
Tree Congestion for Complete n-Partite Graphs

Allen Cox ∗†

August 24, 2007

Abstract

The tree congestion and number of edge disjoint paths existing in n-
partite graphs is explored, along with the spanning tree congestion for
such graphs.

1 Introduction

A graph G consists of a set of vertices, VG, and a set of edges, EG. Each
edge represents a connection between two vertices. We will only be using simple
graphs, or graphs where multiple edges do not connect the same two vertices,
and no edges exist such that the endpoints of the edge are both a single vertex.
A vertex v is adjacent to a vertex u if there exists an edge between them. An
edge g that has an endpoint of v is incident to v.

A complete graph is a graph Kn with n vertices such that each vertex in Kn

is connected to every other vertex. A complete bipartite graph, Km,n, is a graph
with two sets of vertices M and N such that |M | = m and |N | = n, with every
vertex in M adjacent to each vertex in N , and with no edges of the same set
being adjacent. To take this further, a complete n-partite graph, Ka1,a2,...,an ,
a1 ≤ a2 ≤ . . . ≤ an, is a graph that contains n sets of vertices, A1, A2, . . . , An,
with |Ai| = ai and each vertex in Ai is adjacent to every vertex v such that
v /∈ Ai for 1 ≤ i ≤ n.

Figure 1: A Complete 4-Partite Graph

∗Kent State University
†This work was jointly supported by California State University, San Bernardino, and

NSF-REU Grant DMS-0453605.

1

Tucker [7] defines that for a graph G, a path is a sequence of distinct vertices
(x1, x2, . . . , xn) such that consecutive vertices are adjacent. A graph is a tree if
there exists only one path between a pair of vertices for all such distinct pairs
in the graph, and that the number of edges in a graph is equal to the number of
vertices minus one, or |EG| = |VG| − 1. The diameter of a tree is the length of
the longest path in the tree, where the length of a path (x1, x2, . . . , xn) would
be n− 1, for the number of edges contained in the path. Also, a graph is called
a connected graph if there exist paths between all pairs of vertices in a graph.
The maximal number of edge disjoint paths for a graph G, denoted mG, is the
maximal number of paths between two vertices u, v ∈ VG that share no common
edge, among all possible u, v. The concept of edge disjoint paths is illustrated
in Figure 2.

Figure 2: Edge Disjoint Paths Between Vertices 1 and 5 for K5

Note that mG would correspondingly be 4. It is not possible for mG ≥
deg(G) in any case, because as the paths are edge disjoint, we cannot make
more edge disjoint paths from a vertex than we have edges connected to a
vertex.

For G, there exist a number of trees, denoted T1, T2, . . . , Tn which may be
embedded onto G, with the only conditions being that all vertices in G are used
in any such Ti, and that Ti meets the conditions of a tree. For a tree of a graph
G to be called a spanning tree, the additional condition must hold that for any
edge in the spanning tree, the same edge exists in the original graph G.

Figure 3: A Spanning Tree for K5

Ostrovskii defines what is called an H − Layout L of G, but for now, we
only need to use a more specfic form of the following definition. For an embed-
ded tree on G, denoted T , the T − Layout L of G is a set {Pg : g ∈ EG} of

2

paths Pg in T that join the endpoints of edge g. For example, a T − Layout L
of K5, with T equal to our spanning tree in Figure 3 would equal the set L =
{(1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 5), (2, 3), (2, 3, 4), (2, 3, 5), (3, 5), (3, 4), (4, 3, 5)}.
The paths each represent a connection that occurs in the original graph, such as
the path (2, 3, 5) representing the edge between vertices 2 and 5 in the original
graph. The T-Layout is shown visually in Figure 4 for our spanning tree in
Figure 3.

Figure 4: T-Layout of K5

1

2

3 4

5

Next, the following definitions come directly from Ostrovskii [6], but have
been modified specifically for tree embeddings:

Definition 1. For an edge t in T the congestion of t is the number of times t
appears in a T − Layout L of G, or simply cs(t, L) = |{Pg ∈ L : t ∈ Pg}|.
Definition 2. For a tree T with edge set ET embedded onto a graph G, the
congestion of T is

c(T) = max
t∈ET

cs(t, L)

Definition 3. The tree congestion of a graph G denoted t(G) is the minimum
congestion of all possible tree embeddings.

Definition 4. The spanning tree congestion of a graph G denoted s(G) is the
minimum congestion of all possible spanning tree embeddings.

Now we have several definitions from Ostrovskii that will provide the main
ideas for work to follow. Congestion can also be thought of as tree cutwidth,
which can be interperted visually on a tree by contructing paths from our T −
Layout L of G set on the tree, and then making a cut, or intersection, between
two vertices and counting the number of paths intersected. This cut gives the
congestion of that edge, and the maximum of all possible cuts would give the
congestion of the tree.

In Figure 5 is a representation of spanning tree congestion, from our spanning
tree in Figure 3. The thick black line represents the cut.

The cut between vertices 2 and 3 intersects six edges, which is the maximum
for the graph, hence by definition, the congestion of the spanning tree is six.

A theorem due to Ostrovskii [6] is already established that relates mg, t(G),
and s(G). It will be used frequently for later results.

3

Figure 5: T-Layout of K5, with an example of a cut

Theorem (Ostrovskii [6]). For a connected graph, G, mG = t(G) ≤ s(G) ≤
|EG| − |VG|+ 2.

2 Background

The idea of congestion or cutwidth has frequently been researched for embed-
dings of a graph G onto a graph other than a tree. The cutwidths of G have
also been explored for linear embeddings and cyclic embeddings. To define these
terms, we will use a slightly different form of the definitions previously used to
define tree congestion. An H − Layout L of a graph G is a set {Pg : g ∈ EG}
of paths Pg in H that join the endpoints of edge g, with the cutwidth of an
edge g in defined to be the number of times that g appears in this set. H can
be referred to as our host graph. A linear embedding of G can be constructed
by taking the vertices in G, and arranging them along a line, with edges made
between vertices connected in G. For a cyclic embedding of G, a similar ap-
proach is taken, except with an arrangement of the vertices in G in a cycle. The
cutwidth of the embedding is given by the maximum cutwidth of the edges, and
the cutwidth of G is given by the minimum cutwidth of all possible embeddings.

Figure 6: A Linear Embedding of K5

Denote the linear embedding above to be L1 and the cyclic embedding to
be C1. The linear cutwidth of L1, or lcw(L1) is equal to the maximum edge
cutwidth, which is six for edges g and h. The cyclic cutwidth of C1, or ccw(C1),
is three, as each edge has the same cutwidth.

Note that there is more than one possible embedding for a given graph G.
The linear and cyclic embedding of a graph will be different for each possi-
ble labeling of vertices, as our embeddings are made based on the consecutive
numbering of the vertices. For K5, we have a complete graph, and our label-
ing is inconsequential as every vertex is adjacent to every other vertex. For a

4

Figure 7: A Cyclic Embedding of K5

connected square, or 2-cube, where every vertex is not adjacent to every other
vertex, there exist several different labelings up to isomorphism. We will con-
sider a labeling to be non-isomorphic if the labeling cannot be obtained from
a rotation or flip of the graph. More formally, non-isomorphic labelings are
labelings which have different vertex adjancencies.

Figure 8: Graph Labelings of a 2-Cube

Each one of these labelings will produce different linear and cyclic em-
beddings, and therefore also have different cutwidths. Recall that the linear
cutwidth of G is found by taking the minimum of the cutwidths for all possible
embeddings. The cyclic cutwidth of G is found in a similar manner.

Figure 9: Linear Embeddings of the 2-Cube

Note that lcw(G) = 2, as we have lcw(P1) = 2, lcw(P2) = 2, and lcw(P3) =
4. The linear cutwidth of G is the minimum of these values. Correspondingly,
ccw(G) = 1.

In a paper by Chavez and Trapp [2], it was established that if G is a tree,
then lcw(G) = ccw(G). Also, it was proved by Johnson [5] that for a complete

5

Figure 10: Cyclic Embeddings of the 2-Cube

bipartite graph Km,n,

lcw(Km,n) =
{

mn
2 if mn is even;

mn+1
2 if mn is odd.

Also proven were partial results for cyclic cutwidth. For Km,n, it was shown
that

ccw(Km,n) =
{

mn
4 if m,n both even;

mn+3
4 if m,n both odd and m = n.

Note that the congestion of a tree can equivalently be described as the
cutwidth of a tree based on the definition of cutwidth. For bipartite graphs
and tripartite graphs, the maximal number of edge disjoint paths and tree con-
gestion were explored in research projects by Stephen Hruska [4] and Diana Carr
[1], respectively. Recall that mG is the maximal number of edge disjoint paths
between two vertices in a graph G over all such distinct pairs. Also, t(G) is
the minimum congestion of all possible tree embeddings of a graph G, and s(G)
is the minimum congestion of all possible spanning tree embeddings. Hruska
investigated the tree congestion of bipartite graphs. Carr took his results one
step further, and investigated the tree congestion for tripartite graphs. The
results of each are displayed below, with both using the previous theorem from
Ostrovskii [6] for mG = t(G) ≤ s(G).

Theorem (Hruska [4]). For G = Km,n, m ≤ n, mG = t(G) = s(G) = 1 if
m = 1, and mG = t(G) = n, s(G) = m + n− 2 if m ≥ 2.

Theorem (Carr[1]). For G = Km,n,l, m ≤ n ≤ l,

mG = t(G) =
{

l + 1 if m = 1;
n + 1 if m ≥ 2.

s(G) =
{

l + 1 if m = 1;
(2m + n + l)− 2 if m ≥ 2.

These results will be expanded to n-partite graphs.

6

3 Main Results

3.1 t(G) for Complete n-Partite Graphs

A complete n-partite graph, Ka1,a2,...,an , a1 ≤ a2 ≤ . . . ≤ an, is a
graph that contains n sets of vertices, A1, A2, . . . , An, with |Ai| = ai and each
vertex in Ai is connected to every vertex v such that v /∈ Ai for 1 ≤ i ≤ n. Also,
we have by Ostrovskii [6] that mG = t(G), so by establishing mG we are given
t(G). For n = 2, refer to Hruska [4], and for n = 3, refer to Carr [1]. Their
previous results will be assumed.

Theorem 1. For G = Ka1,a2,...,an
, with a1 ≤ a2 ≤ . . . ≤ an, |A1| = a1, |A2| =

a2, . . . , |An| = an, and n ≥ 4,

mG = t(G) =
{

1 + a3 + a4 + · · ·+ an if a1 = 1;
a2 + a3 + · · ·+ an if a1 ≥ 2.

3.1.1 Case 1: a1 = 1

Recall that mG is the the maximal number of edge disjoint paths between all
distinct pairs of vertices u, v in a graph G. To find our maximal edge disjoint
paths, we must choose the u and v with the highest possible degrees, as we will
be bounded by the lesser of these two degrees. Since G is a complete n-partite
graph, each vertex will have degree equal to the sum of the cardinalities of the
sets it is not contained in. Knowing that a1 ≤ a2 ≤ . . . ≤ an, a vertex in A1

will have the highest degree of a2 + a3 + · · ·+ an. Since u and v cannot both be
chosen in A1 since |A1| = 1, at least one must be chosen to be in some set not
equal to A1. The next highest degree belongs to any vertex of A2, with degree
equal to a1 + a3 + · · ·+ an, thus giving an upper bound for mG. Hence u and v
chosen in A1 and A2 provides the highest possible minimum degree for all such
pairs u, v. With u ∈ A1, v ∈ A2, we have a3 paths of length two of the form
uy3v, for all y3 ∈ A3, a4 paths of length two of the form uy4v,for all y4 ∈ A4,
and continued up to an paths of length two of the form uynv, for all yn ∈ An.
With our direct path uv, this gives us a total of 1+a3+a4+· · ·+an edge disjoint
paths, which is our upper bound. Thus mG = t(G) = 1 + a3 + a4 + · · ·+ an.

3.1.2 Case 2: a1 ≥ 2

In this case, note that u and v can be chosen to both have degree a2+a3+· · ·+an,
hence mG ≤ a2 + a3 + · · · + an. Choose u, v ∈ A1, which gives us a2 paths of
length two of the form uj2v, for j2 ∈ A2, a3 paths of length two of the form
uj3v, for j3 ∈ A3, and continued up to an paths of length two of the form ujnv
for jn ∈ An, for a total of a2 + a3 + · · · + an paths. This gives us our upper
bound of edge disjoint paths, hence mG = t(G) = a2 + a3 + · · ·+ an.

7

3.2 s(G) for Complete n-Partite Graphs

For our complete n-partite graph G, the spanning tree congestion, denoted
s(G), is the minimum congestion of all possible spanning tree embeddings. By
Ostrovskii [6], s(G) has a lower bound of t(G) = mG. Again, for n = 2, refer
to Hruska [4], and for n = 3, refer to Carr [1]. Their previous results will be
assumed.

Theorem 2. For G = Ka1,a2,...,an
, with a1 ≤ a2 ≤ . . . ≤ an, |A1| = a1, |A2| =

a2, . . . , |An| = an, and n ≥ 4.

s(G) =
{

1 + a3 + a4 + · · ·+ an if a1 = 1;
2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2 if a1 ≥ 2.

3.2.1 Case 1: a1 = 1

With |A1| = 1, construct a star with the only vertex v ∈ A1 as the center with
all other vertices connected to v. Since G is an n-partite graph, v is connected to
all vertices not in A1, which is in this case all vertices but v. These connections
in the star already exist in G, and since we are using all the vertices in G, we
have a spanning tree. The only way to traverse to all other vertices from some
vertex ai 6= v is to travel from ai through v to each vertex that ai connects
to. This will result in a number of paths traversing aiv equal to the sum of the
cardinalities of each set Aj such that i 6= j, which includes the direct path aiv.
This congestion for an edge aiv can be represented more succinctly by

cs(aiv) =
∑

i6=j

|Aj |.

Since we are looking for the maximal edge congestion, this can be found be
picking any edge connecting v to a vertex in a2, which gives our least cardinality
a coefficient of zero in our summation. Thus our maximal edge congestion is
1 + a3 + a4 + · · · + an, which is the congestion of the tree. Since this is equal
to t(G), our lower bound for s(G), we have found the minimal spanning tree
congestion for this case.

3.2.2 Case 2: a1 ≥ 2

First note that a tree of diameter two will not be applicable in this situation.
Say v1 ∈ Ak is picked as the center of the star as in the tree for case one.
Since ak ≥ a1 ≥ 2, there will exist some v2 ∈ Ak such that v2 6= v1. We are
constructing a spanning tree, so it is not valid to connect v2 to v1. Hence there
must exist some vertex w between v1 and v2, which invalidates using our star
diagram. Thus we must extend our tree to diameter three or more. There are
two possible subgraphs of diameter three that our tree must either be equal to
or contain. The first case is for graphs that are considered extended stars.

An extended star ES is a spanning tree for a complete n-partite graph
G = Ka1,a2,...,an such that there exists a central vertex α ∈ Ai connected to

8

all vertices v /∈ Ai, and each edge constructed so far is of the form αv. The
remaining α′ ∈ Ai such that α 6= α′ are then connected to vertices v /∈ Ai, with
each v and α′ pairing distinct.

Figure 11: An Extended Star

Now we look to minimize our maximal edge congestion for this specific con-
struction towards the goal of finding a value for s(G). It is clear that the edges
with the most congestion will be edges of the form vα such that v also connects
to a vertex α′ as defined above. These edges will not only be traversed for paths
starting from vertex v, but also paths starting from vertex α′. Thus an edge vα

for v ∈ Ab, α ∈ Ai, b 6= i will have
(∑n

j=1 aj

)
− 1 − ab paths originating from

v that traverse through vα. The subtraction of at the end is to account for the
one α′ that is connected to v, thus not using edge vα for this path, and also to
account for the members of Ab that v ∈ Ab will not make paths to. Then, vα
will also have the congestion from paths originating from vertex α′ for α′ ∈ Ai

which similarly will be (
∑n

k=1 ak)− 1− ai. More formally, this gives us

cs(vα) =

∑

1≤j≤n
b6=j

aj +
∑

1≤k≤n
i 6=k

ak

− 2.

Note that when our two summations are added, all of our terms will have a
coefficient of two except for ab and ai. This is because ab is not added in the
first summation, and ai is not added in the second summation, but all other
cardinalities appear once in each sum, thus giving us coefficients of one for ab

and ai, and coefficients of two for all other terms.
The congestion of an edge of the form dα such that d ∈ Aj is not also

connected to an α′ vertex is ∑

1≤i≤n
j 6=i

ai.

This is to account for the paths that will be made to all vertices except those
vertices in Aj . Therefore, we must show that this is less than our congestion for
vα, which can be done by showing 2

∑n
x=1 ax − (2 + ab + ai) ≥

∑n
x=1 ax − aj .

9

This is equivalent to showing
∑n

x=1 ax − ab ≥ 2 if Ai = Aj ,∑n
x=1 ax − ai ≥ 2 if Ab = Aj ,∑n
x=1 ax − ab − ai ≥ 2 if Ai 6= Aj and Ab 6= Aj .

Since n ≥ 4, and ai ≥ a1 ≥ 2 for 1 ≤ i ≤ n, then our above three summations
will each have at least four terms, and each one of those terms will be greater
than or equal to two. Even if one or two terms are subtracted as above, our
sum is still greater than two as there will exist at least two terms on the left,
each at least equal to two. So the inequality is established, and we may now
focus on the edges of larger congestion of the form vα.

We have that edges of the form vα such that v connects to some α′ ver-
tex have maximal congestion for an extended star graph, and now we need to
minimize this maximal value to get the congestion for our original graph G.

In our summation, we have two coefficients that are equal to one, with all
other coefficients equal to two. The coefficients of one correspond to the sets
that v and α are in. Therefore, we need to make sure that the sets Ab and Ai

are chosen to be as large as possible, to avoid a large cardinality set having a
coefficient of two when it is not neccessary. We know that a1 ≤ a2 ≤ . . . ≤ an.
Let b = n and i = n − 1. Hence by our contruction all remaining α′ ∈ Ai =
An−1 not equal to α will be connected to distinct vertices in An = Ab, as
an ≥ an−1. Thus we have a maximal edge congestion for our extended star
as 2(a1 + a2 + · · · + an−2) + an−1 + an − 2. We can only modify which two
cardinalities have a coefficient of one instead of two. These cardinalities have
been chosen as the largest, thus minimizing our maximum edge congestion, and
hence gives us the congestion of our extended star spanning tree as 2(a1 + a2 +
· · ·+an−2)+an−1+an−2. We will denote optimal extended stars as an extended
star E′

S having this minimal congestion. Since our construction was generalized,
an optimal extended star can be embedded on any complete n-partite graph G.

For our extended star, we had vertices v that were connected to a central
vertex α with some v each connecting to one additional α′ 6= α. We have not
explored what occurs in terms of congestion when a vertex v is connected to
multiple vertices besides α and α′, if our vertex α′ is connected to additional
vertices, or when both occur together. Denote edge g to have endpoints of v
and α such that (i), v is connected either to at least two additional vertices, or
(ii), v has a path of length two or more adjoined to it that does not include the
vertex α.

In either case, let edge g with endpoints v and α partition the graph into
two sets of vertices, R and S. R will consist of the set of vertices r such that
each r is contained in a path that traverses to v without traversing through
vertex α, and S will consist of the vertices s such that each s is contained in a
path that traverses to α without traversing vertex v. Also, v ∈ R, and α ∈ S.
This can be also thought of as adjoining two trees of three or more vertices by
a single edge g. If |R| or |S| is less than three, then the set consists only one
vertex connected to v or α, which gives us an extended star. Thus assume |R|

10

and |S| ≥ 3, and furthermore that R and S are disjoint subsets of VTG such that
R ∪ S = a1 + a2 + · · ·+ an and our construction yields a spanning tree for our
complete n-partite graph G. Trees that follow the above critiria will be denoted
as divided trees.

Figure 12: A Divided Tree

α

For the edge g, let βi represent the number of vertices from Ai that are in
set R, with βi ≥ 0, 1 ≤ i ≤ n, and β1 + β2 + · · · + βn = |R|. Therefore, each
vertex of Ai that is contained in R will have to connect to |S|−(ai−βi) vertices
that require using edge g in a path. ai − βi is the number of vertices in Ai not
in R, or the number of vertices in Ai in S.

Therefore g will have an edge congestion of
∑

1≤j≤n
j 6=i

βj(|S| − aj + βj)).

Next we will show that this edge congestion is greater than that of our extended
star, or more formally, for an edge g as described above in our divided tree, and
an optimal extended star ES embedded onto the same complete n-partite graph
G, cs(g) ≥ c(ES), or

cs(g) =
∑

1≤j≤n
j 6=i

βj(|S| − aj + βj) ≥ 2(a1 + a2 + · · ·+ 2an−2) + an−1 + an − 2.

We will induct on the number of vertices in VG. Note that neither R nor S
can have cardinality lower than three as this would result in an extended star
or a star, and neither R nor S can consist of only vertices from a distinct Ai for
1 ≤ i ≤ n, as this would require edges connecting vertices not connected in our
graph G, thus invalidating a spanning tree. Without loss of generality, begin
with |R| = 3. For R = {α, γ, δ}, for α ∈ Aj , γ ∈ Ak, and δ ∈ A` for 1 ≤ j, k, ` ≤
n. This will result in 3(a1 + a2 + · · ·+ an − 3)− (aj − 1)− (ak − 1)− (a` − 1)
paths through edge g. If two of our vertices in R are both in Aj ,Ak, or A`,
then this sets corresponding cardinality will have a coefficient of one in our sum
above. If none of our vertices in R are in the same set, then aj ,ak, and a`

will all have coefficients of two in the sum. Regardless, this will still result in
a congestion for g greater than that of our optimal extended star, which was
2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2.

Assume for |VG| = m, |R| = k and |S| = m − k, with |R|, |S| ≥ 3, that the
congestion for edge g is greater than the congestion of our optimal extended

11

star. This gives us
∑

1≤j≤n
j 6=i

βj(|S| − (aj − βj)) ≥ 2(a1 + a2 + · · ·+ 2an−2) + an−1 + an − 2

which can be enumerated as

β1(|S| − (a1 − β1) + β2(|S| − (a2 − β2) + · · ·+ βn(|S| − (an − βn)

≥ 2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2.

Now we need to prove for |R| = k + 1 that the result still holds. Note that
a vertex not in our original graph G is being adjoined to set R in our divided
tree. For |R| = k + 1, adding a vertex in R will produce two cases. The first
case is if a vertex ω ∈ Aw is adjoined to R such that no other vertices ω′ ∈ Aw

exist in R, and the second case is if a vertex η ∈ Aq is adjoined to R such that
at least one other vertex in R is contained in Aq.

For the first case, another term will be in our summation on the left to
account for the ω ∈ Aw being adjoined to T . We will have an additional
βw(|S| − (aw − βw)) on the left, and on the right we will have an additional
constant of at most two, depending on whether w < n − 1. We already know
that

β1(|S| − (a1 − β1) + β2(|S| − (a2 − β2) + · · ·+ βn(|S| − (an − βn)

≥ 2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2,

but we need to establish that βw(|S|−(aw−βw)) ≥ 2 to verify that the additional
terms on the left outnumber the additional terms on the right. Since no other
vertices in Aw exist in R, βw = 1. Hence we have βw(|S| − (aw − βw)) =
|S| − aw + 1, and since S must contain Aw except for the vertex adjoined to R,
and cannot be equal to the remainder of Aw by construction of our tree, then
|S| > aw. Hence |S| − aw ≥ 1, and |S| − aw + 1 ≥ 2. So our result still holds.

The second case is if a vertex η ∈ Aq is adjoined to R such that there exists
at least one other vertex η′ ∈ Aq ∩R, with η′ 6= q. Therefore in our summation

∑

1≤j≤n

βj(|S| − (ai − βj)),

our βq variable will be replaced by βq + 1. Hence in our sum, we will have
(βq + 1)(|S| − (aq − βq + 1)) = βq|S| − βqaq + β2

q + βq + |S| − aq + βq + 1
instead of βq|S| − βqaq + β2

q . Therefore our left side increases by the additional
terms |S| − aq + 2βq + 1, and our right side increases by two, for our aq being
replaced by aq + 1 in 2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2. Hence we must
verify that |S| − aq + 2βq + 1 ≥ 2, or equivalently |S| − aq + 2βq > 0. We know
that aq − βq is the number of vertices in Aq that are also in S, and hence will
not be negative, so aq − βq ≥ 0. We know that |S| > aq, as explained in our

12

previous case, hence |S| − aq ≥ 1, and with βq ≥ 1 by our case statement, then
|S| − aq + 2βq > 0. Therefore, our result holds for the second case. By proof of
mathematical induction,

cs(g) = β1(|S| − (a1 − β1) + β2(|S| − (a2 − β2) + · · ·+ βn(|S| − (an − βn)

≥ 2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2.

Recall what we have shown. First, we established the congestion of an
optimal extended star E′

S to be 2(a1 +a2 + · · ·+an−2)+an−1 +an−2. Next we
established for a spanning tree not in the form of an extended star, denoted as a
divided tree, that the congestion of the specific edge g was always more than the
congestion of our extended star. Furthermore, by definition of congestion for
edges and trees and with any divided tree represented by D, if cs(g) ≥ c(E′

S),
then c(D) ≥ c(E′

S). Since the spanning tree congestion of a graph G is the
minimum congestion of all possible spanning trees, then for G = Ka1,a2,...,an

with a1 ≥ 2 and n ≥ 4, s(G) = 2(a1 + a2 + · · ·+ an−2) + an−1 + an − 2.

3.3 |EG| and |VG| for Complete n-Partite Graphs

Recall that t(G) and s(G) are bounded above by |EG|− |VG|+2, by Ostrovskii.

Theorem 3. For G = Ka1,a2,...,an with a1 ≤ a2 ≤ . . . ≤ an and |Ai| = ai for
1 ≤ i ≤ n,

|EG| − |VG|+ 2 =
n−1∑

k=1

ak(ak+1 + ak+2 + · · ·+ an)−
n∑

j=1

aj + 2.

The proof is quite clear. For any vertex in a1, it must connect to a2 + a3 +
· · ·+an vertices. For a2, it must connect to all vertices except ones in its own set
and the vertices in a1 it has already been connected to, or (a3 + a4 + · · ·+ an).
This continues up to any vertex in an−1 having to connect to an vertices, thus
giving us

∑n−1
k=1 ak(ak+1+ak+2+ · · ·+an) edges. The number of vertices is found

by adding the cardinalities of the vertex sets, or a1 + a2 + · · ·+ an =
∑n

j=1 aj .
This gives our result.

4 Future Research

The work I have done for complete n-partite graphs could be extended to ad-
ditional areas. Johnson [5] has researched the linear and cyclic cutwidths of
complete bipartite graphs, and Hartung [3] has done work on the wirelength
of complete bipartite graphs, with wirelength being the sum of the distances
between points on a linear embedding of a graph. Just as t(G) and s(G) was
expanded from complete bipartite and tripartite graphs to complete n-partite
graphs in this paper, finding the linear and cyclic cutwidths and wirelength for
complete n-partite graphs is a fitting extension for additional research.

13

5 Acknowledgments

Since this research was done at the REU program at California State University,
San Bernardino, I would like to first thank Dr. Joseph Chavez and Dr. Rolland
Trapp for their organization of the program, and for giving me the opportunity
to participate. I would also like to thank both of them for their continued input
and guidance throughout the program. Thanks is also due to the other REU
participants for the memorable experiences we enjoyed during the summer, and
to those close to me for their continuing encouragment and support.

References

[1] Carr, Diana, The Tree Congestion of Graphs, REU Project, California
State Univ. San Bernardino, 2005.

[2] Chavez, J.D. and Trapp, R., The Cyclic Cutwidth of Trees, Discrete
Applied Mathematics, 87 (1998) 25-32.

[3] Hartung, Elizabeth J., The Linear and Cyclic Wirelength of Complete
Bipartite Graphs, REU project, California State Univ. San Bernardino,
2004.

[4] Hruska, S., On Tree Congestion, REU Project, California State Univ.
San Bernardino, 2004.

[5] Johnson, Matt, The Linear and Cyclic Cutwidth of the Complete Bipar-
tite Graph, REU Project, California State Univ. San Bernardino, 2003.

[6] Ostrovskii, M.I., Minimal congestion trees, Discrete Mathematics, 285
(2004) 219-226.

[7] Tucker, Alan, “Applied Combinatorics”, John Wiley and Sons, Inc.,
1995.

14

