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Abstract

This paper involves looking at when model spaces are decomposable.
Building off of some previous results, we show when a full model space is
indecomposable. Given a vector space, metric, and an algebraic curvature
tensor, with stipulations on how (V, R) decomposes, we can show that the
full model space (V, 〈·, ·〉, R) is indecomposable. The next part of the paper
discusses when (V, Rφ ± Rψ) is decomposable. One way to decompose a
model space is to consider ker(Rφ±Rψ) (This is the case in Theorem 2.1).
The dim(ker(Rφ ± Rψ)) is considered in this case in order to eventually
know how the weak model space can decompose.
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1 Introduction

I started this project by looking at a full model space, (V, 〈·, ·〉, R), and worked
with indecomposability of that model space. Then my project took a different
route; I began to look at a weak model space, (V,Rφ ± Rψ), mostly with a
positive definite φ. This is where my more interesting results were found dealing
with the dimension of ker(Rφ ±Rψ). The main point of the project was to use
ker(Rφ ±Rψ) to come up with a decomposition of V.
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Knowing this next definition will help understand what a model space con-
sists of.

Definition 1.1 Let V be a vector space and R : V ×V ×V ×V → R satisfying:

1. R is linear in each slot

2. R(x, y, z, w) = −R(y, x, z, w)

3. R(x, y, z, w) = R(z, w, x, y)

4. (Bianchi Identity) R(x, y, z, w) + R(y, z, x, w)+ R(z, x, y, w) = 0

Then R is an algebraic curvature tensor.

Definition 1.2 If φ is a symmetric, bilinear form which is positive definite then
a basis {e1, e2, . . . , ek} is called orthonormal if φ(ei, ei) = 1 and φ(ei, ej) = 0
(for i 6= j).

Definition 1.3 If φ is a symmetric bilinear form, then φ is nondegenerate if
for all v ∈ V , v 6= 0, there exists w ∈ V such that, φ(v, w) 6= 0.

If φ is positive definite then this implies that φ is nondegenerate, although
the converse is not true. In the ”Future Work” section, we discuss open questions
when considering φ is nondegenerate.

Definition 1.4 We can define an algebraic curvature tensor, R, on some sym-
metric bilinear form, φ by:
Rφ(x, y, z, w) = φ(x,w) · φ(y, z) − φ(x, z) · φ(y, w)

We will use the next definition in our theorem to show when a full model
space is indecomposable.

Definition 1.5 Let V be a vector space and let 〈·, ·〉 be a metric on V . Let
W ⊆ V and x, y ∈ W . W is totally isotropic if 〈x, y〉 = 0, ∀ x, y ∈ W .

Definition 1.6 (V, 〈·, ·〉, R) is a full model space, which means that there is
a vector space, V, with a metric, 〈·, ·〉, and an algebraic curvature tensor, R.
(V,R) is a weak model space, which means that there is a vector space, V,
with an algebraic curvature tensor, R.

Knowing what a model space is, we can define what it means for a model
space to be decomposable.

Definition 1.7 Let V be a vector space, with R, an algebraic curvature tensor
on V, along with a nondegenerate metric, 〈·, ·〉. If V = V1 ⊕ V2, R = R1 ⊕R2,
and 〈·, ·〉 = 〈·, ·〉1 ⊕ 〈·, ·〉2 where Ri|Vj

= 0 for i 6= j, then (V, 〈·, ·〉, R) is said to
be decomposable. If (V, 〈·, ·〉, R) is not decomposable, then (V, 〈·, ·〉, R) is said
to be indecomposable (without the metric, one would define decomposability
and indecomposability for a weak model space in the same way).
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2 Indecomposability

In order to show that (V, 〈·, ·〉, R) is indecomposable, the definitions of key sub-
spaces are listed below.

ker(R) = {v ∈ V |R(v, η1, η2, η3) = 0, ∀ ηi ∈ V }

V/ker(R) = {v + ker(R)|v ∈ V }

ker(R) is a linear subspace of V .
If v ∈ ker(R), R(v, x2, x3, x4) = 0 for all xi ∈ V . Also, v can be located in

any of the four slots because of the symmetries of an algebraic curvature tensor.

Theorem 2.1 ([?]) Let M := (V, 〈·, ·〉, R). If:

1. M̄ = (V/ker(R), R̄) is indecomposable, and

2. ker(R) is totally isotropic,

then M is indecomposable. [?]

Lemma 2.1 If V is a vector space with R, an algebraic curvature tensor, on
V , let V/ker(R) = V̄ and define, π∗R̄ = R, then R̄ is well-defined.

Proof . In order to show that R̄ is well-defined we must show that if πv = πw,
for v, w ∈ V , then R(v, x1, x2, x3) = R(w, x1, x2, x3) for all xi ∈ V . Let πv = πw.
Since π := V → V̄ , then v−w ∈ ker(R). This implies, R(v−w, x2, x3, x4) = 0,
for all xi ∈ V . Since R is an algebraic curvature tensor,
R(v − w, x2, x3, x4) = 0 ⇒ R(v, x2, x3, x4) −R(w, x2, x3, x4) = 0 ⇒
R(v, x2, x3, x4) = R(w, x2, x3, x4). Therefore, R̄ is well-defined.

Lemma 2.2 If V is a vector space with R, an algebraic curvature tensor, on
V . If V = V1 ⊕ V2 and R = R1 ⊕ R2, let V/V1 = V̄2 and define, π∗R̄2 = R,
then R̄2 is well-defined.

Proof Since π∗R̄2 = R, by definition, R̄2(πx1, πx2, πx3, πx4) = R(x1, x2, x3, x4).
In order to show that R̄2 is well-defined we must show that if πv1 = πw1

then R(v1, x1, x2, x3) = R(w1, x1, x2, x3) for all xi ∈ V
Let πv1 = πw1. Since π := V → V̄2, then π(v) = v + V1 for all v ∈ V .

If v + V1 = 0, then this implies that v ∈ V1. Having πv1 = πw1, implies that
v1 − w1 ∈ V1 = ker(π). So therefore, R̄2(πv1 − πw1, x2, x3, x4) =
R(v1 − w1, x2, x3, x4) = 0 for all xi ∈ V . Since R is an algebraic curvature
tensor,

R(v1−w1, x2, x3, x4) = R(v1, x2, x3, x4)−R(w1, x2, x3, x4) = 0 Which is the
same as, R(v1, x2, x3, x4) = R(w1, x2, x3, x4). Therefore, R̄2 is well-defined.
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Theorem 2.3 Let (V,R) ∼= (W,S). (V,R) is (in)decomposable if and only if
(W,S) is (in)decomposable.

Proof Let φ be a vector space isomorphism defined by: φ : V → W and
let (V,R) be decomposable by, (V,R) = (V1, R1) ⊕ (V2, R2). Since φ is an
isomorphism between V and W , then V ∼= W , and φ∗S = R.

Set Wi = φ(Vi). It needs to be shown that W = W1 ⊕W2. Let w ∈ W , then
there exists v ∈ V such that φ(v) = w, since φ is onto. v = v1 + v2 (where
vi ∈ Vi), since v ∈ V and V is decomposable. w = φ(v) = φ(v1 + v2) =
φ(v1) + φ(v2), where φ(vi) ∈ Wi. Then w = φ(v1) + φ(v2) ∈ W1 +W2, for all
w ∈ W . It needs to be shown that W1 ∩W2 = {0} in order for W to decompose
as stated. Assume 0 6= w ∈ W1 ∩ W2. Then there exists v1 ∈ V1, v2 ∈ V2,
such that φ(v1) = φ(v2) = w. Since φ is one-to-one, v1 = v2 = 0 = w, but
w 6= 0, which means that W1 ∩W2 = {0}. Therefore, W is decomposable as
W = W1 ⊕W2.

Now it must be shown that there exists a decomposition, S = B1 ⊕ B2,
for some algebraic curvature tensors, Bi on Wi. Let φ(vi) = wi. Then,
S(w1, w2, w3, w4) = S(φ(v1), φ(v2), φ(v3), φ(v4)) = R(v1, v2, v3, v4) = 0 There-
fore, S decomposes.

∴ if (V,R) ∼= (W,S), (V,R) decomposes if and only if (W,S) decomposes.

By weakening the requirements in theorem 2.1 and following the proof, a
stronger theorem was created.
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Theorem 2.4 Let V be a vector space and let R be an algebraic curvature
tensor on V along with 〈·, ·〉, a metric on V. If V = V1 ⊕ V2 and R = R1 ⊕R2,
such that:

1. (V2, R2) is indecomposable, and

2. V1 is totally isotropic,

then (V, 〈·, ·〉, R) is indecomposable.

Proof Suppose that V = W1 ⊕W2, where each Wi is a nontrivial subspace of
V . Let π : V → V/V1, and V̄2 = V/V1. We know that π(v) = v + V1 ∀ v ∈ V
and ker(π) = V1.

Define R̄2 on V̄2 by π∗R̄2 = R. By Lemma 2.2, we know that R̄2 is well
defined.

By Theorem 2.3, if it can be shown that (V2, R2) ∼= (V̄2, R̄2), then (V̄2, R̄2)
is indecomposable and a contradiction will arise.

Define φ : V2 → V̄2 by φ(v) = v + V1 ker(φ) = {v ∈ V2|v ∈ V1} = {0}
To show φ is onto, define: ρ2 : V → V2 by ρ2(v1 + v2) = v2 for all vi ∈ Vi

and v1 + v2 ∈ V1 ⊕ V2.
φ(ρ2(v)) = v + V1 for all v ∈ V
To show φ is one-to-one, let vi ∈ V2 and let φ(v1) = φ(v2) to show that

v1 = v2. φ(vi) = vi + V1. v1 + V1 = v2 + V2 ⇒ v1 − v2 ∈ V1, and since
v1, v2 ∈ V2, v1 − v2 ∈ V2. This means that v1 − v2 ∈ V1 ∩ V2 but V1 ∩ V2 = {0}
so v1 − v2 = 0 ⇒ v1 = v2. Thus, φ is one-to-one.

Therefore φ is a vector space isomorphism and thus, V2
∼= V̄2 Show that

φ∗R̄2 = R2. Let each vi ∈ V2, then

φ∗R̄2(v1, v2, v3, v4) = R̄2(φ(v1), φ(v2), φ(v3), φ(v4))

= R̄2(v1 + V1, v2 + V1, v3 + V1, v4 + V1)

From earlier: π(v) = v + V1,

= R̄2(πv1, πv2, πv3, πv4)

= R(v1, v2, v3, v4)

= R2(v1, v2, v3, v4)

Therefore, (V2, R2) ∼= (V̄2, R̄2).
Consider W̄1 = πW1 and W̄2 = πW2 where V = W1 ⊕W2 and R = A1 ⊕A2

Let us look at W̄1 ∩ W̄2. Suppose 0 6= w̄ ∈ W̄1 ∩ W̄2. Then, there exists
wi ∈ Wi such that, w̄ = πw1 = πw2, where 0 6= wi ∈ Wi. This implies that
w1 − w2 ∈ ker(π) = V1. Using Theorem 2.3, since (V2, R2) ∼= (V̄2, R̄2), then
(V̄2, R̄2) is indecomposable. This implies that ker(R̄2) = 0.

Since πw2 6= 0 then w2 /∈ V1, which implies there exists 0 6= η̄1, η̄2, η̄3 ∈ V̄2

such that R̄2(w̄2, η̄1, η̄2, η̄3) 6= 0. We also know that R̄2(w̄1 − w̄2, η̄1, η̄2, η̄3) = 0
since w1 − w2 ∈ V1.
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Therefore, 0 6= R̄2(w̄1, η̄1, η̄2, η̄3) = R̄2(w̄2, η̄1, η̄2, η̄3). η̄i ∈ V̄2 means
η̄i = πηi where ηi ∈ V and more specifically ηi ∈ V2.We know, R̄2(w̄1, η̄1, η̄2, η̄3) =
R(w1, η1, η2, η3) and R̄2(w̄2, η̄1, η̄2, η̄3) = R(w2, η1, η2, η3)

Then we can say, 0 6= R(w1, η1, η2, η3) = R(w2, η1, η2, η3) We would like to
split up each ηi into its components in relation to W1 and W2 since each
ηi ∈ V . ηi = η1

i + η2

i where ηji ∈ Wj .
0 6= R(w1, η

1
1 +η2

1 , η
1
2 +η2

2 , η
1
3 +η2

3) = R(w1, η
1
1 , η

1
2 , η

1
3), since R(w1, η

2
1 , ∗, ∗) =

0 because w1 ∈ W1 and η2

1
∈ W2. 0 6= R(w1, η

1

1
, η1

2
, η1

3
) = R(w2, η

1

1
, η1

2
, η1

3
) = 0,

since R̄2 is well-defined and w2 ∈ W2 and η1

i ∈ W1. This is a contradiction,
which implies that W̄1 ∩ W̄2 = {0}. This means that W1 ⊕W2 descends to the
decomposition for V̄2 = W̄1 ⊕ W̄2.

Now we show that there exists Ā1, Ā2 on W̄1, W̄2, respectively, such that,
R̄2 = Ā1 ⊕ Ā2 and R̄2(W̄1, W̄2, x, y) = 0 (for any x, y ∈ V ). Let π∗Āi = Ai (to
show Āi is well defined, see Lemma 2.2). To show the first part, R̄2(x̄, ȳ, z̄, w̄) =
R(x, y, z, w) = A1(x, y, z, w) + A2(x, y, z, w) = Ā1(x̄, ȳ, z̄, w̄) + Ā2(x̄, ȳ, z̄, w̄)
Therefore, R̄2 = Ā1 + Ā2

To show the second part, Let wi ∈ Wi, Ā1(w̄1, w̄2, x, y) + Ā2(w̄1, w̄2, x, y) =
R̄2(w̄1, w̄2, x, y) = R(w1, w2, x, y) = A1(w1, w2, x, y)+A2(w1, w2, x, y) = 0 There-
fore, R̄2 decomposes into Ā1 ⊕ Ā2.

We know that (V̄2, R̄2) is indecomposable, which means that either W̄1 or
W̄2 is trivial. WLOG assume W̄1 is trivial. Let w̄1 ∈ W̄1. πw1 = 0 ⇒
w1 ∈ ker(π) = V1, for all wi ∈ W1, which means W1 ⊆ V1. V1 is totally
isotropic, which arises a contradiction since we assumed that V = W1⊕W2 was
a nontrivial decomposition of V .

Example 2.5 Let {e1, e2, e3, e4} be a basis for V, a four dimensional vector
space. Let V1 = span{e1, e2}, V2 = span{e3, e4}, so that V = V1 ⊕ V2. Let
vi ∈ Vi, for i = 1, 2. Let 〈·, ·〉 be a nondegenerate inner product on V, such that
〈e1, e3〉 = 〈e2, e4〉 = 1. Set φ(e3, e3) = φ(e4, e4) = 1. Set Rφ = R2.

With this metric, (V2, R2) is indecomposable. Also, V1 is totally isotropic. By
our theorem, (V, 〈·, ·〉, R) is indecomposable. This is also an interesting example
because R1 is not explicitly given, which means that there is a lot of variation
on what R1 can be.

3 Ker(Rφ ± Rψ)

A way to decompose a model space, (V,R) is to look at ker(R). In this section
we look at the weak model space, (V,Rφ±Rψ), where φ, ψ ∈ S2(V ∗). We start
with a φ that is positive definite in order to be able to diagonalize ψ with respect
to φ easily. We start looking at dim(ker(Rφ ± Rψ)) in order to determine how
(V,Rφ ±Rψ) can decompose using ker(Rφ ±Rψ).

Theorem 3.1 Let V be a vector space with R = Rφ±Rψ, an algebraic curvature
tensor, on V. If φ is positive definite, and dim(V ) = n, where n ≥ 3, then
dim(ker(Rφ ±Rψ)) = 0, 1, or n.
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Proof Let {e1, e2, . . . , en} be a basis for V. Diagonalize ψ with respect to the
positive definite form, φ, so that the only nonzero entries of ψ on this basis are
ψ(ei, ei) = λi.

Let v ∈ ker(Rφ ± Rψ), where v 6= 0. Let v =
∑
ciei, where ci ∈ R. Since v

is nonzero, there exists l, such that cl 6= 0.

Rφ(v, ej , ej , el) ±Rψ(v, ej , ej, el) = 0

for some j 6= l. Therefore,

(φ(v, el)φ(ej , ej) − φ(v, ej)φ(ej , el)) ± (ψ(v, el)ψ(ej , ej) − ψ(v, ej)ψ(ej , el)) = 0

cl ± λjλlcl = 0

cl(1 ± λjλl) = 0

For i 6= j, i 6= l, since dim(V ) ≥ 3, there exists i such that i, j are distinct, and
so, Rφ(v, ej , ej, el) ±Rψ(v, ej , ej , el) = 0, and for the same reasoning,

cl(1 ± λiλl) = 0

Since cl 6= 0,
1 ± λjλl = 0 = 1 ± λiλl

λl(λj − λi) = 0

So either λl = 0 or λi = λj ∀ i 6= l, j 6= l, i 6= j.
If λl = 0 then we know that cl = 0 (since cl(1 ± λjλl) = 0), but cl 6= 0, which
means λl 6= 0. Therefore, λi = λj , for all i, j 6= l

Let λi = λ, for all i 6= l. Then we know that

cl(1 ± λλl) = 0

1 = ∓λλl ⇒ λλl 6= 0,

∓λl =
1

λ

We arrange the basis so that this exceptional index l = 1. Then ψ(e1, e1) = ∓ 1

λ

and ψ(ei, ei) = λ for all i 6= 1.

Rφ(c1e1, ej , ej, e1) ±Rψ(c1e1, ej, ej , e1) = c1 ± c1λ1λ

= c1(1 ± (∓
1

λ
)λ

= c1(1 ± (∓1))

= 0

We know that c1e1 ∈ ker(Rφ±Rψ), which means that dim(ker(Rφ±Rψ)) ≥ 1
For i, j 6= l and i 6= j,

Rφ(ei, ej , ej, ei) ±Rψ(ei, ej, ej , ei)

= φ(ei, ei)φ(ej , ej) ± ψ(ei, ei)ψ(ej , ej)

= 1 ± λ2
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In order for 1±λ2 = 0, λ = ±1 only in considering Rφ−Rψ. The next case
will deal with what happens when λ = ±1. As long as ψ has the form from
above, and λ 6= ±1, then dim(ker(Rφ ±Rψ)) = 1.

Let v =
∑
ciei ∈ ker(Rφ ± Rψ), and there exists cl, cp 6= 0 (v 6= 0), where

l 6= p. For j 6= l, j 6= p,

Rφ(v, ej , ej , el) ±Rψ(v, ej , ej, el) = 0 = Rφ(v, ej , ej, ep) ±Rψ(v, ej , ej , ep)

cl ± clλlλj = 0 = cp ± cpλpλj

Since cl 6= 0, cp 6= 0 then,

1 ± λlλj = 1 ± λpλj

±λlλj = ±λpλj

λl = λp

For i 6= j, i, j 6= l,

Rφ(v, ej , ej, el) ±Rψ(v, ej , ej , el) = 0 = Rφ(v, ei, ei, el) ±Rψ(v, ei, ei, el)

cl ± clλlλj = 0 = cl ± clλlλi

λi = λj

Let λi = λ. Since p 6= i, l, then by the same argument, λp = λi = λ. Since
λl = λp, then λl = λ. All λj = λ, which means ψ = λφ.

We also know that for all j, l, 1 ± λjλl = 0 ⇒ 1 ± λ2 = 0 ⇒ ∓λ2 = 1. We
cannot have a nonzero kernel for ker(Rφ + Rψ) in this case because −λ2 6= 1,
for all λ ∈ R. So if we are in the case of Rφ+Rψ, then dim(ker(Rφ+Rψ)) = 0.
Otherwise, λ = ±1, which means ψ = ±φ.

When ψ = ±φ, then Rφ −Rψ = Rφ −R±φ = 0 = Rφ − (±1)2Rφ =
Rφ −Rφ = 0 which is the zero tensor, so dim(ker(Rφ −Rψ)) = dim(V ) = n.

Theorem 3.2 Let V be a vector space and let φ, ψ ∈ S2(V ∗), and R = Rφ±Rψ
be an algebraic curvature tensor on V . If dim(V ) = n, then
dim(ker(Rφ ±Rψ)) 6= n− 1.

Proof (by contradiction)
Let V be a vector space of dimension n and let R = Rφ±Rψ be an algebraic

curvature tensor on V . Suppose dim(ker(Rφ±Rψ)) = n−1. Let V̄ = V/ker(R),
which means dim(V̄ ) = 1. Define R̄ as π∗R̄ = R, this can be shown to be well-
defined (see Lemma 2.1). Since dim(V̄ ) = 1, R̄ = 0 It will now be shown that R
is the zero tensor, thus contradicting the assumption. Let x, y, z, w ∈ V . Show
R(x, y, z, w) = 0.

R(x, y, z, w) = π∗R̄(x, y, z, w)

= R̄(πx, πy, πz, πw)

= 0

Which means R is the zero tensor, which means dim(ker(R)) = n, thus contra-
dicting the statement that dim(ker(R)) = n− 1.
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4 Future Work

The next step on the first project is to figure out how to weaken the hypothesis
that V1 is totally isotropic. The assumption could instead involve the rank of
V1, and somehow come up with a contradiction.

One needs to go back to the beginning of the theorem 3.1 and see where this
can go. If one knows that φ is positive definite and the dimensions of the kernel,
what does that get in relation to the decomposition of (V,Rψ ±Rψ)?

Is there any relation between, ker(Rφ ±Rψ), ker(Rφ) ∩ ker(Rψ),
ker(φ) ∩ ker(ψ)? If φ is positive definite, then is ker(ψ) ⊇ or ⊆ ker(Rφ ±Rψ)?

One should look for semi-positive definite forms of φ and using projection
maps to create a decomposition on V and figure out what I can do from there.
This also requires seeing if you can extend a basis from one subspace to the
whole thing.

Look at the Lorentzian case, where φ(e1, e1) = −1, φ(ei, ei) = 1, for i 6= 1.
Determine how this affects dim(ker(Rφ±Rψ)). Partial results have been found
in dimension 3.

Look at nondegenerate forms of φ, such as having φ have signature (p, q).
Another thing to continue with is working with Jordan blocks. Using the

paper that deals with different cases, I need to see what I would be able to use
from there in order to figure out what happens to ker(Rφ ± Rψ) as well as a
decompostion of (V,Rφ ±Rψ).

9



Acknowledgements

I would like to thank Dr. Rolland Trapp and Dr. Corey Dunn for all of their
help and support throughout this program as well as my fellow participants in
the REU program; this program would not have been the same without each
of them. I would also like to thank my parents and Christopher for always
supporting me in my work and in my endeavors. This project made possi-
ble by NSF-REU grant DMS-0850959 and by California State University: San
Bernardino.

References

[1] P. Bueken, On curvature homogeneous three-dimensional Lorentzian mani-
folds, Journal of Geometry and Physics 2, 349-362 (1997).

[2] C. Dunn, A new family of curvature homogeneous pseudo-Riemannian man-
ifolds, to appear in the Rocky Mountain Journal of Mathematics (2009).

[3] P. Gilkey, The Geometry of the Riemannian Curvature Tensor, Imperial
College Press, London (2007).

[4] P. Gilkey, The Geometry of Curvature Homogeneous Pseudo-Riemannian
Manifolds, ICP Advanced Texts in Mathematics-Vol. 2 (2007).

[5] S. Ahdout, S. Rothman, Reduction to normal form of a self-adjoint linear
transformation with respect to a pseudo-unitary or a pseudo-euclidean inner
product, Revista Colombiana de Matemáicas 40, 15-29 (2006).
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