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Abstract

For any given link conformation L which admits an alternating projec-
tion, we establish that Rop(L) ≥ 4Cr(L). We arrive at this conclusion by
considering the sum of the change in heights of successive overcrossings
and undercrossings as the link is traversed in a fixed direction.

1 Introduction

Several different pictures can represent the same link, such a picture is called
a projection of the link. Figures 1 and 2 illustrate two distinct projections
of the trefoil knot viewed from different angles. The crossing number of a
link L, denoted by Cr(L), is the least number of crossings that occur over
all projections of the link. Figure 1 offers a projection that is non-alternating
since the crossings do not abide by the over and under pattern, while Fig. 2
provides us with a projection in which the crossings alternate. It has been
proven that the proportion of alternating links exponentially approaches zero
with increasing crossing number [2]. Therefore as the crossing number increases,
we find exponentially fewer alternating projections of any given link.

The ropelength of a link conformation L, denoted by Rop(L), is the ratio
of the arclength, l(L), to the radius, r(L). In other words, Rop(L) = l(L)

r(L) . Note
that for a link type L , we define the ropelength of L to be the minimum rope-
length over all conformations L of L ; i.e., Rop(L ) = minLRop(L). Also note
that Rop(L) is scale-invariant since l(L) and r(L) increase by the same factor.
Without loss of generality, we assume r(L) = 1 which implies that Rop(L)=l(L).

Definition 1: An alternating conformation of a link L is any link confor-
mation which admits an alternating projection of L in the z direction and has
r(L)=1. We observe that specifying the projection direction is unnecessary, but
will simplify the rest of the work.

The relationship between the ropelength and crossing number has been stud-
ied by many; it has been established that for any knot K, Rop(K) is bounded
below by O(Cr(K))

3
4 (see [3] and [4]). We consider the possibility of a linear

lower bound in terms of crossing number. In [1], Diao, Ernst, and Thistleth-
waite pose the question, “Is the ropelength at least of the order O(Cr(K)) for
any prime alternating knot K?” We provide a partial answer to this question.
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Namely, we show that if a ropelength minimizer L of L admits an alternating
projection, then Rop(L ) ≥ O(Cr(L )).

Figure 1: A non-alternating projection of the trefoil.

Figure 2: An alternating projection of the trefoil.

2 Ropelength of Alternating Links

Let L be an alternating conformation with n crossings labelled 1 through n. The
ith crossing consists of an overcrossing point pi and an undercrossing point qi

which share the same x and y coordinates. Let oi denote the height of pi and ui

denote the height of qi. In other words, oi and ui are the z-coordinates of pi and
qi, respectively. As we traverse the link in a fixed direction, we encounter a cyclic
ordered sequence of overcrossings and undercrossings along the path (which al-
ternate ouou...ou) that reaches completion when the inception point is revisited.

¯ For example, begin with a projection of the trefoil. Label the crossings 1, 2,
and 3 as you traverse the knot in a fixed direction (see Fig. 3). The over- and
under- crossing points are then labelled accordingly as in Fig. 4.

Definition 2: Let L be an alternating conformation. The height function,
h : L → R, is the projection h(x, y, z) = z which takes every point on L to its
z-coordinate. The image of L under the projection, denoted by h(L), is a path
that goes up and down along the z-axis.

2



Figure 3: An alternating projection of the trefoil with 3 crossings.

Figure 4: pi and qi, 1 ≤ i ≤ 3.

Note that under the projection, h(pi) = oi and h(qi) = ui so that the values
oi and ui partition the z-axis into subintervals.

¯ Continuing with our example, Fig. 5 is a diagram of h(L) along the z-axis
where we now represent the pi by their respective heights oi, and qi by ui. The
series of the path runs as o1u2o3u1o2u3.

Figure 5: h(L) with oi and ui, 1 ≤ i ≤ 3.

Observation 1: Note that for each crossing, oi > ui. In fact, there is at least a
distance of 2 separating oi and ui since the radius of each strand is 1; therefore
(oi − ui) ≥ 2.

Lemma 1: If L is an alternating conformation, the ropelength of L is greater
than or equal to the length of h(L).
Proof : Since the projection h does not increase the distance between points,
the arclength of L is at least the length of h(L). ¥
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Our goal is to use the height function h to obtain a lower bound on the
ropelength of L. It is difficult to measure the length of h(L) directly. Conse-
quently, we will replace the potentially unwieldy arclengths that compose h(L)
with straight line segments that connect heights of overcrossings to those of
undercrossings that precede and succeed them on the link. We will call this new
image of L, where the arcs between successive overcrossings and undercrossings
have been tightened or straightened, the taught image of L, denoted by t(L).
An edge is the line segment in t(L) that connects successive over- and under-
crossings. Note that each oi and uj has exactly two edges incident with it in
t(L), and each edge has one endpoint of each type.

¯ Again, referring to our example, Fig. 6 is the translation of the diagram of
h(L) into a taught diagram of the connections between oi and uj . Note that
the straight line segments have been bent slightly for viewing purposes in Fig. 6.

Lemma 2: Let L be an alternating conformation. The ropelength of L is at
least the length of t(L).
Proof : Both of the paths h(L) and t(L) connect the heights oi, uj in the same
cyclic order. Since the arc in t(L) connecting consecutive oi and ui is a straight
line, its length is at most the length of the corresponding piece in h(L). Sum-
ming over all consecutive points, the sum of the straight line segments in t(L)
is at most the sum of the arcs composing h(L). The result now follows from
Lemma 1. ¥

Figure 6: Taught image t(L).

¯ In our example Rop(L) ≥ length of h(L) ≥ length of t(L) = |o1 − u2| +
|u2 − o3|+ |o3 − u1|+ |u1 − o2|+ |o2 − u3|+ |u3 − o1| by Lemma 2.

Definition 3: Let z0 be any height along the z-axis. Any pair (oi, ui) is split
if z0 lies between the pairing, i.e., oi > z0 > ui; otherwise the pair is unsplit.
Observe in Fig. 8 that o1 and u1 are split by z0. The pair (o1, u1) is unsplit by
z0 in Fig. 10.

We now discover a linear lower bound for the length of an alternating con-
formation of L by establishing a relationship between the length of t(L) and
the crossing number of L. First we find a lower bound for the length of t(L),
which can be manipulated in such a way as to provide an inequality regarding
the crossing number of L.
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Lemma 3: Let L be an alternating conformation, z0 a particular height on
the z-axis, and b the number of pairs (oi, ui) split by z0. In t(L) there are at
least 2b edges from overcrossings above z0 that must run by z0 to connect to
undercrossings below.
Proof : Let a be the number of unsplit pairs that lie above z0 (ui > z0), b
the number of pairs split by z0, and c the number of unsplit pairs beneath z0

(oi < z0). Note that a + b + c = n. There are a + b overcrossings and a un-
dercrossings above z0. The case that results in the least number of edges that
run by z0 occurs when every undercrossing above z0 connects to an overcrossing
above z0. Thus there are 2(a + b) total edges incident with the overcrossings
above z0 and 2a total edges incident with the undercrossings above z0. Once all
the edges leaving from the undercrossings above z0 are connected to overcross-
ings above z0, 2(a + b) − 2a = 2b total edges leaving the overcrossings remain.
These edges must cross z0 to connect to the undercrossings below z0. ¥

Figure 7: h1, ..., h2n, 1 ≤ n ≤ 3.

Lemma 4: Let L be an alternating conformation and hi, 1 ≤ i ≤ 2n, a rep-
resentation of the overcrossing and undercrossing heights in descending order.
The length of t(L) ≥ ∑2n−1

m=1 2bm(hm − hm+1).
Proof : Represent the overcrossing and undercrossing heights as an ordered se-
quence of points, h1, ..., h2n, along the z-axis. We will define bm to be the number
of split pairs that corresponds to z0 cutting the z-axis between the point hm and
the point directly below, hm+1. On the interval (hm, hm+1), we have at least 2bm

edges spanning the length of the interval, therefore every interval contributes
a distance of at least 2bm(hm − hm+1) and the total length of t(L). Thus the
length of the taught image is greater than or equal to

∑2n−1
m=1 2bm(hm−hm+1). ¥

¯ Back to our example, represent the heights o1, o2, u1, u2, o3, and u3 as h1, ..., h2n, 1 ≤
n ≤ 3 along the z-axis(see Fig.7). Let z0 intersect every interval between con-
secutive crossing heights (see Figures 8, 9, 10, 11, and 12).

Lemma 5: If L is an alternating conformation, then
∑2n−1

m=1 2bm(hm−hm+1) =∑n
i=1 2(oi − ui). ¥

Proof : We will show that the sum
∑n

i=1(oi − ui) can be subdivided and re-
arranged to form

∑2n−1
m=1 bm(hm − hm+1). Let oi and ui be represented by

hx and hy respectively. The interval [hy, hx] is partitioned by intermediate
heights hx ≥ hx+1 ≥ ... ≥ hy−1 ≥ hy. Therefore the length of the in-
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Figure 8: b1=1.

Figure 9: b2=2.

Figure 10: b3=1.

Figure 11: b4=0.
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Figure 12: b5=1.

terval [ui, oi] can be written as (oi − ui)=
∑y−1

j=x(hj − hj+1), and we have∑n
i=1(oi − ui)=

∑n
i=1(

∑yi−1
j=xi

(hj − hj+1)). We now determine how often the
length hm − hm+1 occurs in the double sum

∑n
i=1(

∑yi−1
j=xi

(hj − hj+1)). Note
that hm−hm+1 occurs once in the expansion of oi−ui if and only if the heights
between [hm+1, hm] split the pair (oi, ui). Thus hm − hm+1 occurs exactly bm

times in the double sum, and we have shown
∑n

i=1(oi− ui)=
∑n

i=1(
∑yi−1

j=xi
(hj −

hj+1))=
∑2n−1

m=1 bm(hm − hm+1). ¥

¯ We now illustrate Lemmas 4 and 5 using our example. We want |o1 − u2|+
|u2 − o3| + |o3 − u1| + |u1 − o2| + |o2 − u3| + |u3 − o1| ≥ 2[(o1 − u1) + (o2 −
u2) + (o3 − u3)]. By Lemma 4, |o1 − u2| + |u2 − o3| + |o3 − u1| + |u1 − o2| +
|o2 − u3| + |u3 − o1| ≥ 2b1(h1 − h2) + 2b2(h2 − h3) + 2b3(h3 − h4) + 2b4(h4 −
h5) + 2b5(h5 − h6) = 2(h1 − h2) + 4(h2 − h3) + 2(h3 − h4) + 0 + 2(h5 − h6) =
2(o1 − u1) + 2(o2 − u2) + 2(o3 − u3).

Theorem 1: If L is an alternating conformation, then Rop(L) ≥ 4Cr(L).
Proof : Since (oi−ui) ≥ 2 we have

∑n
i=1 2(oi−ui) ≥

∑n
i=1 2(2) = 4n = 4Cr(L).

Combining this observation with Lemmas 1 through 5 we have Rop(L) ≥
l(h(L)) ≥ l(t(L)) ≥ ∑n

i=1 2(oi − ui) ≥ 4Cr(L). ¥

In our final corollaries we offer a partial positive answer to the question
posed by Diao, Ernst, and Thistlethwaite.

Corollary 1: If L is an alternating link type with an alternating conformation
that realizes Rop(L ), then Rop(L ) is at least O(Cr(K)).

Corollary 2: If L is an alternating link type and Rop(L ) < 4Cr(L ), then
ropelength minimizers for L do not admit alternating projections.
Proof : This is the contrapositive of Theorem 1. ¥

3 Conclusion

By looking at an alternating link conformation in terms of overcrossing and un-
dercrossing heights and cutting intervals formed by successive points, we formed
a relation between split intervals and the distance between oi and ui. We estab-
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lished this distance to be at least 2, thereby enabling us to form an inequality
between Rop(L) and Cr(L). Suggestions for further research include discover-
ing examples of alternating link types (L ) with Rop(L ) < 4Cr(L ), analyzing
non-alternating projections of alternating links to completely resolve the ques-
tion posed by Diao, Ernst, and Thistlethwaite, and finally, applying similar
techniques to bridge and superbridge numbers.
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