
On Spanning Tree Congestion of Product Graphs

Rachel Hunter

August 23, 2007

Abstract

In this paper we consider the spanning tree congestion for several fam-

ilies of graphs. We find the exact spanning tree congestion for toroidal

meshes, Cm×Cn, and cylindrical meshes, Pm×Cn,. Also we find bounds

for the spanning tree congestion of Qn, and a construction that gives the

upper bound.

1 Background

The linear cutwidth and cyclic, grid, and tree congestion of many graphs has
been explored previously. The linear cutwidth and grid congestion of the Qn

was established by Bezrukov et al. [1]. The linear and cyclic cutwidth for
toroidal meshes, Cm×Cn, along with the linear cutwidth for cylindrical meshes,
Pm ×Cn, was established by Rolim et al. [5]. The cyclic cutwidth of cylindrical
meshes was later established by Schröder, et al. [6]. Tree congestion was first
explored by Ostrovskii [4], who found bounds on the tree congestion for any
graph. Hruska [3] then established the exact spanning tree congestion for several
types of graphs including the grid, Pm × Pn. This paper continues Ostrovskii
and Hruska’s work by finding the spanning tree congestion for several additional
families of graphs. Furthermore it builds on Bezrukov’s work by exploring the
tree congestion of Qn, and extends Schröder et al. [6] and Rolim et al.’s. [5]
work by finding the spanning tree congestion of toroidal meshes, Cm ×Cn, and
cyclindrical meshes, Pm × Cn.

2 Introduction

A graph G is a set of vertices VG and edges EG connecting pairs of vertices.
A tree, T , is a connected acyclic graph.
A spanning tree of a graph G is a tree, T , with vertices VT = VG and edges
ET ⊂ EG.
A path Pn is a tree with n vertices where every vertex is degree 2 except for the
two end vertices which are degree 1.
A cycle Cn is a graph with n vertices where every vertex is degree two.
Define ∆(G) to be the maximum degree of any vertex in G.

1

Figure 1: Linear cutwidths for different η of G, where G is the cube.

A vertex numbering, η of G, is a one to one function

η : VG → {1, 2, ...|VG|}.

Given a graph with vertex numbering η, the linear cutwidth of η is

cw(η) = maxl|{(v, w) ∈ E : η(v) ≤ l ≤ η(w)}|.

and the linear cutwidth of a graph G is the minimum cutwidth over all num-
berings, η. That is

cw(G) = minη{cw(η)}.

That is, given a linear arrangement of VG, cw(G) is the minimum over all η of
the maximum number of edges cut by a line perpendicular to any set of two
consecutive vertices. In Figure 1 we have two different numberings of the ver-
tices of G, the cube, one with cw(η1) = 5 and one with cw(η2) = 6. In fact
the numbering η1 gives the minimum cutwidth for η(G) when G is the cube, so
cw(G) = 5.

The tree congestion, t(G) is essentially the tree cutwidth of G. That is, instead
of a linear arrangement of the vertices in G, the vertices are arranged into some
tree T , and we evaluate the cutwidth on ET .

Figure 2: cw(G) = t(G) = s(G) = 2

The spanning tree congestion, s(G) is the tree congestion of G where T is a
spanning tree of G. (See Figure 2). Here we have a spanning tree with edges
x, y, z. Vertices 1 and 4 must be connected; however we cannot use edge w as
it does not lie on the spanning tree. Instead we create a detour, w′, along the

2

edges of the spanning tree, edges x, y, z. This gives s(G) = 2.

Given an edge e of a tree or spanning tree, define c(e) to be the congestion
along e in a given tree or spanning tree congestion. The congestion of an edge
is equivalent to the number of detours in which the edge is used in. (In Figure
2 c(x) = c(y) = c(z) = 2.)

Given a set of vertices, M , of a graph G, we define θG(M) to be the number of
edges with one vertex in M and one not in M . That is

θG(M) = |{(u, v) : u ∈ M,v /∈ M}|.

If we say that the set of vertices M is of size m, define θG(m) to be the minimum
over all θG(M). That is

θG(m) = min|M |=m{θG(M)}.

When it is clear what graph, G, we are evaluating θG on, we may omit the
subscript and simply write θ.

2.1 Cubes

Figure 3: Q3 with labeling and lexicographic numbering

A cube, Qn, is a graph with vertices labeled by unique n-tuples of 0′s and 1′s
and edges connecting every pair of vertices whose n-tuple differs in exactly one
entry (See Figure 3).
Given an n-cube with vertices numbered as n-tuples (x1, x2, ...xn) where xi = 0
or 1, the lexicographic numbering (see Figure 3) is

lex(x) = 1 +

d∑

i=1

xi2
i−1. [2]

3

Figure 4: Grid with vertex numbering

2.2 Grids

Define an m × n grid, Gm,n to be Pm × Pn where m ≤ n.
Label each vertex with a pair of coordinates, (ni,mj), where the horizontal
coordinate range from 1 to n from left to right and the vertical coordinate
range from 1 to m from top to bottom (See Figure 4).

2.3 Toroidal Meshes, Cm × Cn

Figure 5: (C3 × C4)

Let Cm × Cn, where m ≤ n, be the product of Cm and Cn. That is, take m
copies of Cn and connect each vertex in the kth copy of Cn to the corresponding
vertex in the (k − 1) (mod m) th and (k + 1)(mod m)th copy of Cn (see Figure
5). We consider only non-degenerate cycles, that is n,m ≥ 3.

2.4 Cylindrical Meshes, Pm × Cn

Let Pm × Cn be the product of Pm and Cn. That is, take m copies of Cn and
connect each vertex in the kth copy of Cn to the corresponding vertex in the
k +1st copy of Cn (see Figure 6). Again we consider only non-degenerate paths
and cycles, so m ≥ 2 and n ≥ 3.
Without loss of generality we will consider Pm × Cn to be drawn such that the
vertices of Pm form vertical columns and the vertices of Cn form horizontal
rows.

4

Figure 6: (P3 × C4)

3 Tree Congestion of Qn

Let u and v be any two be vertices of G. Define m(u, v) to be the number of
edge disjoint paths between u and v. Define mG, to be the maximum of m(u, v)
over all pairs of vertices in G. That is

mG = max|{m(u, v) : u, v ∈ VG}|. [4]

Theorem 1. (Ostrovskii) [4] mG = t(G).

Theorem 2. t(Qn) = n.

Proof. By Theorem 1 this is equivalent to saying mQn
= n. Clearly mG ≤ ∆(G)

and since ∆(Qn) = n, it follows that mQn
≤ n.

To show mQn
= n, choose any two adjacent vertices. Without loss of generality

consider (00...0) and (10...0). We have n paths between (00...0) and (10...0) as
follows. The first path is simply the edge connecting vertices (00...0) and (10...0).
Let 1 < m ≤ n. Then the mth path is of the form (00...0), (0i2i3...in), (1i2i3...in), (10...0)
where ik = 1 ⇐⇒ k = m. This gives n paths, which are clearly edge disjoint.
Therefore mQn

= t(Qn) = n.

Figure 7: Tree for which t(Q3) = 3

The tree that gives t(G) = n is K1,n−1, where, due to symmetry, any vertex can
be the vertex of degree n − 1 (see Figure 7).

5

4 Spanning Tree Congestion of Qn

Theorem 3. s(Qn) ≤ 2n−1.

Figure 8: Q2, Q3 and Q4 with spanning trees

Proof. By construction.
Begin with a spanning tree on Q2, which is simply a path of length 3. This
implies that s(Q2) = cw(Q2) = 2 [1]. Take two copies of Q2, call them Q2

and Q′
2, numbered as in Figure 8, with spanning trees SQ2

and SQ′

2
. Join SQ2

and S′
Q′

2

at the vertices labeled (11) and (1′1′) with an edge, a. We now have

Q3 with a new spanning tree SQ3
. Relabel the vertices by adding a 1 to the

beginning of ever vertex in Q2 and a 0 to the beginning of every vertex in Q′
2

(see Figure 8). s(SQ3
) = 22 = 4 since every vertex in Q2 is connected to a

vertex in Q′
2 along edge a, meaning that c(a) = 4.

In the same manner, take Qn−1 and Q′
n−1 and connect them at vertex (11...1)

and (1′1′...1′) with an edge b and relabel Qn by adding a 1 (respectively 0) to
the beginning of each vertex in Qn−1 (respectively Q′

n−1). This gives a spanning
tree SQn

. Then s(SQn
) = 2n−1 since every vertex v ∈ Qn−1 must connect to

a vertex v′ ∈ Qn−1, and the detours for these edges run along edge b. No
other vertices are connected using b and for any edge d ∈ Qn−1 (respectively
d′ ∈ Q′

n−1) c(d) ≤ 2n−1 since there are 2n−1 vertices in Qn−1 (respectively
Q′

n−1). Therefore s(Qn) ≤ s(b) = 2n−1.
Note that there are other spanning trees with a congestion of 2n−1, however we
must only produce one.

Recall that θG(M) = |{(u, v) : u ∈ M,v /∈ M}| and that θG(m) = min|M |=m{θG(M)}.
It is known that the lexicographic ordering minimizes the linear congestion of
Qn [1].
Therefore consider a lexicographic ordering of the vertices of G, and let M be
the set of the first m vertices. Then define l to be the minimum |M | such
that θQn

(l) ≥ 2n−1. Consider a specific spanning tree, SQn
. If, when we

remove an edge to form a disconnected graph, both of the resulting disconnected
components are of size ≥ l, it follows that s(SQn

) ≥ 2n−1.

6

We calculate l by ordering the vertices of the cube according to their lexico-
graphic numbering, and computing θ and finding where θ ≥ 2n−1. For Q2 we
have

|M | 0 1 2 3 4
θ 0 2 2 2 0.

For Q3 we take two copies of Q2 and add edges connecting them. This gives

|M | 0 1 2 3 4 5 6 7 8
θQ2

0 2 2 2 0 2 2 2 0
+ 0 1 2 3 4 3 2 1 0
θQ3

0 3 4 5 4 5 4 3 0.

Figure 9: construction of linear cutwidth for Qn

We continue calculating θ in this manner, taking two sets of θQn−1
(using only

one of |M | = 0 and |M | = 2n−1) and adding 1, 2, 3, ...2n−1, 2n, 2n−1, ...3, 2, 1 to
each (see Figure 9).
From this we have:

n l
1 1
2 1
3 2
4 3
5 11
6 22.

Furthermore we claim that ln = ⌈ 2n

6 ⌉ ∀n.
Note also that θQn

(2n−1) = 2n−1 and that θQn
(k) = θQn

(2n − k).

Write m = 2i1 + 2i2 + 2i3 + ... + +2ik where i1 > i2 > ... > ik.

Proposition 1. Given a lexicographic ordering of vertices,

θQn
(m) = nm −

k∑

j=2

(2ij)[ij + 2(j − 1)].

Proof. If we begin with a set M with m vertices and assume there are no edges
between any of them, then there are nm edges adjacent to these m vertices. We
must then subtract off all edges that connect two vertices in M . In the largest
Qi1 that is contained completely within M , there are 2i1 vertices of degree i1,
so we have counted an extra (2i1)(i1) edges. For Qi2 we have 2i2 vertices, which

7

are of degree i2. Within this n-cube we have counted an extra (2i2)(i2) edges.
Also these i2 vertices connect to i2 vertices in Qi1 , giving a total of (2i2)(2)
extra edges. In general in Qim

there are 2im degree im vertices, giving an extra
(2im)(im) edges. Also each such vertex is connected to im−1 vertices in each of
the larger Qn with an edge that has been counted twice. This gives an extra
(2im)[im + 2(m − 1)] edges. Subtracting off all these extra edges gives

θQn
(m) = nm −

k∑

j=2

(2ij)[ij + 2(j − 1)].

Theorem 4. s(Qn) = 2n−1 for n ≤ 6.

Proof. For n = 1 and n = 2 this is trivial.
For 3 ≤ n ≤ 6, a spanning tree, T will have ∆(T) ≤ n and |VT | = 2n. Since
l = ⌈ 2n

6 ⌉ then l ≤ ⌈ 2n

n
⌉ ≤ 2n−1. Then s(Qn) ≥ θn(l) = 2n−1 if for every

spanning tree, by removing an edge we can always disconnect a set of vertices,
W where |W | ≥ ⌈ 2n

n
⌉. To show this we prove the following lemma.

Lemma 1. Let G be a graph with spanning tree, T . We can always remove an

edge of T to give two disconnected sets of size at least ⌈ |V |
∆(G)⌉.

Proof. Given a set of vertices W and a vertex, v, with v /∈ W , we say W is
adjacent to v if there is an edge, (v, vw) where vw ∈ W .
Let v1 be a vertex with degree ∆(G). We want to show that either removing an

edge incident with v1 gives us two sets of size at least ⌈ |V |
∆(G)⌉ or by considering

some vertex v2 adjacent to v1, v3 adjacent to v2, ..., vm+1 adjacent to vm,
we eventually reach a point where by removing edge (vm, vm+1) we have two

disconnected sets each of size at least ⌈ |V |
∆(G)⌉.

Figure 10: Division of vertices for Lemma 1, Case 1

Case 1. The vertices in T are not evenly distributed around v1. In particular

disconnecting T along the edge with endpoints v1 and v2 leaves total of ⌈ |V |
∆(G)⌉−

k1, where k1 > 0, vertices in the set containing v1.

8

Since v2 has degree at most ∆(G), there are at most ∆(G)− 1 sets adjacent to

v2 not including the set containing v1. As there are ⌈ |V |
∆(G)⌉ − k1 vertices in the

set containing v1 there are |V |−⌈ |V |
∆(G)⌉+k1 ≥ ⌈∆(G)−1

∆(G) |V |⌉ total vertices in the

other ∆(G)−1 sets. Therefore at least one set, W2, which is adjacent to v2, has

|W2| ≥ ⌈ |V |
∆(G)⌉. If upon disconnecting the set W2, the set containing v1 has at

least ⌈ |V |
∆(G)⌉ vertices, we are done. If however it still contains less that ⌈ |V |

∆(G)⌉

vertices, we continue by considering a vertex, v3 ∈ W2 where v3 is adjacent to v2.
We continue iterating in this manner until we reach the first vertex, vm, where
disconnecting a set, Wm+1, by removing the edge between vm and vm+1 leaves

at least ⌈ |V |
∆(G)⌉ vertices in the set containing v1 through vm and their adjacent

vertices. Since Wm+1 is the first such set, the set containing v1through vm−1

along their adjacent vertices (excluding vm) now has |V |
∆(G) − k2 vertices in it.

This leaves ∆(G)−1
∆(G) |V |+k2, where k2 ≥ 0, vertices in the ∆(G)−1 sets adjacent

to vm excluding the one set containing v1 through vm−1. Therefore removing

one edge, (vm, vm+1), gives a set Wm+1 with |Wm+1| ≥ ⌈ |V |
∆(G)⌉ vertices in it,

and we have disconnected T into two components, both with at least ⌈ |V |
∆(G)⌉

vertices.

Figure 11: Division of vertices for Lemma 1, Case 2

Case 2. The vertices in T are more evenly distributed around v1. In particu-

lar removing any edge adjacent to v1 leaves at least ⌈ |V |
∆(G)⌉ vertices in the set

containing v1. (See Figure 11)

As there are |V | vertices and at most ∆(G) sets adjacent to v1, then the average

size of these sets is |Wave| ≥
|V |

∆(G) . Therefore we can always find some set Wk

which contains a vertex, vk, adjacent to v1, where |Wk| ≥
|V |

∆(G) . We disconnect

the set Wk by removing the edge (v1, vk). This gives two sets with at least |V |
∆(G)

vertices in them since by the initial set up the set containing v1 has at least
|V |

∆(G) vertices in it.

Case 3. T has no vertices with degree ∆(G).

9

Consider v1 to be the vertex of highest degree. Either the distribution of the
vertices around v1 in T falls into Case 1 or Case 2 above. Since we have fewer
sets in which to distribute the vertices, there is no way to decrease |W |, where
W is the largest set you must always be able to disconnect and leave the re-

maining set with at least |V |
∆(G) vertices.

Every spanning tree falls into one of the three above cases. In each we can

remove an edge to give two sets of size at least |V |
∆(G) , so for any spanning tree

T of a graph G we can disconnected a set of size at least |V |
∆(G) .

Now that we have proved the above Lemma, we can continue with the proof
of Theorem 4. Since for Qn we have |V | = 2n and ∆(T) = n we can always
remove an edge to disconnect two sets of size at least ⌈ 2n

n
⌉. If n ≤ 6 then

⌈ 2n

n
⌉ ≥ ⌈ 2n

6 ⌉ = l. Therefore we can always disconnect a set of size at least l
which gives s(Qn) = 2n−1 ∀n ≤ 6.

Theorem 5. If n > 6 then 2n

n
< l and s(G) ≥ θQn

(2n

n
).

Proof. This follows immediately from the definition of θ and the fact that
∆(Qn) = n.

Conjecture 1. s(Qn) = 2n−1 ∀n.

Although for n > 6 we have l ≥ 2n

n
and one can produce a spanning tree that

has either ⌈ 2n

n
⌉ or ⌊ 2n

n
⌋ vertices on every path, it appears that one cannot do

so in a manner that minimizes congestion.

5 Spanning Tree Congestion of Cm × Cn

Theorem 6. s(Cm × Cn) = 2m where by definition m ≤ n.

Proof. We show this by constructing a spanning tree on Cm × Cn that has
congestion 2m, to establish an upper bound. We then prove that no spanning
tree can have congestion less than 2m which proves that s(Cm × Cn) = 2m.

Lemma 2. s(Cm × Cn) ≤ 2m where m ≤ n.

Proof. Create a spanning tree, T by taking all the vertical edges and the row
of horizontal edges [(xi), ⌈

m
2 ⌉), (xi+1, ⌈

m
2 ⌉)], where i ranges from 1 to n − 1, as

shown in Figure 12. The horizontal edges are used in m detours from the edges
of the grid plus an additional m detours from the edges added to complete the
horizontal cycles, giving them a total congestion of 2m. If m is even, m < n,
and m ≥ 4, then some vertical edges have congestion m + 1 on the underlying
grid. However the vertical edges only have a detour for 1 vertical cycle, giving
a congestion of m + 2 ≤ 2m (if m is odd the vertical edges have congestion
m + 1 ≤ 2m). Therefore s(Cm × Cn) ≤ 2m.

10

Figure 12: s(C3 × C4) ≤ 6

Lemma 3. s(Cm × Cn) ≥ 2m where m ≤ n.

Proof. Note that ∆(Cm × Cn) = 4 and that all vertices are degree 4. Also,
|V | = mn. Therefore we can always disconnect a set of vertices of size l where
mn
4 ≤ l ≤ mn−⌈mn

4 ⌉ by Lemma 1. Now we must show that θ(l) ≥ 2m whenever
⌈mn

4 ⌉ ≤ l ≤ mn − ⌈mn
4 ⌉. To do so we need the following result.

Proposition 2. Given l vertices where k2 ≤ l ≤ (k+1)2 and jm ≤ l ≤ (j+1)m,
where j, k are positive integers, θ(l) is minimized if l = k2 and the vertices form
a complete k× k square giving θ = 4k or l = jm and the vertices fill j complete
rows of m vertices, which gives θ = 2m.

Proof. To minimize θ(l) we must maximize the degree of the l vertices being
considered. In a rectangular layout, a square minimizes perimeter for a given
area, so it maximizes the number of interior vertices, which in turn maximizes
degree. Therefore for any rectangle with s vertices, where t2 ≤ s ≤ (t+1)2, θ is
minimized when s = t2 and the vertices are arranged into a t × t square giving
θ = 4t.
A non-rectangular layout of vertices clearly has fewer interior vertices than a
rectangular layout, and hence has a larger θ.
Also taking complete rows of m vertices could minimize θ as this arrangement
uses all the edges from a cycle, and thereby increasing the degree of the vertices.
Clearly taking the smaller cycles, Cm minimizes θ, and gives θ = 2m.

Using the above Proposition we complete our prove of Lemma 2. Observe that
we could have the minimum θ when we disconnect a set of size s = k2. Since
m ≤ n, s is minimized when m = n and mn

4 = m2

4 . Then we can arrange the
vertices into a k × k square where k = m

2 , assuming k is an integer. This gives
θ = 2m.
Likewise when l = mn

4 , where l = jm for some positive integer j arranging the
vertices into j rows of m give θ = 2m.
Therefore for all possible cases of ⌈mn

4 ⌉ ≤ l ≤ mn − ⌈mn
4 ⌉ vertices, θ(l) ≥ 2m.

Now by Lemma 2 we have s(Cm×Cn) ≤ 2m and by Lemma 3 that s(Cm×Cn) ≥
2m. This gives equality, which proves the theorem.

11

6 Spanning Tree Congestion of Pm × Cn

By definition m ≥ 2 and n ≥ 3. When m = 2, n = 3 then s(Pm ×Cn) does not
fit into the formula’s outlined later in this section so we consider it separately.

Theorem 7. s(P2 × C3) = 3.

Figure 13: A spanning tree of P2 × C3 with congestion 3

Proof. ∆(P2 × C3) = 3 so mG ≤ 3. We can find 3 edge disjoint paths between
the vertices (1, 2) and (2, 2) by taking the edge between them and the paths
(1, 2), (1, 1), (2, 1), (2, 2) and (1, 2), (1, 3), (2, 3), (2, 2) so mG = 3 ≤ s(P2 × C3).
We can construct a spanning tree, T , with s(T) = 3 by taking the vertical edges
from both C3 and taking the middle P2, as shown in Figure 13.

Theorem 8. If n > 2 or m > 3

s(Pm × Cn) = min{2m,n + 1} n is odd
= min{2m,n + 2} n is even.

Proof. To prove this we first show that we can construct a spanning tree with
congestion equal to min{2m,n+1} for n odd and congestion equal to min{2m,n+
2} for n even. Then we prove that if n ≥ 2m the congestion is at least 2m,
which is less than n + 1 (n + 2 if n is even). Then we show if n < 2m then the
congestion is at least n + 1 ≤ 2m if n is odd and n + 2 ≤ 2m if n is even.

Lemma 4.

s(Pm × Cn) ≤ min{2m,n + 1} n is odd
≤ min{2m,n + 2} n is even.

Proof. We prove this by construction, considering the case where 2m ≤ n + 1
for n odd (2m ≤ n + 2 for n even) and the case where n + 1 < 2m for n odd
(n + 2 < 2m for n even).

Case 1 2m < n + 1 for n odd (2m < n + 2 for n even).

If 2m < n + 1, where n is odd (2m < n + 2, where n is even) then n ≥ 2m.

12

Figure 14: s(P3 × C8) ≤ 6

Create a spanning tree by taking all the vertical edges, that is, all the edges from
the n copies of Pm, and take the horizontal row of edges [(xi), ⌈

m
2 ⌉), (xi+1, ⌈

m
2 ⌉)]

where i ranges from 1 to n − 1, as shown in Figure 14. This gives a congestion
of 2m on the horizontal edges since they have detours for 2 edges from each of
m cycles. The vertical edges have congestion at most m + 1 ≤ 2m.

Case 2 n + 1 ≤ 2m for n odd (n + 2 ≤ 2m for n even).

Figure 15: s(P4 × C3) ≤ 4

Create a spanning tree by taking all the horizontal edges and by taking the
vertical row of edges [(⌈n

2 ⌉, xi), (⌈
n
2 ⌉, xi+1)] where i ranges from 1 to m − 1, as

shown in Figure 15. If n is odd, then the horizontal edges adjacent to the vertical
row have congestion n + 1 since there are n detours from the underlying grid
and 1 detour from the one edge needed to complete the cycle on the horizontal
row of vertices. If n is even the congestion is n + 2 since the horizontal row
(xi,

n
2), (xi,

n
2 + 1) where i ranges from 1 to n has congestion n + 1 on the

underlying grid, plus 1 from the additional edge needed to complete the cycle
on its horizontal row of vertices.

Lemma 5. If n ≥ 2m then s(Pm × Cn) ≥ 2m.

Proof. Note that n ≥ 2m implies 2m ≤ n + 1 if n is odd and 2m ≤ n + 2.
By definition m ≥ 2 and n ≥ 3. If m = 2 then ∆(G) = 3, otherwise ∆(G) = 4.
So for m = 2, we can always disconnect a set of size at least l ≥ ⌈mn

3 ⌉ and
for m ≥ 3 we can disconnect a set of size at least l ≥ ⌈mn

4 ⌉ by Lemma 1. By
Proposition 2, θ is minimized when we take either complete rows or columns of
vertices, or a square.

13

For m = 2 a complete square must be a 2 × 2 square, which is the same as
taking two rows of m = 2 and gives congestion 2m = 4. Therefore we only need
to consider m ≥ 3, which gives ∆ = 4 and l ≥ ⌈mn

4 ⌉.

Taking j complete columns gives θ = 2m.
Taking j complete rows gives θ = n ≥ 2m.

A square of side length k gives θ = 3k since one side can be on the first or mth
cycle which gives no contribution to θ along that side. We could have θ ≤ 2m
if 3k ≤ 2m, or equivalently 9k2 ≤ 4m2.

We know that k2 ≥ mn
4 and that n ≥ 2m which implies mn

4 ≥ 2m2

4 . It then

follows that k2 ≥ m2

2 or equivalently 9k2 ≥ 9
2m2. Therefore 9k2 ≥ 4m2 so

3k ≥ 2m whenever k2 ≥ mn
4 and n ≥ 2m. So θ(l) ≥ 2m and s(Pm × Cn) ≥ 2m

if l ≥ mn
4 and n ≥ 2m.

Lemma 6. If n < 2m

s(Pm × Cn) ≥ n + 1 n is odd
≥ n + 2 n is even.

Proof. If n < 2m then n + 1 ≤ 2m if n is odd and n + 2 ≤ 2m if n is even.
∆(G) = 4 unless m = 2 which has n < 2m only when n = 3 However this
falls into the special case addressed by Theorem 7. Therefore we have m ≥ 3
and ∆(G) = 4 and hence can always disconnect a set of vertices of size ⌈mn

4 ⌉.
By Proposition 2, θ is minimized when we take complete rows or columns, or a
complete square.
If we take complete columns, θ = 2m ≥ n + 1 if n is odd and θ ≥ n + 2 if n is
even.
If we take a complete k×k square it has at least mn

4 = k2 vertices. The following
cases show that θ(k2) ≥ n + 1 if n is odd and θ(k2) ≥ n + 2 if n is even.

Case 1 n is odd
If 3k ≥ n + 1 then θ ≥ n + 1. Since k and n are integers, if 3k ≥ n + 1, then
3k > n and equivalently 9k2 > n2.

Since n + 1 ≥ 2m we have that nm
4 ≥ n(n+1)

8 . Since k2 ≥ nm
4 then k2 ≥ n(n+1)

8
and equivalently 9k2 ≥ 9

8n(n + 1). Then 3k ≥ n + 1 whenever 9
8n(n + 1) > n2.

This holds for all n, so 3k ≥ n + 1 and θ ≥ n + 1.

Case 2 n is even
If 3k ≥ n + 2 then θ ≥ n + 2. Since k and n are integers, if 3k ≥ n + 2, then
3k > n + 1 and equivalently 9k2 > (n + 1)2.

Since n + 2 ≥ 2m we have that nm
4 ≥ n(n+2)

8 . Since k2 ≥ nm
4 then k2 ≥ n(n+1)

8
and equivalently 9k2 ≥ 9

8n(n + 2). Then 3k ≥ n + 2 whenever 9
8n(n + 2) >

(n + 1)2. This holds for all n > 2, which is true by definition. Then 3k ≥ n + 2
and θ ≥ n + 2.

14

Therefore θ is minimized when every set we can disconnect of size ≥ ⌈mn
4 ⌉

contains jn vertices, where j is any positive integer, arranged into complete
rows, that is, only complete Cn’s. This gives θ = n, but the only way to do
this is the tree constructed in Lemma 4 Case 2. However, this spanning tree
has congestion n + 1 if n is odd and n + 2 if n is even. Therefore if n < 2m,
s(Pm × Cn) ≥ n + 1 if n is odd, and s(Pm × Cn) ≥ n + 2 if n is even.

By Lemma 4 we have that

s(Pm × Cn) ≤ min{2m,n + 1} n is odd
≤ min{2m,n + 2} n is even.

and by Lemmas 5 and 6 we have

s(Pm × Cn) ≥ min{2m,n + 1} n is odd
≥ min{2m,n + 2} n is even.

This gives equality, which proves the theorem.

7 Conclusion

In this paper we have found the exact spanning tree congestion for Cm × Cn

and Pm × Cn, and have constructions for spanning trees with that congestion.
For Qn we have the exact spanning tree congstion for n ≤ 6 and a construction
that gives that congestion. For n > 6 we have a constructive upper bound and
a separate lower bound for the spanning tree congestion. We conjecture that
the exact congestion is in fact the upper bound, but do not currently have a
method of proving this.

8 Acknowledgments

I would like to thank Dr. Chavez and Dr. Trapp for their help and guidance
throughout my research and writing of this paper. I would also like to acknowl-
edge Daniel Tanner, with whom I worked with to develop several of the ideas
regarding Qn. I would also like to acknowledge the other REU 2007 participants.
This work was completed during the 2007 REU program in Mathematics at Cal-
ifornia State University, San Bernardino, and was jointly sponsored by CSUSB
and NSF-REU Grant DMS-0453605.

References

[1] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Röttger, U.P. Schroeder, The
Congestion of n-Cube Layout on a Rectangular Grid, Discrete Mathematics
213 (2000) 13-19.

15

[2] L. H. Harper. Global Methods of Combinatorial Optimization: Isoperimet-
ric Problems, Cambridge Studies in Advanced Mathematics 90 (2004) 3-9.

[3] S. Hruska. On Tree Congestion of Graphs, REU Project, Cal State Univ.,
San Bernardino, 2004. (To appear in Discrete Mathematics)

[4] M.I. Ostrovskii. Minimal Congestion Trees, Discrete Mathematics 285
(2004) 219-226.

[5] J. Rolim, O. Sýkora, I. Vrt́o. Optimal cutwidths and bisection widths of 2-
and 3-dimensional meshes, Lecture Notes in computer science 1017 (1995)
252-264.

[6] H. Schröder, O. Sýkora, I. Vŕto. Cyclic cutwidth of the two-dimensional
ordinary and cylindrical meshes, Discrete Applied Mathematics 143 (2004),
123-129.

16

