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Abstract

For any given link conformation L that admits an alternating, almost-alternating, or paired projection,
we establish that Rop(L) has a linear lower bound in terms of crossing number for alternating and almost-
alternating projections, and in terms of bridge number for paired projections. We arrive at this conclustion
by considering the height of the links and reducing them to a minimal height representation.

1 Introduction

We shall introduce some key concepts that are helpful to understanging the paper. A knot is a closed curve
in space. A link, L, is a knot with multiple components. A projection or diagram is a two dimensional
representation of a link. One knot has many projections. The crossing number, Cr(L), of a diagram is
the number of crossings on the projection of the link. The ropelength of a link conformation L, denoted

Rop(L), is the ratio of the arclength, l(L), to the radius, ra(L). In other words, Rop(L) = l(L)
ra(L) . Note that

Ropelent is scale-invariant since l(L) and ra(L) increase by the same factor. Without loss of generality, we
assume ra(L) = 1 which implies Rop(L) = l(L). This also implies that given two non-local points on the
link. there must be a distance of 2 units seperating them. An alternating link is a link that admits a
projection that alternates from overcrossing to undercrossing as you traverse the link in a fixed direction.

There is a section dedicated to defining paired links so we shall exclude those definitions here. We will
first discuss the ropelength of alternating and almost-alternating conformations of L and discover that both
have a linear lower bound in terms of crossing number.

2 Alternating Rope length

Let L be an alternating conformation with n crossings labeled 1 through n. At the ith crossing of the link
there is an overcrossing pi and an undercrossing qi that share the same x and y coordinates. We can let
the height of pi be denoted as oi and the height of qi as ui. We encounter a cyclic repeating pattern of
overcrossings with undercrossing as we traverse the link in a fixed direction.

For example, label the crossings of a trefoil 1, 2, and 3 as you traverse the knot in a fixed direction(see
Figure 2.1. Then label the undercrossings and overcrossings appropriately as seen in 2.2.
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Figure 2.1.

An alternating projection of a trefoil with 3 crossings

Figure 2.2.

pi and qi, 1 ≤ i ≤ 3.

Definition 2.3. Let L be an alternating conformation. The height function, h : L → R, is the projection
h(x, y, z) = z which takes every point on L to its z-coordinate. The image of L under the projection,
denoted by h(L), is a path that goes up and down along the z-axis. Furthermore the length of h(L) denoted
l(h(L)) is the length of all the edges of h(L).

Note that under the projection, h(pi) = oi and h(qi) = ui so that the values of oi and ui partition the
z-axis into subintervals.

Continuing the example, Figure 2.4 is a diagram of h(L) along the z-axis where oi and ui represent pi

and qi respectively. The series of the path runs as o1u2o3u1o2u3. and the paths are bent away from the
z-axis for ease of viewing.

Figure 2.4.

h(L) with oi and ui, 1 ≤ i ≤ 3
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Note that for each crossing, oi > ui. Furthermore, there is at least a distance of 2 separating oi and ui

because we normalized the radius of each strand to be 1; Therefore |oi − ui| ≥ 2.

Remark 2.5. If L is an alternating conformation, Rop(L) ≥ l(h(L)) since the projection h does not increase
the distance between points.

The goal is to use the height function h to obtain a lower bound on the ropelength of L. It is difficult to
measure the length directly so we will simplify it by replacing the arcs of h(L) with straight line segments
that connect the overcrossings to the undercrossings. We will call this new image of L the taut image of
L, denoted by t(L) and has a length denoted l(t(L)). The edges of t(L) connect successive over- and under-
crossings. each oi and ui has exactly two edges incident with it in t(L), and each edge has an endpoint of
one overcrossing and one undercrossing.

Continuing the example:

Figure 2.6.

The taut image t(L).

Note that the straight line segments have been slightly bent for viewing purposes.

Remark 2.7. Let L be an alternating conformation. Rop(L) ≥ l(t(L))

Notice that both of the paths h(L) and t(L) connect the heights oi and uj in the same cyclic order. Since
the arc in t(L) connecting consecutive oi and uj is a straight line, its length is at most the length of the
corresponding piece in h(L). Summing over all consecutive points, the sum of the straight line segments in
t(L) is at most the sum of the arcs from h(L). Using Remark 2.5 we see the remark now follows.

In the example Rop(L) ≥ l(h(L)) ≥ l(t(L)) = |o1−u2|+|u2−o3|+|o3−u1|+|u1−o2|+|o2−u3|+|u3−o1|.

Since the next step requires us to manipulate the taut image of L, we shall first introduce some terminology
and opperational definitions in order to simplify the process.

First, notice that each height of a crossing can conform to one of five configurations as seen in Figure 2.8

Figure 2.8.
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The possible configurations of two edges extending off of t(L).

Let ci be an arbitrary crossing that may either be over- or under-crossing. We can assign each crossing
height an edge value, denoted e(ci), of 1, −1, 1

2 , - 1
2 or 0 corresponding to an E+, E−, E 1

2

, E
−

1

2

and E0

configurations respectively.

We will be moving crossings up and down along the z-axis so we must consider the effects on ropelength
when we shift a given crossing up or down. Now observe the effects of the movement of a crossing with edge
value 1 on l(t(L)) in Figure 2.9.

Figure 2.9.

The movement of a crossing with edge value 1.

Notice that a positive edge value decreases l(t(L)) when shifted in the positive direction and increases
l(t(L)) when shifting in the negative direction. Similarly, a negative edge value will increase l(t(L)) when
shifted up and decrease l(t(L)) when shifted down, and a zero edge value will move in any direction with no
effect on l(t(L)).

During the movement of heights the edge value of a crossing may change when it changes its relative
height to a crossing it is connected with, as seen in Figure 2.10 when ci changes height. Note that during
an upward shift the edge value can never increase and during a downward shift the edge value can never
decrease

Figure 2.10.

The change of edge value when shifted along z-axis.
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When shifting a crossing across a height in which the edge number changes we must be careful to use the
right edge value when calculating the change of ropelength during the shift.

Suppose that we shift a crossing between two heights, h1 and h2, along the z-axis of t(L) such that
h1 > h2. If we shift ci from h1 to h2 (downward shift), we must use the maximal edge value of ci in the
range [h1, h2). Similarly if h1 < h2 (upward shift) we must use the minimal edge value of ci in the range
[h1, h2). In our example, if we shift ci from cx to cy we see that e(ci) = 1

2 initally, then passes through a range
where e(ci) = 0 and e(ci) = − 1

2 when the shift stops. Thus e(ci) during the shift would be min(1
2 , 0) = 0.

This conceptually makes sense because looking at Figure 2.10, when we shift ci from cx to cy we do not
increase or decrease the ropelength during an upward shift.

We have sufficiently characterized the effect on l(t(L)) when we shift a single height. The following lemma
will address the effect when we shift multiple heights simultaneously.

Definition 2.11. The shifting set, σ, is the set of all crossings that are moved simultaneously along the
taught image.

Definition 2.12. The edge value of the shifting set, e(σ) is the sum of the edge values of all the crossing in
the set. In other words, e(σ) =

∑
ci∈σ e(ci).

Since we are moving all crossings of the set simultaneously and the same distance each, any effect on
l(t(L)) caused by one crossing will be propegated with the effect on l(t(L)) by all the other crossings at the
same rate. Thus we can sum together all the edge values and this produces the edge value of σ. Thus we
have a well defined edge value for our shifting set.

For an example, we can view in Figure 2.13 that if our shifting set contains cx and ci, then e(σ) =
e(cx) + e(ci) = 1 which holds for all positions of ci relative to cx.

Figure 2.13.

σ = {ci, cx} and e(σ) = 1.

When we move σ there are a total of two edges extending up from the two crossings to the rest of the
link so together they are in an E+ configuration and thus e(σ) = 1.

In general if e(σ) ≥ 0, we can shift the shifting set up without increasing l(t(L)) and if e(σ) ≤ 0, we can
shift the shifting set down without increasing l(t(L)).

Now that we have the tools to work with our taut image, we can get back to show a linear lower bound
on ropelength.

Definition 2.14. Let the height of the highest oi on t(L) be called the o-line and the height of the lowest
uj of t(L) be called the u-line. When all the overcrossings are at the o-line and all the undercrossings are
at the u-line we have a graph with only two heights.
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Definition 2.15. The n-reduced image of L, r(L), is the taut image of L that has all crossings at n distinct
heights.

Definition 2.16. The squished image of L, s̃(L), is the 2-reduced image of L. In an alternating case all
overcrossings are at the same height and all undercrossings are at the same height and the two heights are
at least 2 units apart.

Lemma 2.17. Let L be an alternating conformation, l(t(L)) ≥ l(s̃(L)).

Proof.Let the shifting set, σ, of the taut image, t(L), contain all oi and uj such that oi is on the o-line and
uj is two units below the o-line. Let this line of uj be called the uo-line. Since every overcrossing is connected
to two undercrossings, the edge value of each overcrossing on the o-line is −1, in other words e(oi) = −1 for
all oi on o-line. By Definition 2.12 e(σ) =

∑
oi,ui∈σ e(oi) + e(uj). We see that e(oi) = −1 and the largest

value of e(uj) is 1. Since there cannot be more undercrossings in σ than overcrossings, otherwise there will
be an overcrossing below its associated undercrossing, it follows that e(σ) ≤ 0. Thus we can shift σ down
along the z-axis without increasing l(t(L)). This allows us to continually reduce the height of the o-line until
all overcrossings are at the same height as we can see in our example of the trefoil in Figure 2.18. Note that
if there are undercrossings further than 2 units below the lowest overcrossing, then all the undercrossings
will not be at the same height.

Figure 2.18.

Notice in Figure 2.18 that the dashed lines correspond to the o-line and the u-line.

To get the squished image, let the shifting set, τ , contain all undercrossings on the u-line. Each under-
crossing on the u-line is connected to two overcrossings above it, so e(uk) = 1 for all uk on the u − line.
Clearly, by Definition 2.12, e(τ) ≥ 0. In fact e(τ) = k where k is the number of undercrossings at the u-line.
Thus we can continually increase the height of the u-line until all undercrossings are at the same height as
we can see in Figure 2.19. Thus we have reduced the taut image of L to the squished image of L while
strictly maintaining or reducing the length of t(L). Therefore, l(t(L)) ≥ l(s̃(L)). �

Figure 2.19.

Note that |o-line−u-line| = 2 since we stopped moving the u-line when all undercrossing were contained
on it, which occured at the uo-line that was set 2 units away from the o-line.
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For ease of viewing we can extend s̃(L) horizontally to keep track of the path in the link as seen in
Figure 2.20

Figure 2.20.

Theorem 2.21. If L is an alternating conformation, then Rop(L) ≥ 4Cr(L).

Proof.Since s̃(L) is a collection of straight edges running along the z-axis and the length of each edge is
2 units and there are two edges per crossing we know that s̃(L) ≥ 2(2Cr(L)). Combining this observation
with Remarks 2.5 and 2.7 and Lemma 2.17, we see that Rop(L) ≥ l(h(L)) ≥ l(t(L)) ≥ l(s̃(L)) = 4Cr(L). �

3 Almost-Alternating Ropelength

3.1 Introduction

Definition 3.2. An m-Alternating knot has a projection that requires m crossing changes to become
alternating.

Definition 3.3. An almost-Alternating knot has a projection that requires 1 crossing change to become
alternating.

For example the unknot is almost alternating as seen in Figure 3.4.

Figure 3.4.

Let L be an almost-alternating conformation of a link. Notice that if we consider the sequence of crossings
as we traverse the knot in a fixed direction we will encounter an alternating pattern, ououou, and two breaks
in that pattern; one break occurs where an overcrossing connects to two overcrossings, ooo, and the other
where an undercrossing connects to two undercrossings, uuu, both occurances are unique. The central o and
u correspond to the same crossing on L. Let us label the three overcrossings in a row as om, oi, and on and
label the three undercrossings in a row as us, ui, and ut as seen in Figure 3.5.
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Figure 3.5.

3 overcrossings in a row and 3 undercrossings in a row, centered around oi and ui.

We find that we can also achieve a linear lower bound on ropelength for almost-alternating diagrams. Let
L be an almost-alternating conformation of a link. We will find Rop(L) ≥ 4(Cr(L) − 4). We shall employ
Remarks 2.5 and 2.7 from the previous section and again opperate on t(L) to get a reduced image of L.
This reduced image will be achieved at 4 heights as opposed to the two heights of the squished image for
the alternating links.

3.6 Almost-Alternating Ropelength

Let L be a conformation of the link which admits an almost-alternating diagram. t(L) is the taut image of
L and r̄(L) is the 4-reduced image of L.

We established in the previous section that the Rop(L) ≥ l(t(L)) with an alternating conformation. The
same reasoning as before applies to the almost-alternating case. Thus all we need to show is l(t(L)) ≥ r̄(L)
for the almost-alternating case and the result of a linear lower bound on ropelength will follow.

Recall that the o-line is the height of the highest overcrossing in t(L) and the u-line is the height of the
lowest undercrossing.

For the following lemmas, σ is the shifting set that contains all crossings at the o-line, as well as all
undercrossings 2 units below the o-line which we will call the uo-line. The analogous shifting set for the
u-line is the σu shifting set. The height 2 units above the u-line in σu is the ou-line. We will operate on the
o-line to get results that can also be applied to the u-line.

Remark 3.7. All undercrossings at the uo-line must have associated overcrossings at the o-line.

If there is an undercrossing at the uo-line that does not have it’s associated overcrossing on the o-line,
then the associated overcrossing is above the o-line which is false by definition or it is below the o-line but
then |oj − uj | ≤ 2 which is a contradiction.

Remark 3.8. L is an almost alternating conformation of a link and e(σ0) = n when ui /∈ σ0 and all
undercrossing on the uo line have an edge value of 1. If σ = {σo, ui} then e(σ) = n − 1.

By definition ui is connected to two undercrossings that are at or below the uo-line. Thus, if ui ∈ σ, then
e(σ) = e(σ0) + e(ui). If e(ui) = −1 then e(σ) = n − 1. If e(ui) = 0 then two undercrossings on the uo line
are reduced from an edge value of 1 to an edge value of 1

2 and thus e(σ) = n − 1.
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Definition 3.9. The bumped image,b(L), of L is the configuration of the taut image, seen in Figure 3.10,
such that all overcrossings local to oi are at the same height, above the o-line, and the associated um and
un are at the o-line. The bumped structure is the 3 overcrossings and 2 undercrossings elevated from the
o-line and uo-line.

For the bumped images we allow the heights oi, on, and om to be excluded from the o-line. The crossings
um and un are also excluded from the uo line. This structure stays on top of the o-line and is shifted as a
part of σ.

Figure 3.10.

The bumped structure of L.

Lemma 3.11. If L is an almost-alternating conformation, l(t(L)) ≥ l(b(L)).

Proof.We will show that we can start with t(L) and reduce it down to b(L) without lengthening the rope
and thus proving the lemma.

Let us begin with the taut image of L.

Since the image is alternating everywhere except locally around oi and ui we can apply the process
established in Lemma 2.17 and reduce the o-line down using the σ shifting set to the height at which oi is
at the same height as, without loss of generality, om. At this point e(oi) = − 1

2 , e(om) = − 1
2 , but e(ui) ≤ 0

and e(um) ≤ 1. Combining this with remarks 3.7 and 3.8 we see that e(σ) ≤ 0 and we can shift σ down.

We can continue to shift σ down until oi, on, and om are at the o-line. Now considering the edge value of
σ, we see that e({om, oi, on}) = −1 and e(um) ≤ 1 and e(un) ≤ 1. If there are k overcrossings on the o-line
and k − 1 undercrossings on the uo-line all with edge value of 1 then e(σ) = 1 and we cannot shift down.
However we consider the edge value of all the elements of the bumped structure, e({oi, om, on, un, um}) = 1
thus we can shift those crossings up and we achieve the bumped image of L while only reducing ropelength.
�

Now that we have this new configuration, we need to clarify the conditions in which we cannot shift it
down.

Lemma 3.12. Given b(L) with k overcrossings on the o-line. e(σ) > 0 if and only if there are k undercross-

ings on the uo-line and there are 2 overcrossings connected to σ between the o-line and the uo-line.
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Proof.First note that if there are k undercrossings on the uo-line all with edge value of 1 then the edge
value of the bumped structure e{oi, om, on, un, um} = −1, the edge value of all the overcrossings on the o-line
e(ok ∈ o-line) = k +2 and e(σ) = 1. In order to conform to a link the two extra edges extending up from the
uo-line must connect with two overcrossings above the uo-line but below the o-line. This situation is seen in
Figure 3.13 We will show that this is the only condition that e(σ) > 0.

Suppose that there are more than k crossings on the uo-line. Since we cannot have any undercrossings
on the uo-line that do not have their associated overcrossings on the o-line by Remark 3.7, the only crossing
that can increase the number of crossings on the uo-line is ui, which by Remark 3.8 implies that e(σ) = 0. If
there are less than k crossings on the uo-line then clearly e(sigma) ≤ 0. Thus there must be k undercrossings
on the uo-line in order for e(sigma) > 0.

Suppose there are less than 2 overcrossings connected to σ between the o-line and the uo-line. Either
both edges extending up from uo-line connect to the one overcrossing, which implies a disjoint height image,
or one edge connects with an overcrossing on the o-line which implies there are k + 1 crossings on the o-line.
Both cases are contradictions.

Suppose there are more than 2 overcrossings connected to σ between the o-line and the uo-line. This
implies there are more undercrossings on the uo-line than overcrossings on the o-line which contradicts
Remark 3.7.

Therefore, the only conditions in which e(σ) > 0 is when there are k undercrossings on the uo-line all
with edge value of 1 and there are exactly 2 overcrossings connected to σ between the o-line and the uo-line.
Furthermore this shows that e(σ) cannot be greater than 1. �

Figure 3.13.

k undercrossings all with edge value 1 and two crossings between the o-line and uo-line.

Now that we have the bumped image and the conditions in which the bumped image cannot shift we
may now proceed to find the linear lower bound on ropelength for almost-alternating conformations of links.
Let r̃ be the 3-reduced image of L and let 4̄ be the 4-reduced image of L.

Theorem 3.14. L is an almost alternating conformation of a link and without loss of generality un is

connected by an edge to os. l(t(L) ≥ l(r̃(L)).

Proof.By Lemma 3.11 we can reduce t(L) to b(L) where the bumped structure is on the o-line. Since
e(σ) ≤ 1 we cannot shift σ down but we can shift the u-line compliment, σu, up. Recall that σu is the
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shifting set that contains all crossings on the u-line and all crossings 2 units above it on the ou-line. Since un

is connected to os then os is on the o-line. When all undercrossings local to ui are on the u-line and there are
k undercrossings on the u-line then there must be k − 2 crossings on the ou-line unless the h(ou-line) = h(u-
line). Thus by Lemma 3.12 we can always shift σu up until we achieve r̃(L) as seen in Figure 3.15. Since we
achieved this image strictly maintaining or shortening the rope then l(t(L) ≥ l(r̃(L)). �

Figure 3.15.

The 3-reduced image of L, r̃(L).

Theorem 3.16. L is an almost-alternating conformation of a link and all crossings associated with the

almost-alternating pattern are not connected to each other. l(t(L) ≥ l(r̄(L)).

Proof.We can begin by reducing t(L) to b(L) with bumped structures on the o-line and the u-line by
Lemma 3.11 as seen in Figure 3.17. Since e(σ) ≤ 1 and e(σu) ≥ −1, then we cannot shift either closer to
each other so we must consider a different shifting set.

Figure 3.17.

Bumped structures on the u-line and o-line.
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Let ω be the shifting set that contains all elements of σ as well as the two crossings that connect to σ
between the o-line and uo-line and the associated undercrossings that remain a distance ≥ 2 units below
the two overcrossings. If e(ω) > 0 then we can expand ω to include the undercrossings connected to the
two overcrossings and continue to expand the shifting set. Note that if e(ω) = 0 and ui /∈ ω then we have
a disjoint height image which is a contradiction. Since there must be two edges between σ and σu then
e(ω) = −1 as long as ui /∈ ω. Thus we can shift ω down until h(uo-line) = h(ou-line) as seen in Figure 3.18.

Figure 3.18.

h(uo-line) = h(ou-line).

In order to sweep up any crossings that may be at a height between the o-line and u-line that are not on
the uo-line we can do the following two operations. Let τ be the shifting set that contains all overcrossings
on the o-line that are not connected to the bumped structure and all associated undercrossings two units
below. Since all overcrossings have an edge value of −1 we can e(τ) ≤ 0 and we can shift τ down so that all
overcrossings are at the uo line. Since all overcrossings have an edge value of −1 we can e(τ) ≤ 0 Similarly
we can do the same to the u-line now and shift all undercrossings not a part of the bumped structure on the
u-line up. This forces all crossings that are associated to any crossings not a part of any bumped structure
to either the o-line or the uo-line.

Now by Lemma 3.12 if we cannot shift σu up there are 4 overcrossings on the uo-line with crossing number
of −1 when shifting up. Since the crossings need to be consistent with a link the edges must connect with
the crossings below which are only the crossings that are a part of the bumped structure and two crossings
that were between but now must be on the uo-line. The same conditions cannot exist for σ because the 2
crossings required between the uo-line and the o-line must also be on the uo line and connect down must
connect down and thus there must exist crossings on the u-line that are not connected to the 4 overcrossings
not mentioned earlier so there are at least k + 1 crossings on the u-line and only k overcrossings on the
uo-line which contradicts the conditions needed for the bumped image to remain fixed. Therefore, either σ
or σu can shift down/up and we thus can move them closer until we achieve the 4-reduced image of L as seen
Figure 3.19. Since the process strictly decreased or maintained ropelength we have thus proved the result.
�
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Figure 3.19.

The 4-reduced image of L r̄(L).

Now that we have two images of L that have a ropelength less than or equal to the taut image we need to
determine which one is shorter so that we use that image when determining the lower bound on ropelength.

Lemma 3.20. L is an almost alternating conformation of a link, l(r̃(L)) < l(r̄(L)).

Proof.we when we expand out horizontally r̃(L) we get the image seen in Figure 3.21 and when we expand
out r̄(L) we get the image seen in Figure 3.22. Since each edge is a straight line along the z-axis that is equal
to 2 units. we can see that l(r̃(L)) = 4(Cr(L) − 3) and l(r̄(L)) = 4(Cr(L) − 4). Thus l(r̃(L)) < l(r̄(L)). �

Figure 3.21.

Expanded image of r̃(L) and l(r̃(L)) = 4(Cr(L) − 3).
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Figure 3.22.

Expanded image of r̄(L) and l(r̄(L)) = 4(Cr(L) − 4).

Theorem 3.23. L is an almost-alternating conformation of a link. Rop(L) ≥ 4(Cr(L) − 4).

Proof.By Remarks 2.5 2.7 and Theorem 3.16 and Lemma 3.20 we see that Rop(L) ≥ l(h(L)) ≥ l(t(L)) ≥
l(r̄(L)) = 4(Cr(L) − 4).

�

This concludes the almost-alternating case and now we move on to Paired Links.

4 Paired Links

4.1 Algorithm for Converting Knot to Bipartite Graph

This algorithm starts with a minimal crossing projection of a link and produces a bipartite graph that gives
us the needed vocabulary to continue in the same way as Shahla’s proof.

Definition 4.2. A Maximal Overpass is a section of an arc that cannot be extended any further in
order to incorporate additional overcrossings. simmilarly a Maximal Underpass is a section of an arc that
cannot be extended any further in order to incorporate additional undercrossings.

Note: when traversing the knot in a set direction there is an alternating pattern of maximal overpassing
to maximal underpasses

Definition 4.3. A Graph is a collection of edges and vertices where the vertices are points in space and
edges are lines that connect one vertex to another. A Bipartite Graph denoted G(X,Y,E) is a special
type of graph that has two sets of vertices, X and Y , and the only edges E that exist connect a vertex from
X and a vertex from Y . No vertex from X can have an edge to another vertex in X and similarly with
vertices in Y .

Start with a minimal crossing diagram, D of a prime knot L.
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Choose a starting point and direction to traverse D. Label the maximal overpasses and maximal under-
passes sequentially as you traverse the knot. See Figure 4.4 for an example where the maximal underpasses
are highlighted in green and the maximal underpasses are black.

Figure 4.4. Labeled Diagram of 820.

Next, create a bipartite graph GD(X,Y,E) such that X = {x ∈ X|x is a maximal overpass of D} and
Y = {y ∈ Y |y is a maximal underpass of D} as seen below. Edges on the bipartite graph correspond to all
the possible pairings of an overpass with an underpass; these edges represent the crossings of the knot.

Figure 4.5. Bipartite graph GD.

A Matching is a collection of independent edges from our graph. A vertex may only be matched with
one other vertex. The Maximal-Matching representation of a graph is the representation of the graph
in which the largest number of vertices are matched. A graph is called X-Matching if every vertex of the
graph is matched.

Definition 4.6. A diagram is Paired if the maximal-matching of bipartite graph GD is also X-matching. A
Link is Paired if it admits a paired diagram. Similarly, A diagram is Non-Paired if the maximal-matching
of bipartite graph, GD is not X-matching and A Link is Non-Paired if it does not admit a Paired diagram.

Figure 4.7. The Maximal-Matching of G820
.
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Definition 4.8. The Matching Number of a knot, m(L), is the number of matchings on its corresponding
maximal-matching bipartite graph.

In Figure 4.7, we can see that m(L) = 5. Also we can see that every vertex is matched so we know that
820 is a paired knot.

As an example of a non-paired knot consider 819.

Example 4.9. A Non-Paired Knot.

Notice that the vertices 3 and 10 are not matched and any reconfigurations of matching will result in two
vertices that are not matched. The the maximal-matching of 819 is not X-matching and thus non-paired.

4.10 Ropelength For Paired Links

The following proof opperates identically to our earlier proof for alternating Links and is a recreation for
this new class of knots. Instead of crossing number we will find a linear lowerbound in terms of the bridge
number.

The bridge number of a diagram is the number of maximal-overpasses on the diagram.

Let L be a paired conformation with n maximal arcs labeled 1 through n and Let GL be the maximal
matching bipartite graph of L with a matching number of k. Since it has been established that all alternating
knots have a linear lowerbound we shall consider a non-alternating paired knot for our example, the first of
which being 820.
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Example 4.11. Paired Diagram and Associated Maximal-Matching Graph.

As we traverse the link in a fixed direction, we encounter a cyclic ordered sequence of maximal underpasses
and maximal underpasses that is complete when we return to our starting position. The crossings represented
by the maximal matching diagram are the critical points of the graph where an overpass is connected in
a way to an underpass. Let the ith matching correspond to the point where the pi overpass crosses the qi

underpass. and let oi denote the height of pi and ui denote the height of qi.

Figure 4.12. pi and qi, 1 ≤ i ≤ 5.

Definition 4.13. Let L be a Paired Diagram. The height function, h : L → R, is the procection h(x, y, z) = z
which takes every point on L to its z-coordinate. The image of L under the projection, denoted by h(L), is
a path that goes up and down alont the z-axis.

Note that under the projection h(pi) = oi h(qi) = ui so that the values of oi and ui partition the z-axis
into subintervals.

continuing with our example, we now represent the pi and qi by there respective heights oi and ui.The
series of the path runs as o1u4o2u1o3u5o4u3o5u2.

From this point we have the initial conditions for Shahlas paper prepared and her result follows, however,
we will run through the proof step by step with 820 and paired links in regard to matching number as
opposed to the trefoil and alternating links in regard to crossing number.
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Figure 4.14. h(L)with oi and ui, 1 ≤ i ≤ 5.

Observation 1: Note that in alternating conformations the ordering of the hights may be arbitrary as
long as oi > ui. However in non alternating conformations we must take into acount the other crossings of
the diagram that are represented by the edges not in the maximal matching set. Thus we may still create
this hight sceme as Shahla did but we must be careful not to place an overcrossing under an undercrossing
derived from a non critical point.

Observation 2: Since the radius of each strand is 1, there must be at least a distance of 2 seperating oi

and ui. Therefore (oi − ui) ≥ 2.

Remark 4.15. If L is a paired conformation, the ropelenth of L is greater than or equal to the length of
h(L).

To justify this, notice that the projection h does not increase the distance between critical poins, the
arclength of L is at least the length of h(L).

The Goal is to use the height funtion h to obtain a lower bound on the ropelength of L. It is difficult
to measure the length directly so we will simplify it by replacing the arclenghts of h(L) with straight line
segments that connect the overpasses to the underpasses. We will call this new image of L the taught image
of L, denoted by t(L). The edges of t(L) connect successive maximal over- and under-passes. each oi and
ui has exactly two edges incident with it in t(L), and each edge has an endpoint of one overpass and one
underpass.

Figure 4.16. Taught image t(L).
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Note that the straight line segments have been slightly bent for viewing purposes.

Remark 4.17. Let L be a paired conformation. The ropelength of L is at least the length of t(L)

Notice that both of the paths h(L) and t(L) connect the heights oi and uj in the same cyclic order. Since
the arc in t(L) connecting consecutive oi and uj is a straight line, its length is at most the length of the
corresponding piece in h(L). Summing over all consecutive points, the sum of the straight line segments in
t(L) is at most the sum of the arcs from h(L). Using Remark 4.15 we see the result now follows.

In our example in Figure 4.16 Rop(L) ≥ length of h(L) ≥ length of t(L) = |o1 − u4| + |u4 − o2| + |o2 −
u1| + |u1 − o3| + |o3 − u5| + |u5 − o4| + |o4 − u3| + |u3 − o5| + |o5 − u2| + |u2 − o1| by Remark 4.17.

Lemma 4.18. Let L be a paired conformation. The ropelength of L is at least the length of the 2-reduced

image of L.

Proof.We can use the shifting set,σ, that includes all overpasses on the o-line, which is the height of
the highest overpass, and all associated underpasses two units below the o-line. It clearly follows that the
same reasoning that applied to the alternating conformations applies to paired conformation because each
overpass is connected to two underpasses below and each pari of associated passes must be 2 units apart.
Therefore, we can achieve the 2-reduced image of L by strictly reducing or maintaining ropelength and thus
l(t(L)) ≥ l(r(L)). �

Now we have everything we need to prove a linear lower bound on ropelength for paired conformations
in terms of bridge number.

Theorem 4.19. Let L be a paired conformation. Rop(L) ≥ 4br(L).

Proof.By by Remarks 4.15 and 4.17 and Lemma 4.18 we see that Rop(L) ≥ l(h(L)) ≥ l(t(L)) ≥ l(r(L)).
when we consider l(r(L)) we notice that each overpass is connected to two underpasses below and each edge
is at least two units long. Thus l(r(L)) ≥ 4br(L). Therefore, Rop(L) ≥ 4br(L). �

5 Conclusion

This is a recap of all the results we found. In the first section we found that the lower bound on ropelength
for alternating conformations is 4Cr(L), which is OCr(L). In the second section we found that the lower
bound on ropelength for almost-alternating conformations is 4(Cr(L) − 4) which is OCr(L). In the third
section we found that the lower bound on ropelength for paired conformations is 4(br(L)) which is Obr(L).
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