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Abstract

In this paper we discuss the edge-bandwidth of some families of graphs
and characterize graphs by edge-bandwidth. In particular, bounds for
m × n grids, triangular grids of size l, and the closure of the triangular
grid T ∗

l .

1 Introduction

Let G = (V,E, δ) be a simple graph with a set V of vertices, a set E of edges,
and a function δ : E →

(
V
2

)
which indentifies the two distinct vertices incident

to each edge. Let f be a bijection from V to the set {1, 2, 3, . . . , |V |}, called a
labelling of the vertices of G. The bandwidth of G is defined to be

B(G) := min
f

max{|f(a)− f(b)| : {a, b} ∈ E},

where the minimum is taken over all possible labellings of V .
Some of the motivations for investigating the bandwidth problem include:

sparse matrix computations, representing data structures by linear arrays, VLSI
layouts, and mutual simulations of interconnection networks [3, 4, 9]. The prob-
lem of computing bandwidth however, is known to be NP-Complete and band-
widths are only known for a few infinite families of graphs. Bandwidths were
found for hypercubes [2], complete trees [5], and other various mesh-like graphs
[3, 5, 6, 7, 8].

The analog of the bandwidth problem for edges is finding the edge-bandwidth
of G. If g is a bijection from E to the set {1, 2, 3, . . . , |E|}, an edge-labelling of
G, we define the edge-bandwidth of the labelling g to be

B′(g) := max{|g(a)− g(b)| : a, b ∈ E, where a, b are incident},

and the edge-bandwidth of G to be

B′(G) := min
g

B′(g)

where the minimum is taken over all possible labellings of E.
Authors such as Grünwald and Weber determined the edge-bandwidths for

complete binary trees, complete, and complete bipartite graphs in [10, 11].
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Edge-bandwidths are also known for caterpillars and theta graphs [12, 13]. A
useful graph for determining the edge-bandwidth of a graph is L(G), the line
graph of G, where V (L(G)) = E(G) and x, y are adjacent in L(G) if and only if
x and y share a vertex in G. Then combining definitions, we obtain the equality

B′(G) = B(L(G)). (1)

This equality allows us to establish bounds for edge-bandwidth using known
results about bandwidth. Two useful inequalities stand out. If G = (V,E) is a
graph, for S ⊆ V , let

δ(S) := {v ∈ V − S : (u, v) ∈ E, u ∈ S}

be the boundary of S. In [14], Harper proved:

Theorem 1. For any k, 0 ≤ k ≤ |V |/2

B(G) ≥ min
S

|S|=k

max{|δ(S)|, |δ(V − S)|}. (2)

Another important estimation from [15]:

Theorem 2. Let H be a graph on p vertices of diam(H) > 0. Then

B(H) ≥
⌈

p− 1
diam(H)

⌉
. (3)

Where diam(H) := maxu,v∈V min{length(P ) : P is a path from u to v}.
Now we can establish some bounds on the edge-bandwidth of an m× n grid,
which was conjectured in [1] to be 2n− 1, and later proved in [16]. Later, we
will show how the ideas in (2) were extended to determine the edge-bandwidth
of a rectangular grid by an error of one and to obtain the correct asymptotic
growth of triangular grids.

2 Rectangular and Triangular Grids

G is an m × n grid where m ≥ n, if V is the set of ordered pairs of positive
integers (a, b) such that a ≤ n and b ≤ m, and x is adjacent to y if and only if
‖x− y‖ = 1.

Lemma 1. Let G and H be simple graphs such that G is a subgraph of H, then

B′(G) ≤ B′(H) (4)

Proof. Let g : E(H) → {1, 2, 3, . . . , |E(H)|} be an optimal edge-bandwidth
labelling of H, i.e. B′(g) = B′(H). Consider K := {g(e) : e ∈ E(G)}, and
define an equivalence relation ∼ on K where

i ∼ j ⇐⇒ ∀k ∈ Z+ and min{i, j} ≤ k ≤ max{i, j}, k ∈ K.

Now suppose K consists of l equivalence classes, and we say that a class C is
less than a class C ′ if every element of C is less than every element of C ′. This
induces a labelling of the classes with the integers 1, 2, . . . , l. Then we define
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x1 := 0 and xi+1 := min Ci+1 −max Ci + 1 for i ≤ l − 1.

Next, we construct a labelling g∗ of the edges of G:

∀e ∈ {e : g(e) ∈ Ci}, g∗(e) = g(e)−
∑
k≤i

xi i ≤ l

We observe now that given two edges of G, their edge difference in g∗ is no more
than their edge difference in g so B′(G) ≤ B′(g∗) ≤ B′(g) = B′(H).

Lemma 2. Let G be an n× n grid, then

B′(G) ≥ n + 1. (5)

Proof. We consider the line graph of G, H := L(G), and by (1), we need only
show that B(H) ≥ n + 1.

First, we see that |V (H)| = 2n(n−1) since G has n(n−1) horizontal edges and
n(n− 1) vertical edges on the cartesian plane.

Second, an induction yields that diam(H) = 2n − 3. If n = 3, diam(H) = 3.
Suppose now that for an n× n grid G, diam(L(G)) = 2n− 3, and consider the
line graph H of an (n+1)×(n+1) grid. We observe that the two edges furthest
apart are at the corners. A path P , of length 2n − 1 = 2(n + 1) − 3, can be
constructed by extending a path of length 2n − 3, between the corners of an
n × n grid which is a subraph of H. We see that P is the shortest such path
since the choices of moving horizontally or vertically from one edge to another
does not affect the length of the entire path.

Combining these observations with (3),

B(H) ≥
⌈
|V (H)| − 1
diam(H)

⌉
=

⌈
2n(n− 1)− 1

2n− 3

⌉
=

⌈
n +

n− 1
2n− 3

⌉
= n +

⌈
n− 1
2n− 3

⌉
= n + 1. n ≥ 3

Lemma 3. Let G be an m× n grid, then

B′(G) ≤ 2n− 1. (6)

Proof. We construct an edge-labelling g of G such that B′(g) = 2n− 1.

First, we label the edges adjacent to row 1:

g((1, 1), (2, 1)) := 1, g((1, 1), (1, 2)) := n
g((2, 1), (3, 1)) := 2, g((2, 1), (2, 2)) := n + 1

...
...

g((n− 1, 1), (n, 1)) := n− 1, g((n, 1), (n, 2)) := 2n− 1.
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Then we label the unlabelled edges adjacent to row i > 1 similarly:

g((1, i), (2, i)) := x + 1, g((1, i), (1, i + 1)) := x + n
g((2, i), (3, i)) := x + 2, g((2, i), (2, i + 1)) := x + n + 1

...
...

g((n− 1, i), (n, i)) := x + n− 1, g((n, i), (n, i + 1)) := x + 2n− 1,

where x is the last label of row i − 1. Note that there are no vertical edges to
label for row i = n.

In order to verify that B′(g) = 2n−1, we observe that there are nine types of ver-
tices to check: the four corners, the four degree three vertices (top,bottom,left,right),
and the degree four internal vertices. The corners have edge difference at most
n. The top and bottom degree three vertices contribute a difference of n. The
remaining three types contribute 2n− 1. Thus, B′(g) = 2n− 1 ≥ B′(G).

Since every n× n grid is a subgraph of an m× n grid, combining (4), (5), and
(6), we immediately obtain:

Theorem 3. If G is an m× n grid with n ≥ 3,

n + 1 ≤ B′(G) ≤ 2n− 1.

In order to determine the edge-bandwidth exactly, Pikhurko in [16] improved the
lower bound to 2n− 2. Then he gathered enough structural information about
G, so that if the lower bound held with equality, it would yield a contradiction.

We will say that the support V (S), of a set of edges S ⊆ E(G), is the set of
vertices which are an end to an edge in S. Two subsets of E(G) touch if their
supports intersect.

The complement of a set of edges S will be denoted by S = E(G) \S. For
an edge D ∈ S the distance from D to S is the order of the shortest path in
G joining a vertex of D to a vertex of V (S). The i-th neighborhood σi(S), of
S is the set of edges in S which are at most distance i from S. The following
extension of (2) will be useful:

Theorem 4. For any edge labelling η of G, any j ∈ [|E|], and any i ≥ 1, if we
take S = η−1([j]),

B′(η) ≥ max{|σi(S)|, |σi(S)|}
i

. (7)

Proof. We fix η, j, and i. We see that the largest label in S is j. Choose e1,
which is the edge with the largest label in σi(S), for which η(e) = j + |σi(S)|.
Choose P to be the shortest path from a vertex of e1 to a vertex v in V (S), and
suppose it has p ≤ i vertices. Choose an edge e2 in S with vertex v as an end.
Now extend P to P ′ by linking on e2 and e1 to P . At each vertex of P , an edge
difference between edges of P ′ results. Let A1 denote the edge difference at the
first vertex, A2 at the second, and so on. We see that

B′(η) ≥
∑

[p] Ai

p
≥ |σi(S)|

p
≥ |σi(S)|

i
.

The argument for the S case is similar.
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We now show that the lower bound of B′(G) is greater than or equal to
2n− 2. We denote a row of edges with Ri and a column with Ci for i ∈ [n]. We
call R′

i := {e ∈ E : e has ends (j, i), (j, i + 1) for some j ∈ [n]} a quasi-row and
C ′

i := {e ∈ E : e has ends (i, j), (i + 1, j) for some j ∈ [n]} a quasi-column for
i ∈ [n− 1].

Proof. Consider a labelling η of G which optimizes edge-bandwidth. We let s
be the smallest integer such that η−1([s + 1]) contains two lines (where a line
is a row or column). We see that η−1([s]) contains precisely one line. We may
assume without loss of generality that the line is a row, say Rp for p ∈ [n]. Now
we let,

K := {i ∈ [n] : V (Ri) ∩ V (S) 6= ∅},

be the set of indices (of rows) which touch S. Either |K| = k = n, or k < n.

If k = n, then S has n vertical edges which belong to σ(S). For every row Ri,
i 6= p, Ri ∩ σ(S) 6= ∅ since k = n. Hence,

B′(G) = B′(η) ≥ |σ(S)| ≥ n + n− 1 = 2n− 1.

Suppose now that k < n. Let Y := σn−k(S) and Y ′ := Y \σ(S). We wish to
find a lower bound for Y , so we partition Y into three disjoint sets and estimate
the size of each separately.

Y =

 ⋃
j∈[n]

(Y ∩ Cj)

 ∪

 ⋃
j∈[n−1]

(Y ′ ∩ C ′
j)

 ∪

 ⋃
j∈[n]

(σ(S) ∩Rj)

 .

First, we see that there are at least n−k vertices of V (Cj) which do not belong
to V (S). We observe that the vertices of V (Cj) − V (S) form paths. If a path
P has m vertices, it has m − 1 internal edges. In addition, it has at least one
edge with end in V (P ) and one end in V (S). Hence each path contributes m
edges. Thus, |Cj − S| ≥ n− k and it then follows that

|Y ∩ Cj | ≥ n− k. (8)

Consequently, ∣∣∣∣∣∣
⋃

j∈[n]

(Y ∩ Cj)

∣∣∣∣∣∣ ≥ (n− k)n.

Second, we wish to show that |Y ′ ∩C ′
j | ≥ n− k − 1 for j ∈ [n− 1]. We observe

that C ′
j has at least n − k elements which do not touch S. We also see that

none of these edges belong to σ(S), otherwise they would touch S. We also see
that |σm(S) ∩ C ′

j | ≥ m− 1. But since none of the n− k elements of C ′
j belong

to σ(S), |Y ′ ∩ C ′
j | ≥ n− k − 1. As a result,∣∣∣∣∣∣

⋃
j∈[n−1]

(Y ′ ∩ C ′
j)

∣∣∣∣∣∣ ≥ (n− k − 1)(n− 1) (9)

Finally, we consider σ(S)∩Rj . In each of the k rows which touch S, Rj−S 6= ∅
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for i 6= p. Thus, ∣∣∣∣∣∣
⋃

j∈[n]

(σ(S) ∩Rj)

∣∣∣∣∣∣ ≥ k − 1. (10)

Combining these estimations (8), (9), and (10), we get,

|Y | ≥ (n− k)n + (n− k − 1)(n− 1) + (k − 1)
= (n− k)n + (n− k)(n− 1)− (n− 1) + k − 1
= (n− k)n + (n− k)n− (n− k)− n + k

= (n− k)(2n− 2).

Which yields B′(G) ≥ B′(η) ≥ |Y |/(n− k) = 2n− 2.

The similar idea of considering the l-neighborhood was used to establish the
proper growth of triangular grids. The vertices of a triangular grid Tl consist
of V := {(a, b, c) ∈ Z3 : a, b, c ≥ 0 and a + b + c = l} and we say two vertices
x = (x1, x2, x3), y = (y1, y2, y3) are adjacent if and only if they agree in one
coordinate but differ by one in every other coordinate. Akhtar, Jiang, and
Pritikin determined the following bounds for Tl in [17]:

Theorem 5.
3n− o(n) ≤ B′(Tl) ≤ 3n− 1.

We also add that the bandwidth of triangular grids were determined exactly in
[6], where Hochberg, McDiarmid, and Saks showed that:

Theorem 6.
B(Tl) = l + 1.

In this paper, we relaxed the adjaceny condition of Tl and say that the
closure of a Tl graph, T ∗

l has the same vertex set, but two vertices are adjacent
if they agree in one coordinate but differ in every other coordinate (not just
one).

3 T ∗
l Graphs

We now go on to establish lower bounds for B′(T ∗
l ), but first we will need some

small observations.

Lemma 4. For every vertex v,

d(v) = 2l (11)

Proof. We observe that given a vertex x = (x1, x2, x3), the number of vertices
adjacent to x by agreement in the first coordinate, second coordinate, and third
coordinate is l−x1, l−x2, and l−x3 respectively. Thus, d(x) = 3l− (x1 +x2 +
x3) = 2l = ∆.

Given a set S ⊆ V of vertices, we let E(S) := {e ∈ E : V (e) ⊆ S} denote
the internal edges of S, call Θ(S) := {e ∈ E : V (e) ∩ S 6= ∅, V (e) ∩ V − S 6= ∅}
the edge-boundary of S, and say g(S) := |E(S)|+ |Θ(S)| is the number of edges
with ends in S.
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Lemma 5. Given a T ∗
l graph, let Sk := {v ∈ V : v1 = 0 and v2 ≤ k − 1} for

1 ≤ k ≤ l + 1 and T ⊆ V . Then we have,

g(Sk) = min
T

|T |=k

g(T ). (12)

Thus, no other arrangement T of k vertices has less edges with ends in T than
Sk.

Proof. We proceed by induction on k. If k = 1, then Sk is a single vertex.
Suppose the lemma holds for k = n, 1 ≤ n ≤ l. Now consider Sk, for k = n + 1.
Let T ⊆ V be an arbitrary set of n + 1 vertices. Choose a vertex v in T . By
the inductive hypothesis,

g(Sn+1\{(0, n, l − n)}) = g(Sn) ≤ g(T\{v}).

Then by definition and the fact that every vertex has degree 2l,

g(Sn+1) = |E(Sn+1)|+ |Θ(Sn+1)|

=
[
|E(Sn+1)|+

(
|E(Sn)| − |E(Sn)|

)]
+[

|Θ(Sn)|+ 2l − 2
(
|E(Sn+1)| − |E(Sn)|

)]
= |E(Sn)|+ |Θ(Sn)|+ 2l −

(
|E(Sn+1)| − |E(Sn)|

)
= g(Sn) + 2l −

(
|E(Sn+1)| − |E(Sn)|

)
≤ g(T\{v}) + 2l −

(
|E(Sn+1)| − |E(Sn)|

)
= g(T\{v}) + 2l − n

≤ g(T\{v}) + 2l −
(
|E(T )| − |E(T\{v})|

)
= |E(T\{v})|+ |Θ(T\{v})|+ 2l −

(
|E(T )| − |E(T\{v})|

)
=

[
|E(T )|+

(
|E(T\{v})| − |E(T\{v})|

)]
+[

|Θ(T\{v})|+ 2l − 2
(
|E(T )| − |E(T\{v})|

)]
= |E(T )|+ |Θ(T )|
= g(T ).

We then get a corollary which asserts that a “ triangle ”, V (T ∗
l−1) is the best

way to arrange l(l + 1)/2 vertices to maximize the number of its internal edges.

Corollary 1. Given a T ∗
l graph, let S := {v ∈ V : v1 ≥ 1} and T ⊆ V , then

|E(S)| = max
T

|T |=|S|

|E(T )|. (13)

Proof. Consider an arbitrary set T ⊆ V of |S| vertices. We see that

|E(S)| = |E| − (|E(V − S)|+ |Θ(V − S)|) = |E| − g(V − S).

Since V − S = {v ∈ V : v1 = 0}, V − S consists of l + 1 vertices and so does
V − T . By (12),

|E(S)| = |E| − g(V − S) ≥ |E| − g(V − T ) = |E(T )|.
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Finally, we obtain lower bounds of quadratic growth on the edge-bandwidth
of T ∗

l graphs:

Theorem 7.
l2 + 2l − 1 ≤ B′(T ∗

l ).

Proof. First, we consider an arbitrary labelling g, of the edges of T ∗
l . We observe

that the edges labelled 1, 2, 3, . . . ,
(

l
2

)
+ 1 must cover l + 1 vertices, since a

complete graph maximizes the number of internal edges and a complete graph
of l vertices has

(
l
2

)
edges. We see that since every vertex has degree 2l,

|E| = 1
2

∑
v∈V

d(v) =
(

1
2

)
(l + 1)(l + 2)

2
2l =

l(l + 1)(l + 2)
2

Also by (13), any arrangement of l(l + 1)/2 vertices has no more than
(l − 1)(l)(l + 1)/2 = |E(T ∗

l−1)| internal edges. Hence, the edges labelled |E|,
|E| − 1, . . . , |E| − [(l− 1)(l)(l + 1)/2 + 1] + 1 must cover l(l + 1)/2 + 1 vertices.
Thus at least one of the edges labelled 1, . . . ,

(
l
2

)
+ 1 must share a vertex with

one of the edges labelled |E|, . . . , |E| − [(l− 1)(l)(l + 1)/2 + 1] + 1, and we have,

B′(T ∗
l ) ≥ B′(g)

≥ |E| − (l − 1)(l)(l + 1)
2

− 1 + 1−
((

l

2

)
+ 1

)
=

l(l + 1)(l + 2)
2

− (l − 1)(l)(l + 1)
2

− l(l − 1)
2

− 1

= l
(l + 1)(l + 2)− (l − 1)(l + 1)− (l − 1)

2
− 1

= l
l2 + 3l + 2− (l2 − 1)− l + 1

2
− 1

= l
2l + 4

2
− 1

= l2 + 2l − 1

4 Classification of Graphs by Edge-Bandwidth

A natural question arises when considering edge-bandwidth: given a positive
integer k, what do graphs of edge-bandwidth k look like? We first examine
edge-bandwidth 1 graphs.

Theorem 8. If G is a simple graph, B′(G) = 1 if and only if G consists of a
union of vertex disjoint paths.

Proof. (⇐) Label each path P individually so that B′(P ) = 1.

(⇒) We say that two vertices u and v are connected if and only if there is a
path in G withs ends u and v. This defines an equivalence relation on V . We
call an equivalence class under this relation a component of G.

Consider C, an arbitrary component of G. The degree of every vertex in C
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must be less than three, since otherwise B′(G) > 1. If C has any vertices of
degree zero, then C consists of a single vertex. We also see that C cannot have
all vertices degree two, then C is a cycle and again B′(G) > 1. Thus if C is
not a single vertex, then C has some vertices degree one. Let P be a path
of maximum length. The internal vertices of P are degree two, and are not
adjacent to any other vertices. The ends of P are not adjacent to any other
vertices since otherwise P can be extended, contradicting the maximum length
of P . Thus P = C and every component is a path.

We see that as the edge-bandwidth increases, the graphs quickly become
more complicated and difficult to describe. We should however, at least be
able to determine all edge-bandwidth 2 graphs. For larger k, it would be in-
teresting to find a non-trivial property which must exist in common among all
edge-bandwidth k graphs. We already know some simple aspects of the edge-
bandwidth k graphs which are guaranteed, such as bounds on the maximum
degree.
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