

(

p2 − 1

p2

)

However, for this case we make substitutions so that UMD(W, Z)−(UMD(W, Z1)+
UMD(W, Z2)) is rewritten:

l(W )(l(Z1) + l(Z2))

MD2(W, Z)
−

(

l(W )l(Z1)

MD2(W, Z1)
+

l(W )l(Z2)

MD2(W, Z2)

)

Here we will factor out l(W ). As we already know that zx will exist on
Z1 and MD2(W, Z) = MD2(W, Z1). Consequently we can cancel out these
minimum distances to obtain:

l(W )

(

l(Z2)

MD2(W, Z)
−

l(Z2)

MD2(W, Z2)

)

�

Because l(Z1) is independent of the minimum distance energy, we realize
that l(Z1) has minimal significance for the final energy. This said, lets use the
previous Lemmas to help us find an upper bound for the contribution of newly
non-adjacent edges. As we discussed earlier, the addition of a midpoint creates
newly non-adjacent edges. However, through observation we know that there is
a way to add a midpoint that will lower the UMD the most.

Originally we assumed that any added midpoint would lower the total energy.
Unfortunately, this is not the case. In fact, dividing an exterior edge wont
necessarily lower the energy. On certain examples it has in fact increased the
energy. While the reasoning behind this is still unknown, it indicates that
dividing an interior edge is more preferable to lower the UMD. This known, let
us discuss how best to add a midpoint to decrease the UMD .

We make the assumption that our knot is equilateral, consequently we as-
sume that each knot edge is of length 1. Now we know that we must consider
two types of angles, acute and obtuse.
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Figure 3: diagram not to scale

Figure 3 illistrates the two angles to be considered. It also helps us to see
that the obtuse angle will always have a larger minimum distance. Table 3 show
the contribution to UMD from the newly non-adjacent edges.

Angle Type θ UMD

Acute ≤ 90 2
sin(θ)2

Obtuse ≥ 90 2

Table 3:

Lemma 4 The contribution to UMD(K ′) coming from newly non-adjacent edges
is at most

(4)

sin(θ2
min)

Proof. To make sure that the above properties are met we will denote θmin as
the smallest angle in any knot, where α and β are angles larger than θmin. A
simple illustration can be seen in figure 4. Consequently we know:

1

sin(α)
≤

1

sin(θmin)
and

1

sin(β)
≤

1

sin(θmin)

.
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Therefore we can rewrite this as:

2

sin2(α)
+

2

sin2(β)
≤

4

sin2(θmin)

Since we added a midpoint to Z, the new subdivisions become Z1 and Z2.
Here we have 2

sin2(α) . This is the energy from the new edge Z2. We also have
2

sin2(β)
to describe the energy from the new edge Z1.

1
sin(θmin) is the energy from

the original edge. This inequality makes sense because we want the energies,
created from dividing our edge Z, to be less than the original edge.

Thus we have a rough upper bound for the contribution of newly non-
adjacent edges. �

3 Conclusion

In this paper I have attempted to show that the minimum stick representation
of a knot K does not yield the minimum distance energy. While this was not
accomplished for the general case, We have found localized proofs. We found
that the UMD of an edge is lower after a midpoint is added. We were also able
to find the savings caused after adding a midpoint. Last, we found an upper
bound for the contribution from newly non-adjacent edges. Still there is room
left to expand upon, such as tightening the upper bound for the contribution of
newly non-adjacent edges.

This research was intended to prove that the minimum stick number of a
knot does not yield the minimum UMD . As this was not proven this too can
be expanded upon. In fact, if we recall Lemma 2, and the savings caused by
adding a midpoint to a knot:

1

2MD2(W, Z)

(

p2 − 1

p2

)

and we know from Simon’s Lemma 8, [1]

1

MD2(W, Z)
≥

4

sin2(θ)

We can use these two known equations to prove that the minimum stick repre-
sentation does not produce the minimum UMD.
Since the savings for W is:

1

2MD2(W, Z)

(

p2 − 1

p2

)

≥
4

2sin2(θ)

(

p2 − 1

p2

)

=
2

sin2(θ)

(

p2 − 1

p2

)

Since the savings for V is:

1

2MD2(V, Z)

(

p2 − 1

p2

)

≥
4

2sin2(θ)

(

p2 − 1

p2

)

=
2

sin2(θ)

(

p2 − 1

p2

)
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Lemma 2 told us the savings and Simon’s Lemma 8 [1] told us the inequality
between the savings and the contributions. Knowing these we then know that
the:

savingsW + savingsV ≥
2

sin2(θ)

(

p2
V − 1

p2
V

+
p2

W − 1

p2
W

)

if we could prove for any knot K:

(

p2
V − 1

p2
V

+
p2

W − 1

p2
W

)

≥ 2

then we would know
(

p2
V − 1

p2
V

+
p2

W − 1

p2
W

)

≥
4

sin2(θ)
≥ contributions from the newly non-adjacent edges

Consequently we would know that the minimum stick does not yeild the mini-
mum UMD.
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