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Abstract

This paper looked into the upperbounds for the ropelength of knots
and links. A new method, the cylinder embedding method, was used
to calculate ropelength of twists. This method was then extended into
efficently constructing integral tangles to minimize the ropelength. This
construction showed the initial length of one crossing in B3 to be linear
in terms of the number of crossings of σi. Then used on algebraic tangles,
it also shows the ropelength is linear in the crossing number.

1 Introduction

Knot Theory is an area of mathematics which is used in topics related to topol-
ogy, especially in fields of biology and physics. The specific area of knot theory
which looks at braids has been most fruitful in upper and lower bounds of the
ropelength of the knot or braid. In this paper, the construction of intregral
twists expanded into the exploration of ropelength of braids, then algebraic
knots and links. Looking at these specific types of knots were important due to
the connections that could be made between ropelength and crossing number of
the knots. Previous studies have shown progression of upper and lower bounds
of ropelength of a knot, K, denoted L(K). Researcher [2] has shown a lower
bound of O((Cr(K))3/4, where Cr(K) is the crossing number of knot K. While
[4] has shown the upper bound to be O((Cr(K))6/5. The goal of this paper is
to show how ropelength of certain closed links and knots creates a linear upper
bound in terms of crossing number.
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Figure 1: The generators of B3 are as follows. (a) e: Trivial braid with no
crossings. (b) σ1: Braid with the crossing of strand one over two. (c) σ2: Braid
with the crossing of strand two over three. (d) σ−1

2 : Braid with the crossing of
strand three over two.

2 The Braid Group

The braid group is denoted Bn, where n is the number of strings in the braid.
The strings are arranged in such a way where they are fixed in place and travel
downward with crossings moving horizontally, left to right. Each crossing of
strand i over strand i + 1 is denoted by σi (Figure 1b,c). The inverse of σi,
denoted σ−1

i , is the crossing of strand i + 1 over strand i, (Figure 1d).
Bn is group with each σi as a generator, where i = 1, ..., n−1. The trivial braid,
e, of Bn, is a braid with no crossings (Figure 1a). Multiplication of generators is
the compostition of those generators. The second generator in the compostion
starts at the points where the first generator ended. The composition of σi and
σ−1

i is the trivial braid, σiσ
−1
i = e.

When the same generator is used consecutively more than once, it is denoted
σa

i , where a is the numer of crossings. For example, four consecutive crossings
of σ1 is denoted σ4

1 . Therefore, the composition of three crossings of σ1, one
crossing of σ2 and then two crossings of σ1 would be written as σ3

1σ2σ
2
1 , which

is called the braid word. For any braid, β, the braid length, l(β), is the number
of generators in the braid word or the sum of all the absolute values of a′s.
So in the previous example, l(β) = 6. In general, for β = σa1

1 σa2
2 ...σ

aq

i , l(β) =
|a1|+ |a2|+ ... + |aq|.
For a braid, β ∈ Bn, the closed braid, denoted βc, is formed by connecting
the begining vertices with the ending vertices without introducing any new
crossings.
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3 Ropelength

Think of K being made of rope with radius r. The ropelength of K, L(K), is
the ratio of the length of the rope and the rope’s radius; L(K) = L

r [7].
An alternate way to look at the ropelength is finding the thickest smooth knot
without intersections. In [6], theorem 1 proves the requriements necessary to
ensure the ropes do not intersect.

• The distance between doubly-critical points must be at least twice the
radius.

• The radius of curvature must be at least the radius of the rope.

3.1 Lattice Embedding Approach

In [4], Diao and Ernst embedded braids on a 3-deminsional lattice. So a three
string braid would with one crossing would be shown as follows:

To calculate the ropelength, at each change of direction (right angles in the
lattice) an arc of a quarter circle was inscribed from the midpoint to one segment
to the midpoint of the next segment, creating a arclength of π/4 for each right
angle. By adding up arclengths along with the straight pieces and using their
radius of 1/2 (which fulfills the previously mentioned requirements since on
a lattice points are 1 unit apart) 2 strings with one crossing would have a
ropelength of 3π + 12, with an additional 8 for every string not included in the
crossing. In Bn, L(σi) = 3π + 12 + 8(n− 2). Therefore in B3, L(σi) ≈ 29.42.

3.2 Cylinder Embedding Approach

Moran’s method, [7], of finding the ropelength of the twists of a pretzel knot
used the path of a double helix. This method did not allow for proper blocks
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that could be stacked to create a braid. Therefore we construct a single block
for each generator, σi, that can be stacked on top of one another. Visualizing
the core of each rope as a string, the strings can be embedded on cylinder of
radius 1 to ensure the distance between strings would remain 2 units. The string
also has to have a vertical tangent vector at the begining and end of the block
to ensure that the blocks can stack directly on top of each other, lining up the
strings. Inbetween the two arcs, the string has a slope 1 to ensure the proper
requirements so the strings do not intersect and for ease of calcualtions. Once
the string has a path on the cylinder, the cylinder can be cut in half so the
string can lay flat. Since the flatted half-cylinder preserves arclength, it can be
used to find a function for the string’s path.

The function is split into three pieces to determine the appropriate curve. The
function is broken down as follows:

f(t) =





arcsin(t− 1) + π
2 0 < t ≤ 1

t + π
2 − 1 1 < t ≤ π − 1

arcsin(t− (π − 1)) + 3π
2 − 2 π − 1 < t ≤ π

The functions then paramertized back onto the cylinder in the form [cos(t), sin(t), f(t)].
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The ropelength for one-string with radius one and creating one crossing is
approximately 3.82 +

√
2(π − 2). Since the height of our twists are 2π − 2, the

appropriate ropelength would be added on for every string not included in the
crossing. In Bn, L(σi) = 2(3.82 +

√
2(π − 2)) + (2π − 2)(n − 2). Therefore in

B3, L(σi) ≈ 15.17
When two strings have more than one crossing in a row, the function changes
due to the fact that we do not have to stack in between crossings, the twist can
continue to flow. The ends stay as the same arcsine curve while the middle line
extends in length.

Lemma 1. In B3 with σa
i , the piecewise fuction is as follows:

f(t) =





arcsin(t− 1) + π
2 0 < t ≤ 1

t + π
2 − 1 1 < t ≤ aπ − 1

arcsin(t− (aπ − 1)) + (a + 1)π − π
2 − 2 aπ − 1 < t ≤ aπ

Thus, L(σa
i ) ≤ (5.64− 4

√
2 + π) + a(2π

√
2 + π).

Now, lemma 1 can be used to find an upper bound for the ropelength of
a closed braid. To use the least ropelength when creating a closed braid, the
braid word is split into two equal pieces which are placed back to back and
connected at the ends. First the pieces need to be spaced properly to ensure
no overlapping of the rope. Since the rope has radius of one, once the ropes
are forced away from each other during the crossings they create a distance of 4
units across the widest part of the twist. Therefore the two pieces of the braid
will have four units between them. Then, a quarter circle is added to the ends
of the strings to connect with a horizontal tube between the two pieces. The
quarter circle will bring the string directly above the outer edge of the rope (a
radius of one), thus only two units are need for the horizontal tube since each
rope will contribute the radius of one from the quarter tube at the end of each
rope.
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The ropelength of the quarter tube is π/2 and the horizontal tube 2. Thus to
connect two pieces of the braid at the end, L(connector) = π/2 + 2 + π/2 =
π + 2. Let C=all connectors, so in B3, the closed braid with the six connectors,
L(C) = 6(π + 2) = 6π + 12. When the braid word is made up of an odd number
of generators, then one trivial braid will be added to make two pieces of the
braid equal length. Thus in B3, L(e) = 3(2π − 2) = 6π − 6. These pieces can
then be used to show the following theorem.

Theorem 1. For β ∈ B3, β = σa1
1 σa2

2 ...σ
aq

i .
If l(β) is even, then

L(βc) ≤ q(5.64− 4
√

2 + π) + l(β)(2π
√

2 + π) + [6π + 12].

If l(β) is odd,

L(βc) ≤ q(5.64− 4
√

2 + π) + l(β)(2π
√

2 + π) + [12π + 6].

Proof. By construction of the previously mentioned pieces.
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4 Conway Notation

The Conway Notation is a method that is used to describe prime knots by
considering tangles within a knot. A tangle is a section of a projection of a
knot that consists of the building blocks for the knot. An integral tangle will
consist of the consecutive twisting of two strands. For further reference to the
multiplication and addition of tangles see [1]. A knot constructed using only
multiplictaion or addition will be denoted Km and Ka, respectively. For a knot
K that uses both multiplication and addition of tangles, the subscript will be
omitted.

4.1 Tangle Multiplication

Using the Conway notation for tangles, a knot, Km, can have the projection
similar to a braid in B3 by changing the isotopic view (Figure 2). Note that Km

is always a 2-bridge link, which is known to be alternating. The braid is split up
into sections for each integral tangles, which become the folded sections (Figure
3), and sections for the straight pieces, which become the connector sections,
denoted C for all the connectors used in a knot. Let Km = a1a2...aq where
each ai denotes the number of positive twists in the tangle. Also, q denotes the
number of integral tangles. Note that Cr(K) =

∑q
i=1 ai therefore, q ≤ Cr(K).

For each integral ai, let Fai denote the ropelength of the set of folded twists.
The sum of all the Fai will be denoted Ftotal.

Lemma 2. In Km, Ftotal ≤ O(Cr(Km)).
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(a) (b) (c)

Figure 2: (a) Conway tangle 423. (b) Tangle 423 with changed isotopic view to
show tangle multiplication. (c) Tangle 423 in braid form.

(a) (b)

Figure 3: (a) Example of σ10
i folded. (b) Example of σ9

i folded with trivial on
end of twists.
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Proof. The following pieces are used to calculate the ropelength.
Let t = dai

2 e and b = ai − t

b1 = set of twists for top = 2(3.82− 2
√

2 + tπ
√

2)
b2 = set of twists for bottom = 2(3.82− 2

√
2 + bπ

√
2)

e = trivial braid of two strands = 4π − 4
c = connectors for two strands = 2π + 4
Therefore, Fai

= b1 + b2 + c + (t − b)e. When all ai are even, then Feven ≤
q(15.28 − 8

√
2) + 2π + 4 + 2π

√
2

∑q
i=1 ai. When all ai are odd, then Fodd ≥

q(15.28− 8
√

2) + 6π + 2π
√

2
∑q

i=1 ai. Also, q ≤ Cr(Km) when q is either even
or odd. Since Ftotal is in terms of q, it can be said that the ropelength of the
constructed folds are linear in the crossing number.

After all the folding, each integral tangle creats a “four-prong circut” that
will be used to connect all the folded tangles. For better visual understanding,
think of each folded integral tangle in its own drawer where the depth is de-
termined by the length of the individual tangles. The width and height stays
constant at 4 units.

Lemma 3. For Km, the greatest depth is dL(ai)
2 e + 2 for largest |ai| while the

height and width are 4.

Proof. The depth is determined by how far the longest tangle travels which is
the length of the folded tangle. Therefore the tangle is dL(ai)

2 e long plus the
2 units for the connector on the end of the fold. The height and width are
unchanged because the tangle never leaves the space between the two planes
on which the fold is created. They are both 4 units due to the fact that we
have to ensure that the rope does not intersect with other tangles, so for the
arrangement of the cores, with a radius of one, in a square it creates a height
and a width of 4.

We now connect the integral tangles in an effecient way to reduce ropelength.
There are q drawers lined up vertically that need to be connected to other draw-
ers (Figure 4), then split into two dressers facing each other (Figure 5) 4 units
apart to create the necessary space for the connectors. We describe six types of
connections that are used. (See figures 4b and 5a for locations of αi’s.)
For q tangles, let j = d q

2e and k = q − j.
α1 : Connects Fai to Fai+1 for i = 1...j and i = k...(q − 1), therefore (q − 2)
connectors.
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(a)

α1

α2

α2

α3

α3

α4

(b) (c)

Figure 4: (a) Set up of the four-prong when q is even (left) and odd (right). (b)
Four pronged circuits with connectors when q is odd. (c) Four pronged circuits
with connectors when q is even.

α′1 : Connects Faj to Faj+1 .
α2 : Connects Fai to Fai+2 for i = 1...(q− 2) and Fai to Fai+2 for i = 2...(q− 2),
therefore q − 2 connectors.
α′2 : Connects Faj to Faj+1 and Faj−1 to Faj+1 .
α3 : Connects Fa1 to Fa2 and Faq−1 to Faq .
α4 : Connects Fa1 to Faq .

Lemma 4. For Km, L(C) ≤ O(Cr(Km)).

Proof. To prove this lemma it will be shown how each connector is made and
the ropelength of each connector will be calculated. Then the lemma follows
from the summation of all the necessary pieces for the knot. In particular, we
will show that,
L(α1) = π
L(α′1) = 4
L(α2) = π + 4
L(α′2) = π + 3.66
L(α3) = π + 2.47
L(α4) = π + 3.66
For the lengths of each α, the core of the rope is thought of on a cubic lattice.
Since the radius of each rope is one, the core must be placed every other point
on the lattice. For α1, (Figure 6a) the ropes are right next to each other so a
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α′1

α′2

α′2

α4

(a)

α4

(b)

Figure 5: The folded representation of the previously verically alined four-prong
circuits. (a) When q is odd. (b) When q is even. The rhombuses represent two
planes on which the four-prongs on lined up on. The plane with cicular circuits
has tangles into the paper and the plane with star circuits has tangles coming
out of the paper. The solid lines are connectors within the plane, while th
dashed lines are connectors between the two planes, to create a knot.

half circle having a ropelength of π is all that is needed for any connection of α1.
When connecting the two planes with α′1, since the cores line up directly across
from each other, a tube 4 units long is all that is needed because the two planes
are 4 units apart. For α2, the cores are 6 units apart, but once quarter circles are
added to the end of the rope, those quarter circles are only 4 units apart (Figure
7a). Therefore the ropelength of the tube is π + 4. To connect the two planes
with α′2, the cores are on a lattice which travel between the two planes (Figure
7b). Since a 45, 45, 90 triangle is created, it is know that the quarter circles come
out to the edge of the rope at (

√
2/2,

√
2/2) and (4−√2/2, 4−√2/2). There-

fore, the distance between the edges of the ropes is found to be approximately
3.66, giving a total length of π + 3.66. The length of α3 is found in the same
way with the edges of the quarter circles at (cos[arctan(1/2)], sin[arctan(1/2)])
and (4− cos[arctan(1/2)], 2− sin[arctan(1/2)]) (Figure 8a). The distance is ap-
proximately 2.47, so L(α3) = π + 2.47. The final connector between the two
planes is the same as α′2 (Figure 8b), therefore L(α4) = π + 3.66 Therefore,
L(C) = 2qπ + 4q + 5π + 11.92.

By construction and use of previous lemmas, the following theorem can be
shown.

Theorem 2. For Km, L(Km) ≤ O(Cr(Km)).

Proof. For L(Km), all the pieces need to be added together. Therefore, L(Km) =
Ftotal + L(C). By lemmas 2 and 4, it is shown that Ftotal and L(C) are both
linear in the crossing number. Therefore, ÃL(Km) ≤ O(Cr(Km)).
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(a) (b)

Figure 6: In the following figures, the large cirlces are the core of the rope in
one plane and the stars are the core in another plane while between planes the
vertices are square points. (a) α1 (b) α′1: square vertex is between planes

(a) (b)

Figure 7: (a) α2 (b) α′2: square vertex is between planes

(a) (b)

Figure 8: (a) α3 (b) α4: square vertex is between planes

4.2 Tangle Addition

For addition, let Ka = a1, a2, ..., aq where each ai deonotes the number of pos-
sible twists and q denotes the number of integral tangles. The tangles are
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(a) (b)

Figure 9: (a) Conway tangle 3,3,2. (b) Tangle 3,3,2 with changed isotopic view
to show tangle addition.

(a)

γ1 γ2

γ3

(b)

Figure 10: (a) Prongs lined up for tangle addition. (b) Connectors used in
tangle addition.

arranged next to each other vertically left to right (Figure 9b). This arranges
the four-prong circuits in the same fashion horizontally (Figure 10a). Then the
integral tangles are folded and calculated in the same way as in previous section,
creating Fai for i = 1, ..., q. Once the four-prong circuits are lined up, it can be
folded again so the face each other (Figure 10b), staying 4 units apart to ensure
the rope does not intersect.

There are three connectors that will be used, denoted by γi. (See 10b for
locations of γi’s.)
For q tangles, let j = d q

2e and k = q − j.
γ1 : connects Fai to Fai+1 twice for i = 1...j and i = k...(q−1), therefore 2(q−2)
connectors.
γ2 : connects Faj to Fak

twice at the end of the fold.
γ3 : trivial straight rope of 2 strands.
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Lemma 5. For Ka, L(C) ≤ O(Cr(Ka)).

Proof. To prove this lemma it will be shown how each connector is made and
calculate the ropelength of each connector. In particular, we show
L(γ1) = π
L(γ2) = 8
L(γ3) = 8
The construction of γ1 is the same as α1 (Figure 11a), therefore L(γ1) = π. For
γ2, the connector travels straight across between the two planes (Figure 11b),
so a rope of 4 units is used for each γ2. Quarter circles will also be needed at
the end of each set of added tangles to create the four-prong to be used in the
large braid. Therefore, the length of the end pieces is 2π. From the summation
of all the necessary pieces for the knot, L(Ka) = 2πq− 2π + 16 + 8(j− k) which
shows that the ropelength is linear for q. Since q ≤ Cr(Ka), the ropelength is
also linear for the crossing number.

(a) (b)

Figure 11: (a) γ1 (b) γ2: square vertex is between planes

By construction and use of previous lemmas, the following theorem can be
shown.

Theorem 3. For Ka, L(Ka) ≤ O(Cr(Ka)).

Proof. For L(Ka), all the pieces are added together to get L(Ka) = Ftotal +
L(C). By lemma 2 and 5, it is shown that Ftotal and L(C) are both linear in
the crossing number. Therefore, L(Ka) ≤ O(Cr(Ka)).

For every Ka, the integral tangle has its own drawer where the width is
determined by the length of ai while the depth is determined by q. The height
is constant again and the four-prong circuits are centered vertically but its
location horziontally is determined by the length of ai.

Lemma 6. For Ka, the greatest width is L(ai) + 8, the greatest depth is 4(d q
2e)

while the height is 4.

Proof. Since the width is determined by the folded ai, which only goes in one
direction, but For the largest ai, it would extend the width of the drawer by
dai

2 e in one direction. But to compensate for another ai that is equal or lesser
in length, L(ai) is used to extend the drawer. Also, two units are added onto
each end for the connection of the folding of the individual tangles and four for
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the space between the two planes. Therefore, the width is at most L(ai) + 8.
The depth of the drawer is determined by q since the folding method is used
(Figure 10). When more ai’s are added together, more four-prongs need to be
lined up facing each other. To compensate for an odd q, the ceiling gives the
maximum number of four-prong sets on one side. Then since each four-prong set
is four units wide and the connectors are kept within the planes, the maximun
number of four-prong sets is multiplied by four. Therefore, the depth is at most
4(d q

2e).

4.3 Multiplication and Addition: The Algebraic Tangle

Some Conway tangles have both mulitplication and addition comprised in the
knot. For these types of knots, the pieces from the previous sections can be
used to create an algebraic tangle, which can be closed to be called an algebraic
link. Still, there are some knots that are not algebraic. For further information
on algebraic and non-algebraic knots see [1].
When a knot has a Conway notation with both multiplcation and addition,
addition is calculated first, followed by multiplication. For example, the tan-
gle, T , a1a2, a3, a4a5a6, a7 could be seen as T = a1(a2, a3, a4)a5(a6, a7). Here
A1 = a2, a3, a4 and A2 = a6, a7 would each be treated as new single tangle
to be multiplied by the other ai’s. Think of a1, A1, A2 and a5 each having
their own drawer. When calculating the ropelength of the algebraic tangles,
the methods of the previous two sections apply. First ropelength is found for
each set of addition tangles. By lemmas 2 and 5, L(A1) ≤ FA1 + 4π + 24
and L(A2) ≤ FA2 + 2π + 16. Once the addition tangles are constructed, the
four-prong ends (Figure 7b, the square vertices) will be used in the four-prong
set up for multiplication. The new tangle notation would be T = a1A1a5A2.
Once all the drawers are constructed, they are stacked on top of each other
then split into two dresser sets. The handles are lined up as four-prongs were
and the dressers are spaced 4 units apart, facing each other. Rope can then be
used to connect appropriate parts of the handles. From the example of tangle
T , one dresser would have a1 on top of A1 and the other dresser would have
a5 on top of A2. The two dressers would be placed facing each other and the
appropriate connectors would be used to close the link. The method for mul-
tiplication is conintued by using lemmas 2 and 4. Therefore for the example,
L(T ) ≤ Fa1 + L(A1) + Fa5 + L(A2) + 12π + 27.92.

With this type of construction, it can be shown that:

Theorem 4. For algebraic knot, K, that admits a minimal crossing algebraic
projection, L(K) ≤ O(Cr(K)).

Proof. To find the ropelength of a knot or link, folds, connectors and tangles
need to be added together. By lemmas 2 and 5, it is shown that the total length
of the folds that are added together are linear in the crossing number while
lemmas 2 and 4 show how the pieces for connecting folds by multiplication are
also linear in the crossing number. Then theorem 2 and 3 show tangles that are

15



multiplied and added together will also be linear in the crossing number. Also,
since the tangles are the pieces that make up the knot, we know the crossing
number of the tangles are less then or equal to the crossing number of the knot.
Hence, for algebraic knot K, L(K) = Ftotal + L(C), where Ftotal and L(C) are
both in terms of q and

∑ |ai|. Since q ≤ Cr(K), then L(K) ≤ O(Cr(K)).

After this work was completed, similar conclusions were found in [3] by a dif-
ferent method using Hamiltonian cycles and lattice embedding for constructions
of tangles.

5 Further Research

Toward the end of the research, methods to find the ropelength of non-algebraic
knots were being looked into. Continuing to look at Conway’s theories, the idea
of Conway’s basic polyhedra was researched and used to discover the best ar-
rangement of the tangles. We obtained partial results by arranging the tangles
as a graph with six vertices, each with a degree of 4. Also, by knowing the
maximum depth, width, and height of the integral tangles, an maximum upper-
bound can be found. Research can be continued that looks at better methods
of arranging the integral tangles as well as looking at other non-algebraic knots
to find uppper bounds for ropelength.
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