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Abstract

We look at the problem of reducing the minimum distance energy of
polygonal knots as an isoperimetric problem. Building on techniques used
to show that a regular n-gon maximizes area for a given perimeter, we have
been able to prove that convex figures minimize the minimum distance
energy for all polygons in E3. We hope that this will be a helpful step
towards showing the regular n-gon has the least minimum distance energy
for all polygonal knots, and give suggestions for isoperimetric problem
solving tools that could be used to further explore this problem.

Introduction

Simon defined and gave preliminary explorations of the minimum distance en-
ergy of polygonal knots. He found that in experiments seeking to find the
position for least minimum distance energy of various polygons, edges seem to
try to push apart from each other, attempting to equalize edge lengths and open
angles [12]. Similar experiments using the program Ming [15], find that knots
open and equalize into convex shapes which have a greater area, for a certain
perimeter.

In order the simplify the problem, we investigated all equilateral 2n-gons
placed on a lattices, for n ≤ 4. As expected, the minimum distance energy of a
regular 2n-gon was less than or equal to that of corresponding lattice 2n-gons.
It was also noted that convex lattice 2n-gons had a smaller minimum distance
energy than non-convex polygons with the same number of sides. This gave us
further evidence that convex n-gons might reduce the minimum distance energy
and motivated us towards proving this conjecture.

Several works explore the relationship between the Möbius energy of smooth
knots and the minimum distance energy of polygonal knots [10, 9, 13]. Möbius
energy is minimized for a perfect circle [10, 9], and a regular n-gon is a polygonal
approximation of a circle. It is well known that for a fixed perimeter, the perfect
circle is the shape with maximum area. Similarly, the regular n-gon maximizes
area for all n-gons [2]. So, because there is a relationship between Möbius energy
and minimum distance energy [10, 9], the fact that both a perfect circle and a
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regular n-gon maximize area for a given perimeter seems significant. Thus, we
explored techniques used in isoperimetric problems in order to build evidence
for our argument that the regular n-gon minimizes minimum distance energy.

Preliminary Definitions and Theorems

Here we give the definitions which should give an understanding of what we are
referring to as the minimum distance energy. Throughout the paper, we refer to
U ′

md, a variant of Simon’s Minimum Distance Energy, as the minimum distance
energy. This variant, given in [9], is more analogous to a double integral, and
therefore helpful in drawing connections between Minimum Distance Energy
and Möbius Energy. Note also that U ′

md(P ) = 2 · Umd(P ), so the difference, in
relation to the material of this paper, is otherwise trivial.

Definition 1. Simon’s Minimum Distance Energy is defined for a pair of non-
consecutive edges, X and Y , of an n-gon, as Umd(X, Y ) = `(X)`(Y )

md(X,Y )2 . Here `(X)
gives the length of the segment X and md(X,Y ) gives the minimum distance
between edges X and Y . Simon’s original formula for the Minimum Distance
Energy of a polygon, P is given by

Umd(P ) =
∑

X 6=Y or adjacent

Umd(X,Y ).

Definition 2. The Möbius Energy (or O’Hara Energy) of a smooth knot, K is

E0(K) =
∫∫

C×C

1
|x(t)− x(s)|2 −

1
|s− t|2 ds dt

where t → x(t) gives a unit-speed parameterization of K on a circle, C. The
notation, E0, reminds us that we are using a definition of Möbius Energy such
that E0(C) = 0, for a circle, C.

Definition 3.

U ′
md(P ) =

∑

all edges X

∑

Y 6=Xor adjacent

Umd(X, Y )

Example: Finding U ′
md for all n-gons

It is well known that the length of a chord, c, of a circle with radius R is
`(c) = 2R sin( θ

2 ), where θ is the related central angle. We can use these basic
rules of trigonometry to compute U ′

md for all n-gons. A regular n-gon can be
inscribed on a perfect circle so that all of its vertices rest along the curve. See
Figure 1. Here we have an octagon. The grey paths give the minimum distances
between the edge p and all edges (r, s, t, u, and v) to which p is not adjacent.
You will note that these distances are all chords of a circle. We can create a
general formula for the U ′

md of an even n-gon and the U ′
md of an odd n-gon.
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Figure 1: Inscribing an Octagon on a Circle

For an n-gon, where n is odd,

U ′
md(Rn) = 2n · sin2

(π

n

) bn
2 c−1∑

j=1

csc2

(
jπ

n

)

Similarly, for an even n,

U ′
md(Rn) = n · sin2

(π

n

)

csc2

(
π(n− 2)

2n

)
+ 2 ·

n
2−2∑

j=1

csc2

(
jπ

n

)


Convexity and U ′
md

Many proofs relating to the isoperimetric problem begin by proving that a region
with maximum area must be convex [2, 5, 16, 6]. Generally, we can note that
the perimeter of the convex hull, H(P ), will be less than or equal to that of P ,
whereas the area inside H(P ) will be greater than or equal to that of P [2, 5].
(See Figure 2.) Similarly, reflecting collections of edges can give a new polygon
with greater area without changing edge length [16].
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Figure 2: Non-Convex Polygon with Convex Hull of Greater Area

Convexifying Planar n-gons

It was relatively simple to prove that we can decrease the U ′
md with a reflection.

The next problem to address was whether or not a finite number of these re-
flections could produce a convex polygon. Since, as is clear from Figure 3, some
polygons require many reflections before they are made convex. Fortunately, we
found that this problem was first proposed by the famous mathematician Paul
Erdös in 1934, and then solved by Bèla Nagy in 1939 [3, 14]. Toussaint gives a
history and summary of related contemporary problems in [14]. We borrow his
terms “flip,” “pocket,” and “pocket lid” in order to better express our proof.

Definition 4. The convex hull of an n-gon, P , is the smallest convex set con-
taining all vertices of P , it is denoted H(P ). ∂H(P ) gives the boundary.

Definition 5. A pocket is a set of edges of a polygon not in ∂H(P ) between the
vertices i and j on ∂H(P ). Its pocket lid is the line ij.

Definition 6. A flip is the reflection of a pocket across a pocket lid.

Erdös-Nagy Theorem. Every simple planar polygon can be made convex with
a finite number of flips.
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Figure 3: Reflecting Pockets over Pocket Lids
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Figure 4: A Pocket, a Pocket Lid and a Flipped Pocket

Theorem 1. If P is a planar n-gon with minimized U ′
md, then P is convex.

Proof.

Lemma 1. Let P be a non-convex simple planar polygon and P ′ the result of
a flip on P , then U ′

md(P ) ≥ U ′
md(P

′).

Proof. Take a pocket, p of P . We shall refer to P − p as p′. Perform a flip on p.
We will call the reflected collection of edges r and the new polygon made, up of
p′ and r, as P ′.

Edge length is not changed by reflections, so `(ex) = `(e′x), where e′x is a
corresponding edge in r. Therefore `(ex)`(∆) = `(e′x)`(∆), where ∆ is a non-
adjacent edge in p′. Thus, we need only show that md(e′x,∆) ≥ md(ex, ∆) in
order to show `(e′x)`(∆)

md(e′x,∆)2 ≤ `(ex)`(∆)
md(ex,∆)2 .

Two nonadjacent edges in P ′ will either be on opposite sides of ij or on the
same side.

Case 1 For the pairs (ex, ey) on the same side of ij, the edges ex and ey are

reflected together so `(e′x)`(e′y)

md(e′x,e′y)2 = `(ex)`(ey)
md(ex,ey)2 . The position of edges in p′ is not

affected by the flip, so distances between these edges will also remain the same
after the flip. Thus, the U ′

md of pairs of nonadjacent edges on the same side of
ij is unchanged.

Case 2 Now lets us investigate the distance between nonadjacent edges
which are on opposite sides of ij after the flip. Let us say that the minimum
distance, md(ex, ∆), occurs between some point δ in ∆ and some point α ∈ ex.
Similarly, md(e′x, ∆) occurs between some δ′ in ∆ and some β ∈ e′x. If we
divide the plane along the pocket lid, ij, we see that P is all on oneside of ij,
by definition of convex hull. All of r, however, is on the opposite side of ij
(although i and j are on the line). Thus, ∀δ, β, |δ − β| ≥ |δ − α| which implies
`(e′x)`(∆)
md(e′x,∆)2 ≤ `(ex)`(∆)

md(ex,∆)2 .
Thus, we have looked at all minimum distances energies for edge pairs in

P and P ′, and in all cases those for P ′ are less than or equal to corresponding
energies for P . So, the sum of the energies for P ′ will be less than or equal to
those of P . Thus, we can say Umd(P ′) ≤ Umd(P ).
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(a) (b)

Figure 5: (a) Non-Convex, Non-Planar Polygon and (b) A Convex Polygon
Made by Stretching

By applying Erdös-Nagy Theorem, we know that this flipping process will
eventually result in a convex polygon. Therefore, the convex polygon minimizes
the minimum distance energy for planar polygons.

Convexifying n-gons in E3

Sallee “stretches” polygonal curves in En, a process which can increase the
distance between points on different edges by changing angles, not edge lengths,
and thus can be thought of as the 3-dimensional version of a flip. He finds that
any polygonal curve in En can be made planar and convex with a finite number
of stretches, we concern ourselves, here, with only 3 dimensions [11]. Supported
by his work, we are able to prove that the planar convex n-gon minimizes U ′

md

for higher dimensions.

Definition 7. A stretch is made by a change in angles. For P and P ′, polygons
with corresponding lengths, P ′ is a stretched version of P , if ∀ x, y ∈ P and
corresponding x′, y′ ∈ P ′, |x− y| ≤ |x′ − y′| [11].

Lemma 2. If P is a non-convex polygon in En, ∃ a stretched polygon, P ′ which
is planar and convex, such that ∀, points x, y ∈ P , with x and y not on the
same edge of P , and corresponding x′, y′ ∈ P ′, |x− y| < |x′ − y′|.
Theorem 2. If P is a polygon in E3 there exists a convex planar polygon, P ′,
created by stretching such that U ′

md(P ) ≥ U ′
md(P

′).
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Proof. Let P be any polygon in E3 and P ′ the stretched convex planar polygon
guaranteed by Lemma 2. Let ex be an edge in P and e′x be the corresponding
edge in P ′. Stretching does not change edge lengths. Therefore, again, we
need only examine the minimum distances between two edges in each polygon.
Applying [11]’s lemma, we know that for all points x ∈ ex and y ∈ ey, and
corresponding x′ and y′ ∈ P ′, |x−y| < |x′−y′|. Thus, md(ex, ey) ≤ md(e′x, e′y),

and `(e′x)`(e′y)

md(e′x,e′y)2 ≤
`(ex)`(ey)
md(ex,ey)2 .

Suggestions for Further Research

This paper has contributed towards the goal of proving that the regular n-gon
minimizes U ′

md by proving that an n-gon with minimum U ′
md must be planar

and convex. It is still necessary to prove that the ideal n-gon is equilateral
and equiangular. The following are tools gained from researching isoperimetric
problems which may apply to this larger problem.

The Ellipse

In isoperimetric problems, proving that an equilateral polygon will maximize
area for convex polygons is often done through a study of two consecutive edges
[6, 1]. Let ab and bc, be consecutive edges with `(ab) 6= `(bc). Benson draws
b on an ellipse with foci at a and c. Using properties of ellipses, it is easy to
find a point on the ellipse b′, such that `(ab′) = `(b′c) and 2`(ab′) = 2`(b′c) =
`(ab) + `(bc). The area of 4abc is less than that of the new 4ab′c and thus
equalizing the length produces a polygon with greater area [1].

It seems that this technique of using an ellipse could be applied in attempt
to minimize U ′

md of an n-gon. Let us assume that `(ab) < `(bc). (See Figure 6.)
Let e refer to an arbitrary edge between the vertices c and a which is not b or b′.
The polygon P and the edge b′c are on opposite sides of the line bc, so it is clear
that md(bc, e) ≤ md(b′c, e). The opposite, however, is true for lines ab and ab′,
following a similar argument. Thus, the problem is to find a way to determine
a small enough error bound on the overall contribution of the length change on
the U ′

md of the polygon, which will tell us if length equalizing decreases U ′
md.

Another issue with applying the ellipse is that there can be situations where
changing the lengths of edges can force a convex polygon to become nonconvex.
Note that this has occured in the example given by Figure 6. If we allow for
a combination of edge length changes and flips, however, we will also have
U ′

md(ce,X) ≥ U ′
md(c

′e,X), where c′ is the reflection of c. So, in these cases,
it seems more likely that the overall contribution of length change will be a
decrease in U ′

md.

The Circle

It is known that a polygon inscribed in a circle has a greater area that any other
polygon with the same sides [8, 1]. Polygons which can be inscribed on a circle
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Figure 6: Changing Edge Length Can Change Convexity

are known as “chordal” or “cyclic” polygons [7]. A regular n-gon is cyclic, so
perhaps investigating if cyclic polygons have minimized U ′

md can help us to get
closer to our goal. Pinelis proves that for a set of edge lengths, their exists a
unique cyclic polygon with those edge lengths [7]. Thus, the task is to create an
algorithm for inscribing edges on a circle that also allows us to track changes in
the minimum distance between edges.

Also, the circle is valuable in determining minimum distance, since chord
length can often be used to relate distances on a polygon inscribed on a circle.
This may simplify the problem since equilateral polygons inscribed on a circle
must also be equiangular. We can no longer apply our ellipse trick to two edges
if we wish to keep them on a circle, however, which means that we must take
into account new relations because of a change in the perimeter.

Fortunately, there exists a great deal of published research on cyclic poly-
gons. This material gives us several possible “moves” which we can apply to
equilize edge length. Hitt and Zhang study sequences of “midpoint-stretching
polygons.” They take a chordal polygon, and create another chordal polygon
with vertices at the midpoints of all edges on the first polygon. They find that
if this process is repeated it creates a sequence of polygons that will converge
to a regular n-gon [4]. The problem that occurs, however, when one is trying to
apply this move to study U ′

md, is that it is hard to generalize where the point
of minimum distance will occur on an edge.

Paths of Minimum Distance

For the regular n-gon, we know that all paths of minimum distance occur be-
tween endpoints of edges. Since we have already found that planar convex
n-gons minimize the minimum distance energy, we need only deal with planar
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Figure 7: Midpoint-Stretching

cases. In the plane there can only be situations where the minimum distance
between two edges occurs between two endpoints, or between an endpoint and
an interior point. Perhaps polygons with minimum distances exclusively be-
tween endpoints have a reduce U ′

md. If this was found to be true, it could help
with the problems described above.
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