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Abstract

The linear or cyclic cutwidth of a graph G is the minimum congestion when G is
embedded into either a path or a cycle respectively. A graph is cutwith critical if it is
homeomorphically minimal and all of its subgraphs have lower cutwitdth. Our purpose is
to extend the study of congestion critical graphs to embeddings on spanning trees.

1 Introduction

We let G = (VG, EG) represent a graph with vertex set VG and edge set EG. Edges of a graph
connect pairs of vertices. For the purposes of this paper we define a notational convention. For
graphs G = (VG, EG) and H = (VH , EH), we define G ∪H as a graph such that

G ∪H = (VG ∪ VH , EG ∪ EH).

An edge and a vertex are incident if the vertex is an end of the edge. Two vertices u, v ∈ VG

are adjacent if there is an edge in G connecting them. We define the degree of a vertex u ∈ VG

as the number of vertices in VG that are adjacent to u:

du = |{v ∈ VG : (u, v) ∈ EG}|

Let G be a graph. We define the components of G to be some number w(G) of pairwise-
disjoint connected subgraphs of G: A1, A2, . . . , Aw(G) such that G = A1 ∪ A2 ∪ . . . ∪ Aw(G).
Note that G is a connected graph if and only if w(G) = 1 [1].

A path in G is a finite sequence P(v0,vk) = v0, e0, v1, e1, v2, e2, . . . , vk, whose terms are
alternately distinct vertices and edges, such that for 1 ≤ i ≤ k, the ends of ei are vi−1 and
vi [1]. A tree is a graph in which there is exactly one path between any two vertices. Given
graph G, we let TG denote the set of all trees T such that VT = VG. A tree Ti ∈ TG is called a
spanning tree of G if ETi ⊆ EG. Let SG denote the set of all spanning trees of G.

Let T ∈ TG. Given edge h = (u, v) in EG, we let Ph be a path in T that connects
vertices u and v. We call such a path on a tree T a detour. Since T is a tree we know that Ph

is unique. Let L denote the set of all paths Pe in T where e is any edge in EG. For g ∈ ET , we
define the congestion of g as the number of paths in L in which g is an element:

c(g, T ) = |{Pe ∈ L : g ∈ Pe}|.
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We then define the congestion of G embedded onto T as the maximum c(g, T ) over all edges
g in ET :

c(G : T ) = max{c(g, T ) : g ∈ ET }.

The tree congestion of G, denoted t(G), is the minimum value of c(G : T ) over all trees T
in TG. Similarly, the spanning tree congestion of G, denoted s(G), is the minimum value of
c(G : T ) over all spanning trees S in SG:

t(G) = min{c(G : T ) : T ∈ TG},

s(G) = min{c(G : S) : S ∈ SG}.

It should be noted that in the above definitions tree congestion and spanning tree conges-
tion are only defined on connected graphs. For the purposes of this paper it will be necessary
to extend the domain of these functions to disconnected graphs. An obvious adjustment is
to use the maximum value of the individual spanning tree congestions of each disconnected
component. We define:

t(G) =
{

min{c(G,T ) : T ∈ TG} if G is connected,
max{t(Ai) : i ∈ {1, 2, . . . , w(G)}} if G is disconnected,

and

s(G) =
{

min{c(G, S) : S ∈ SG} if G is connected,
max{s(Ai) : i ∈ {1, 2, . . . , w(G)}} if G is disconnected.

Graphs G and G′ are said to be homeomorphic if they can both be obtained from some
graph H by subdividing its edges (inserting new vertices of degree two into its edges). Both G
and G′ are said to be subdivisions of graph H.

Let G = (VG, EG) be a simple connected graph with vertex set VG and edge set EG. G is
said to be k-spanning tree congestion critical if:

1. s(G) = k

2. If G′ is a proper subgraph of G then s(G′) < k

3. G is homeomorphically minimal, that is, G is not a subdivision of any simple graph.

2 Preliminary theorems

Theorem 1. Let A1 and A2 be graphs where s(A1) = n, s(A2) = m and m ≤ n. Let A be the
graph formed when A1 and A2 are pendantly attached at vertex x; that is, A is a graph formed
when A1 and A2 are made to share exactly one vertex, x. Then s(A) = n.
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Figure 1: An example of A1 and A2 being attached pendantly at vertex x.

Proof. Let A1 and A2 be graphs where s(A1) = n, s(A2) = m and m ≤ n. Let A be the graph
formed when A1 and A2 are pendantly attached at vertex x. Let T1 ∈ SA1 and T2 ∈ SA2 such
that c(A1 : T1) = n and c(A2 : T2) = m. Let T ∗ = T1 ∪ T2.

In A there are no edges from a vertex in VA1 \{x} to a vertex in VA2 \{x} so in any T ∈ SA

there are no detours from a vertex in VA1 \ {x} to a vertex in VA2 \ {x}. Then for any edge
e ∈ EAi

, i = 1, 2, we know that c(e : T ) depends only on the edges and vertices in Ai. Then
c(A : T ∗) = max{s(A1), s(A2)} = n. There also can not be a spanning tree of A that yields a
congestion lower than n because then there would be a subtree spanning A1 that would yield
congestion less than n. Then s(A) = n.

Corollary 1. Let G be a k-spanning tree congestion critical graph. Then G cannot be formed
by pendantly attaching two non-trivial subgraphs of G. More technically, for all x ∈ VG,
G′ = (VG \ {x}, EG \ {(x, v) : v ∈ VG}) is a connected graph.

Proof. By contrapositive suppose that G is a graph that can be formed by pendantly attaching
A1 and A2, two non-trivial subgraphs of G. Without loss of generality let s(A1) ≥ s(A2). Then
by Theorem 1 s(G) = s(A1). Since A1 and A2 are both non-trivial they most also both be
proper subgraphs of G. Then G is not a spanning tree congestion critical graph.

Theorem 2. Let G and G′ be homeomorphic graphs such that subdividing a single edge of G
yields G′. Then s(G) = s(G′).

Proof. Let G be a graph and let (a1, a2) ∈ EG.
Let G′ = (VG ∪ {x}, EG ∪ {(a1, x), (x, a2)} \ {(a1, a2)}).

a1 a2 xa1 a2

(a1, a2) (a1, x) (x, a2)

G′G

Figure 2: The edge (a1, a2) ∈ EG is subdivided to create G′.

Claim 1: Let B ∈ SG where (a1, a2) ∈ EB . Let B′ ∈ SG′ where
B′ = (VG′ , EB ∪ {(a1, x), (x, a2)} \ {(a1, a2)}). Then c(G′, B′) = c(G,B).
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a1 a2 xa1 a2

B′B

Figure 3: Spanning trees B of G and B′ of G′. Detours containing both
vertices a1 and a2 are represented by dotted lines.

As we see in Figure 3 above, by subdividing (a1, a2) we are not changing the number of
detours containing both vertices a1 and a2, nor are we adding any detours through other edges.
Thus c((a1, x) : B′) = c((x, a2) : B′) = c((a1, a2) : B) and for all other edges
e ∈ EB \ {(a1, a2)}, c(e,B) = c(e,B′). Then c(G′, B′) = c(G,B) so Claim 1 holds.

Claim 2: Let B ∈ SG where (a1, a2) /∈ EB . Let B′ ∈ SG′ where B′ = (VG′ , EB ∪ {(a1, x)}.
Then c(G′, B′) = c(G,B).

a1 a2 xa1 a2

B′B

Figure 4: Spanning trees B of G and B′ of G′. The solid arc represents the uniqe path in each tree
from a1 to a2. Detours containing both vertices a1 and a2 are represented by dotted lines.

In this case G must have a cycle so s(G) ≥ 2. We can see that c((a1, x) : B′) = 2 ≤
s(G) ≤ c(B, G). As we see in Figure 4, the only detour that is different is the black dotted
one, which in B′ just contains additional edge (a1, x) and vertex x. Then for all edges e ∈ EB ,
c(e,B) = c(e,B′). Then c(G′, B′) = c(G,B) so Claim 2 holds.
We now return to the main proof of Theorem 2.

Want to show: s(G′) ≤ s(G)
Let T ∈ SG such that c(T : G) = s(G).

Case 1 : (a1, a2) ∈ ET

Consider T ′ ∈ ST ′ where T ′ = (VG′ , ET ∪ {(a1, x), (x, a2)} \ {(a1, a2)}). By Claim 1
c(G′ : T ′) = c(G : T ). Then s(G′) ≤ c(G′ : T ′) = c(G : T ) = s(G) so s(G′) ≤ s(G).

Case 2 : (a1, a2) /∈ ET

Consider T ′ ∈ ST ′ where T ′ = (VG′ , ET ∪ {(a1, x)}). By Claim 2 c(G′ : T ′) = c(G : T ).
Then s(G′) ≤ c(G′ : T ′) = c(G : T ) = s(G) so s(G′) ≤ s(G).

Want to show: s(G′) ≥ s(G)
By condtradiction suppose that there exists some T ′ ∈ SG′ such that c(G′ : T ′) < s(G).
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Case 1 : (a1, x), (x, a2) ∈ ET ′

Consider T ∈ SG where T = (VG, ET ′ ∪ {(a1, a2)} \ (a1, x), (x, a2)). Then by Claim 1
c(G,T ) = c(G′, T ′) < s(G). ⇒⇐

Case 2 : Without loss of generality (a1, x) ∈ ET ′ and (x, a2) /∈ ET ′

consider T ∈ SG where T = (VG, ET ′ \ {(a1, x)}). Then by Claim 2
c(G,T ) = c(G′, T ′) < s(G). ⇒⇐
Then s(G′) = s(G).

Corollary 2. Let G and G′ be finite connected graphs. Let G be homeomorphic to G′. Then
s(G) = s(G′).

Proof. Let G and G′ be finite connected graphs. Let G be homeomorphic to G′. Then G and
G′ are both homeomorphic to some homeomorphically minimal graph H. G can be turned into
H by undoing a finite number of edge subdivisions, each of which yields a new graph that by
Theorem 2 has the same spanning tree congestion as G. Then we know that s(H) = s(G).
Similarly s(H) = s(G′). Then s(G) = s(G′).

Theorem 3. Let G be an acyclic graph. Then s(G) ≤ 1.

Proof. Let G be an acyclic graph. Then each component of G is a tree. If |EG| = 0 then the
components of G are single vertices and s(G) = 0. If |EG| > 0 then there exists some non-trivial
tree Ai that is a component of G. Then s(Ai) = 1 so s(G) = 1.

Theorem 4. Let G be a unicyclic graph. Then s(G) = 2.

Proof. Let G be a unicyclic graph. Let T be a spanning tree of G. Then T has exactly one
detour of length greater than one. Then there is at least one edge in ET that is contained
in more than one detour and there are no edges in ET that are contained in more than two
detours. Then for all T ∈ SG, c(G,T ) = 2. Then s(G) = 2.

From [2] we have complete results for spanning tree congestion of complete n-partite graphs.
The main results of that work follow:

Theorem 5. For G = Ka1,a2,...,an , with 0 < a1 ≤ a2 ≤ . . . ≤ an, |A1| = a1, |A2| = a2,. . .,
|An| = an, and n ≥ 2,

s(G) =
{

1 + a3 + a4 + . . . + an if a1 = 1;
2(a1 + a2 + . . . + an−2) + an−1 + an − 2 if a1 ≥ 1.

3 Identification of spanning tree congestion critical graphs

In this section we will begin identifying all k-spanning tree congestion critical graphs for
small k.
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3.1 1-spanning tree congestion critical graphs

Proposition. The following graph, K1,1, is the only 1-spanning tree congestion critical graph.

Figure 5: K1,1.

K1,1 obviously meets the conditions of being 1-spanning tree congestion critical. Any graph
with an empty edge set has a spanning tree congestion of zero. Then we can assume that if
there were any other 1-spanning tree congestion critical graph it would have at least one edge.
Suppose G is a graph where |EG| ≥ 1 and G 6= K1,1. Then K1,1 is a proper subgraph of G and
since s(K1,1) = 1, G does not meet condition 2) of being 1-spanning tree congestion critical.

3.2 2-spanning tree congestion critical graphs

Proposition. The following graph, K1,1,1, is the only 2-spanning tree congestion critical graph.

Figure 6: K1,1,1 and its only possible spanning tree. Dotted lines represent detours of length greater
than one and grey dashes identify edge congestion.

K1,1,1 is homeomorphically minimal and s(K1,1,1) = 2. If G′ is a proper subgraph of K1,1,1

then G′ is acyclic so by Theorem 3 s(G′) ≤ 1 < s(G). Then K1,1,1 is 2-spanning tree congestion
critical.

Suppose G is a 2-spanning tree congestion critical graph. By Theoerem 3 we know that G
is cyclic. Then G has a cycle as a subgraph, call it C. Any cycle is homeomorphic to K1,1,1 so
by Corollary 2 s(C) = 2. Then we know that C is not a proper subgraph of G. Then G = C
and since K1,1,1 is the only homeomorphically minimal cycle, G = K1,1,1.

3.3 3-spanning tree congestion critical graphs

Proposition. The following graph, K1,1,2, is the only 3-spanning tree congestion critical graph.

Figure 7: K1,1,2 and its optimal spanning tree. Dotted lines represent detours of length greater than
one and grey dashes identify edge congestion.
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K1,1,2 is clearly homeomorphically minimal and by Theorem 5 we know that s(K1,1,2) = 3.
Let G be a proper subgraph of K1,1,2. Then either G is acyclic or G is unicyclic. If G
is acyclic then by Theorem 3 s(G) ≤ 1 < s(K1,1,2). If G is unicyclic then by Theorem 4
s(G) = 2 < s(K1,1,2). Then K1,1,2 is 3-spanning tree congestion critical.

Theorem 6. Let G be a k-spanning tree congestion critical graph where 3 ≤ k. Then there
exists some subgraph G′ of G such that G′ is homeomorphic to K1,1,2.

Proof. Let G be a k-spanning tree congestion critical graph where k ≥ 3. By Theorems 3 and
4 we know that G must be polycyclic. By Corollary 1 we know that there must exist two cycles
in G that share at least one edge. Call these cycles C1 and C2. If C1 and C2 share exactly
one edge then C1∪C2 is homeomorphic to K1,1,2. Suppose C1 and C2 share more than one edge.

Case 1 : C1 and C2 share only consecutive edges.

C1

C2

Figure 8: An example of a 7-cycle and a 6-cycle sharing 3 consecutive edges.
Shared edges are colored grey.

Then C1 ∪ C2 is homeomorphic to K1,1,2.

Case 2 : C1 and C2 share non-consecutive edges.

C1

C2

Figure 9: An example of C1 and C2 sharing non-consecutive edges.
Shared edges are colored grey. The dotted lines denote new cycles.

Then there must be some cycle C3 (one of the dotted cycles in Figure 9) such that C1 and
C3 share only consecutive edges. Then C1 ∪ C3 is homeomorphic to K1,1,2.

Let G be a 3-spanning tree congestion critical graph. Then by Theorem 6 there exists
some subgraph of G, call it G′, such that G′ is homeomorphic to K1,1,2. Then by Corollary 2
s(G′) = 3. Then G = K1,1,2. Then K1,1,2 is the only 3-spanning tree congestion critical graph.
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3.4 4-spanning tree congestion critical graphs

Proposition. The graphs in figures 10, 11, and 12 are 4-spanning tree congestion critical.

K1,1,3

Figure 10: Graph K1,1,3 with a congestion minimizing spanning tree.

K1,1,3 is clearly homeomorphically minimal and by Theorem 5 we know that s(K1,1,3) = 4.
It is then left to show that all proper subgraphs of K1,1,3 have lower spanning tree congestion.
We can think of K1,1,3 as two degree four vertices with four edge disjoint paths between them.
The reason s(K1,1,3) = 4 is that in any spanning tree three of these paths have to have detours
through the fourth. Any proper subgraph of K1,1,3 will have fewer paths between these two
vertices, or one or both of the vertices will be nonexistent. Then any proper subgraph of K1,1,3

has a lower spanning tree congestion. Then K1,1,3 is 4-spanning tree congestion critical.

sn

Figure 11: A star sn with a congestion minimizing spanning tree.

We construct a star sn with n three cycles, each of which share one edge of an n-cycle.
In any spanning tree of sn where n ≥ 3, one of the added outside 3-cycles must be missing
both an outside edge and the edge shared with the n-cycle. Otherwise we would have a cycle,
not a tree. As we can see in Figure 11, this sends two detours all the way around the inside
of the rest of the spanning tree. Since n ≥ 3 there must be some other 3-cycle that also must
be missing an edge in the spanning tree and thus has a detour along its two remaining edges.
Then one of these two edges has to have a congestion of four, so s(sn) = 4.

The symmetry of sn is the reason it is critical. If, to make a subgraph of sn, any one edge
were removed, we could create a spanning tree where only one detour is sent all the way around
the inside. This would give us a congestion of three. Removing any more edges or vertices
will either allow for a spanning tree with even fewer detours around the inside, or fewer three
cycles adding to detours around the outside. Then all proper subgraphs of sn are going to
have congestion of three or less. Then sn where n ≥ 3 is 4-spanning tree congestion critical.
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Q3

Figure 12: Q3 with a congestion minimizing spanning tree.

By [6] we know that s(Q3) = 4. Figure 12 shows an example of a minimizing spanning
tree. In it there are three edges with congestion four. There are two edges in EQ3 whose
representative detours in this spanning tree both contain all three of these edges. If any one
edge were removed to form a subgraph of Q3, the symmetries of the cube would allow us to
draw this same spanning tree in such a way that one of the two above mentioned edges was
the removed edge. This would reduce the congestion on the three edges where it is highest,
and reduce the overall spanning tree congestion of the subgraph to three. This may give the
reader an intuitive feeling that any subgraph of Q3 has spanning tree congestion less than
four. The method used for proving this was to exhaustively examine the subgraphs of Q3. The
symmetries of the cube combined with the theorems in this paper allow us to reduce this to a
manageable number of cases but the proof is omitted here.

4 Further exploration

The main focus of this paper has been to identify all of the k-spanning tree congestion
critical graphs for small k. In this section we will examine other interesting results that could
be potentially useful in further exploration of spanning tree congestion critical graphs.

4.1 Infinite families of spanning tree congestion critical graphs

We have shown that for 1 ≤ l ≤ 4 K1,1,l−1 is l-spanning tree congestion critical. This is in
fact true for all l ≥ 1.

Figure 14:K1,1,n−1.

To show this we think of K1,1,l−1 as two degree l vertices with l edge disjoint paths between
them. We then use the same argument we used to show that K1,1,3 is 4-spanning tree conges-
tion critical.
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A more general infinite family of stars that are k-spanning tree congestion critical is known.

Figure 15: A general star sn
a,b, a ≤ b. Notice that when n = 3 and a = 0

this becomes our K1,1,l−1 case.

A general star sn
a,b is constructed around an n-cycle. n− 1 of the edges are shared with a

3-cycles and one of the edges is shared with b 3-cycles where a ≤ b.

Proposition. sn
a,b where a ≤ b is (a + b + 2)-spanning tree congestion critical.

We give a non-rigorous explanation of why this is true. In any spanning tree of sn
a,b

there must be two consecutive vertices of the n-cycle that are not adjacent and do not connect
through one of their shared 3-cycles (otherwise there would be a cycle so we wouldnt be looking
at a spanning tree). We chose to draw a spanning tree such that the two vertices that satisfy
the situation above are not the two shared in b 3-cycles. Then this will route a + 1 detours
around the inside of the spanning tree. On each of the sides with a shared 3-cycles there is an
edge with another a + 1 detours routed through it. Then the congestion of this edge is 2a + 2.
On the side with b shared 3-cycles there is an edge with another b+1 detours through it. Then
the congestion of this edge is a + b + 2 and s(sn

a,b) = a + b + 2.
We now examine subgraphs created by removing a single edge from sn

a,b. If we were to
remove an edge from one of the sides with a shared 3-cycles then we could draw a spanning tree
that routes only a detours around the inside, reducing the overall congestion to (a)+ (b+1). If
we were to remove an edge from the side with b shared 3-cycles then we could draw a spanning
tree that still routes a + 1 detours around the inside, but our overall congestion would still be
reduced to (a + 1) + (b). To finish the argument we would need to extend this to all possible
subgraphs of sn

a,b. This argument would be done in a similar fashion to the one showing that
sn

1,1 is 4-spanning tree congestion critical in section 3.4.

This star construction family of congestion critical graphs can be further extended. Con-
sider m identical stars sn

a,a. Each star has vertices of degree two and vertices of degree 2a + 2.
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These m stars are each made to share a vertex of degree 2a + 2 with two other stars, forming
a shape like an m-gon with a star on each edge. We conjecture that this is also a spanning
tree conjestion critical graph. This process could then be repeated with this new graph, always
connecting some number of copies of itself at vertices of highest degree.

4.2 Subgraphs with higher spanning tree congestion

In studying critical cutwidth and critical congestion graph problems we are searching for
graphs in which every subgraph has a strictly smaller congestion. It seems intuitively obvious
that since removing edges and vertices from a graph removes detours from an embedding it is
also going to either reduce the congestion or leave it unchanged. This is the case for both linear
cutwidth [3] and cyclic cutwidth [5] but turns out not to be true for spanning tree congestion.
When looking at spanning tree congestion, removing edges and vertices from a graph reduces
the number of detours through a given spanning tree but it also reduces the number of possible
spanning trees. This could possibly raise the spanning tree congestion rather than lower it.
The following is an example of when this happens.

K1,3,4

K4,4

Figure 16: K4,4 and K1,3,4 with congestion minimizing spanning trees (see [2]).

In the above example K4,4 is a subgraph of K1,3,4 but s(K4,4) = 6 while s(K1,3,4) = 5 [2].
This demonstrates how complicated the process of checking criticality of a graph can get. In
linear and cyclic cutwidth critical problems it is sufficient to check that removing any single
edge from a graph will reduce cutwidth. In the spanning tree congestion critical problem it is
necessary to check that all possible subgraphs of a graph have lower congestion.

5 Suggestions for further research

In this paper we compiled a complete list of all k-spanning tree congestion critical graphs
for k < 4. We demonstrated three different 4-spanning tree conjestion critical graphs and
conjecture that this is in fact all of them. One possible extension to this work would be to
develop methods of proving that this list is complete.
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Another possible area for further research is in product graphs of the form Cn×Cn×. . .×Cn,
that is the cartesian product of the cycle Cn with itself m times. We conjecture that this graph
is 2nm−1-spanning tree congestion critical.
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