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Abstract

We define a class of knots called paired knots and show that for any
paired conformation, K, with diagram, D, R(K) ≥ 4br(D). We then
show that the connect sum of two paired knots is paired and that we can
cable a paired knot such that the resulting (p, q)-cable knot is paired.

1 Introduction

A knot is a simple closed curve in three space. Any given knot has many
different diagrams that can represent it. These diagrams are called projections.
The crossing number of a knot, K, is the least number of crossings over all
projections of K. An alternating knot is a knot with a projection that has
crossings that alternate between over and under as we traverse the knot in a
fixed direction. An overpass is a sub arc of the knot that goes over at least one
crossing but never goes under a crossing. A maximal overpass is an overpass
that could not be made any longer (See Figure 2.1). The bridge number

of a knot diagram, denoted br(D) is the number of maximal overpasses in the
projection. [1]

Figure 2.1: On the left we have an overpass. On the right we have a maximal
overpass.
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• Example: One projection of the figure eight knot has a bridge number of
4 (See Figure 2.2)

Figure 2.2: The figure eight knot with its maximal overpasses in bold. The
bridge number of this diagram is four.

The ropelength of a knot, K, denoted R(K), is the ratio of the arc length
of K, denoted l(K), and the injectivity radius of K, denoted r(K). That is,

R(K) = l(K)
r(K) . It is known that ropelength is scale invariant. Therefore, without

loss of generality, we can assume r(K) = 1. Then R(K) = l(K).
An unsolved problem in knot theory is finding a linear lower bound on the

ropelength of a knot. In [3] Sadjadi proves that R(K) ≥ 4cr(K) for any alternat-
ing conformation. We will define a new class of knots called paired knots and use
the methods in [3] to generalize Sadjadi’s result and show that R(K) ≥ 4br(D)
for any paired conformation. We then further investigate paired knots to see
how they behave under the operations connect sum and cabling.

2 Finding a Paired Knot

Before we can study paired knots we need to know how to decide whether or
not a knot is paired. We will combine knot theory and combinatorics to do so.

In combinatorics, a graph, is defined as G = (V,E) where V is a finite set
of vertices and E is a set of edges joining different pairs of distinct vertices. A
bipartite graph is defined as G = (X,Y,E) where G is an undirected graph
with two vertex sets X and Y with all edges of the form (x, y) where x ∈ X

and y ∈ Y . A a matching in a graph is a set of independent edges with no
common end points. A X-matching is a matching involving all vertices in X.
A maximal matching is a matching of the largest possible size (See Figure
2.3). We will define the maximal matching number, denoted m(G), of a
graph, G, by the number of edges in a maximal matching. [2]
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Figure 2.3: A bipartite graph with five vertices and six edges. The edges
included in the maximal mathcing are in bold. The maximal matching number
of this graph is four. This is not a X-matching since not all of the vertices in X

are incident with a bold edge.

We now associate a bipartite graph to a diagram that contains the essential
crossing information. Assume we are given a diagram, D, of a knot, K. We
begin by assigning an orientation to D. Let n = br(D) Label some maximal
overpass 1. Following the direction that D is oriented, we label the adjacent
maximal underpass 2. We continue in this manner until all maximal overpasses
and underpasses have been labeled, 1 through 2n. Now, let G = (X,Y,E) where
X is the set of all maximal overpasses, Y is the set of all maximal underpasses.
Our set of edges, E, join maximal overpasses and maximal underpasses at their
corresponing crossings. So E is the set of all crossings in D. Note that the
number of maximal overpasses is equal to the number of maximal underpasses,
that is, the size of X is equal to the size of Y .

Now we need to find the maximal matching of G. We will highlight the edges
of our bipartite graph that we want to include in the matching. We start by
selecting any vertex that is incident with only one edge. Call the vertex v1 and
the edge e1. We highlight this edge and move to the other vertex it is incident
with. Call this vertex v2. If v2 is only incident with e1 then we’re finished with
these vertices. If v2 is incident with another edge, e2, then we follow this edge to
its other vertex, v3, but we do not highlight it, since then v2 would be incident
with two highlighted edges, contradicting the defintion of a matching. If v3 is
only incident with e2 then we are finished with these vertices. If v3 is incident
with another edge, e3, we highlight this edge and move to the next vertex, v4.
We continue in this manner until we reach a vertex that is incident with only
one edge. Each time we reach a vertex that is incident with only one edge we
move to a new vertex that is incident with only one edge and we repeat these
steps. We are done when we cannot highlight anymore edges without having
a vertex incident with more that one highlighted edge. Note that if there are
no vertices on the graph incident with only one edge then we can start at any
vertex and follow these steps to find our maximal matching.

• Example: We can use the minimal crossing diagram for the 820 knot to
illustrate this process. We label the maximal overpasses 1, 3, 5, 7, 9 and
the maximal underpasses 2, 4, 6, 8, 10 (See Figure 2.4). We then construct
the corresponding bipartite graph (See Figure 2.5).
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Figure 2.4: The 820 knot with its maximal overpasses and underpasses labeled
1 through 2n where n = br(D).

Figure 2.5: The bipartite graph corresponding to the 820 knot where X is the
set of all maximal overpasses and Y is the set of all maximal underpasses.
Notice that this is an X-matching graph since every vertex in X is incident

with one independent edge.

Definition 2.1 A paired diagram is a diagram, D, that admits a bipartite
graph G whose maximal matching is a X-matching.

Definition 2.2 A paired knot is any knot that admits a paired diagram.

Notice that in any X-matching bipartite graph, m(G) is equal to the order of X

and, in our graphs, the order of X is equal to the number of maximal overpasses.
So, by definition of bridge number, m(G) = br(D) for all paired diagrams.

• Example: All alternating knots are paired. Since each maximal overpass
and maximal underpass has length one we can simply pair each overpass
with the only underpass it passes over.

• Example: Looking at the minimum crossing diagrams for the non-alternating
8 and 9 crossing knots we see that 820, 821, 942, 944, 945, 946, 947, 948, and
949 are paired diagrams while 819 and 943 are not.
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• Example: A torus is a surface generated by rotating a circle about an
axis that is in the same plane as the circle but does not intersect it. A
torus knot is any knot that lies on the unknotted torus without crossing
over or under itself while on the torus. A meridian curve is a curve
that runs once the short way around the torus. A longitude curve is a
curve that runs once around the torus the long way. Every torus knot is a
(p, q)-torus knot for some relatively prime integers p and q where p is the
number of meridian curves and q is the number of longitude curves. [2]

All torus knots are paired. We can illustrate this with a (5, 7)-torus knot.
We start at the left most crossing on the first overpass we encounter and
label it 1. We label the next crossing to the right 2. We continue in this
manner until all the crossings on the overpass are labeled 1 through 4.
We label every overpass in this manner. Then we can see that each of
our maximal underpasses are also labeled 1 through 4 with no numbers
repeating. So we can pair this knot at every crossing labeled 1 since
every maximal overpass and maximal underpass is only labeled 1 once
(See Figure 2.3)

Figure 2.6: The (5, 7)-torus knot is paired.

3 Ropelength of Paired Knots

In [1] Sadjadi proves that for an alternating conformation of a knot K, R(K) ≥
4Cr(K). Now we seek to use paired knots to generalize her argument and show
R(K) ≥ 4br(D) for any paired knot, K, with diagram, D.

Definition 3.1 A paired conformation is a knot, K, which admits a paired
diagram, D, in the z-direction and has r(K) = 1.

Let K be a paired conformation with diagram, D, and G be its corresponding
bipartite graph. On G label each pair of vertices that are connected by an edge
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in the maximal matching (pi, qi) where pi ∈ X and qi ∈ Y . Then, in D, pi and
qi will share the same x and y coordinates. Let oi and ui denote the height of
pi and qi, respectively.

• Example: On our bipartite graph for the 820 graph we can label our pairs
of vertices (p1, q1) through (p5, q5). (See Figure 3.1). Back on the knot
diagram, we label the overpasses and underpasses accordingly (See Figure
3.2).

Figure 3.1: The bipartite graph corresponding to the 820 knot with its pairs of
vertices labeled (p1, q1) through (p5, q5).

Figure 3.2: The 820 knot with its maximal overpasses and underpasses labeled
according to the bipartite graph in Figure 3.1.

Definition 3.2 Let K be a paired conformation with diagram, D. Define the
height function h : K → R by h(x, y, z) = z. That is, h sends every point on K

to its z-coordinate.

Notice that under this definition h(pi) = oi and h(qi) = ui. Since we previously
defined the radius of each of our strands to be one we know that for each pairing,
oi > ui, oi and ui must be at least two units apart. That is, (oi − ui) ≥ 2.

• Example: We can represent the height function of the 820 knot by plac-
ing each overpass above its corresponding underpass on the z-axis and
connecting the strands accordingly (See Figure 3.3).
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Figure 3.3: The 820 knot projected onto the z-axis.

Since the projection h does not change the distance between any points in K

we know that the arc length of K must be at least the length of h(K). Thus,
R(K) ≥ l(h(K)).

Because the length of h(K) is often hard to measure we need find a bet-
ter way to measure the length of our intervals. In [1] Sadjadi replaces the arc
lengths of h(K) with straight line segments connecting overcrossing and under-
crossings. She calls this the taut image of K, denoted t(K). We will use this
taut image as well. However, in this case line segments will connect overpasses
and underpasses. In t(K), an edge is the line segment connecting succesive
overpasses and underpasses. Notice that each oi and ui is incident with exactly
two edges. Since the edges in t(K) are straight lines it must be true that the
length of h(K) is at least the length of t(K). In turn, R(K) ≥ l(t(K))

• Example: In Figure 3.4, we have adjusted our height function into the
taut image of K. Note that the edges in the figure have bent slightly in
order to be visible.

Figure 3.4: The taut image of the 820 knot.

Now that we have established alternating pairs of overpasses and underpasses
that are each incident with two edges in the taut image of K our argument
follows directly from [1]. We reproduce the arguments here for completeness.
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Definition 3.3 Let z0 be any height on the z-axis. A pair (oi, ui) is split if z0

lies between the pairing. That is, oi ≥ z0 ≥ ui. Otherwise the pair is unsplit.

Lemma 3.1 Let K be a paired conformation with diagram, D, z0 a particular
height on the z-axis and b the number of pairs (oi, ui) split by z0. In t(K) at
least 2b edges must cross z0.

Proof: Let a be the number of unsplit pairs above z0, b be the number of pairs
split by z0, and c be the number of pairs below z0. Note that a + b + c = n.
The case that results in the least number of edges crossing z0 occurs when all
the overpasses above z0 connect with underpasses above z0. There are a + b

overpasses above z0 and a underpasses above z0. Thus there are 2(a + b) edges
incident with the overpasses above z0 and 2a edges incident with the underpasses
above z0. So 2(a + b) − 2a = 2b edges remain above z0. Therefore at least 2b

edges must cross z0 to connect with the undercrossings below. ⊓⊔

Lemma 3.2 Let K be a paired conformation with diagram, D, and hi, 1 ≤ i ≤
2n, a representation of the overpass and underpass heights in descending order.
The length of t(K) ≥

∑2n−1
m=1 2bm(hm − hm+1).

Proof: Represent the overpass and underpass heights as an ordered sequence of
points h1, ..., h2n, along the z-axis. Define bm to be the number of pairs split by
the point z0 on the z axis between the point hm and hm+1. Then on the interval
[hm, hm+1] there are at least 2bm edges spanning the interval. So the length of
the edges on this interval must be at least 2bm(hm−hm+1). Since there are 2n−1

total intervals the total length of the edges is at least
∑2n−1

m=1 2bm(hm − hm+1).

That is t(K) ≥
∑2n−1

m=1 2bm(hm − hm+1). ⊓⊔

• Example: Represent the heights o1, o2, u1, u2, o3, u3, o4, u4, o5, and u5 as
h1, ...h2n, 1 ≤ n ≤ 5, along the z-axis. Let z0 intersect every interval
between heights hm and hm+1 (See Figures 3.5, 3.6, 3.7, 3.8).

Lemma 3.3 If K is a paired conformation, then
∑2n−1

m=1 2bm(hm − hm+1) =∑n

i=1 2(oi − ui)

Proof: Let oi and ui be represented by hx and hy respectively. The interval
[hx, hy] can be partitioned into smaller heights hx ≥ hx+1 ≥ ... ≥ hy−1 ≥ hy.

Then the length of the interval [oi, ui] is equal to
∑y−1

j=x(hj −hj+1). So we have
∑n

i=1(oi−ui) =
∑n

i=1(
∑y−1

j=x(hj−hj+1)). Now notice that the height hm−hm+1

occurs in the expansion of oi − ui if and only if the interval [hm, hm+1] splits
the pair (oi, ui). So the length hm − hm+1 occurs in the double sum exactly

bm times. Therefore
∑n

i=1(oi −ui) =
∑2n−1

m=1 bm(hm −hm+1). Multiplying both

sides be two we find
∑n

i=1 2(oi − ui) =
∑2n−1

m=1 2bm(hm − hm+1), as desired. ⊓⊔

8



Figure 3.5: b1 = 1

Figure 3.6: b2 = 2

Figure 3.7: b3 = 1
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Figure 3.8: b9 = 1

Theorem 3.1 If K is a paired conformation with diagram, D, then R(K) ≥
4br(D).

Proof: Since (oi − ui) ≥ 2 we have
∑n

i=1 2(oi − ui) ≥
∑n

i=1 2(2) = 4n =

4br(D). So, from our Lemmas this gives us 4br(D) =
∑2n−1

m=1 2bm(hm−hm+1) ≤
l(t(K)) ≤ l(h(K)) ≤ R(K). ⊓⊔

Notice that for any alternating conformation, K, with diagram, D, Cr(D) =
br(D). Therefore Theorem 3.1 is a generalization of Sadjadi’s result in [1].

4 Connect Sum of Paired Knots

In this section we investigate what happens when we connect sum two paired
knots.

Given two projections of knots, K1 and K2 we can define a new knot obtained
by removing a small arc from each knot projection and then connecting the
four endpoints by two new arcs. We will call this operation the connect sum,
denoted K1#K2. The resulting knot is called the composition of the two knots.
Then a composite knot is a knot that can be expressed as the composition of
two or more knots, neither of which is the trivial knot. Factor knots are the
knots that make up the composite knot.[2]

• Example: We can connect sum the trefoil and the figure eight knot to
produce a composite knot with the trefoil and figure eight as its factor
knots (See Figure 4.1).

Definition 4.1 Given a paired diagram, D, of a knot, K, an arc is a strand
in D that runs between two adjacent crossings.

Definition 4.2 Given a paired diagram, D, of a knot, K, a switched arc is
any arc that runs between one undercrossing and one overcrossing(See Figure
4.2).
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Figure 4.1: The connect sum of the trefoil and the figure eight knot.

Definition 4.3 Given a paired diagram, D, of a knot, K, a full overarc is
any arc that runs between two overcrossings (See Figure 4.3).

Definition 4.4 Given a paired diagram, D, of a knot, K, a full underarc is
any arc that runs between two undercrossings.

Figure 4.2: Arc 1 of the 820 knot is a switched arc since it lies between an
undercrossing and an overcrossing.

Figure 4.3: Arc 2 of the 820 knot is a full overarc since it lies between two
overcrossings.
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Theorem 4.1 Given two paired diagrams, D1 and D2, of knots, K1 and K2,
respectively, there is always a way to connect sum D1 and D2 such that D1#D2

is a paired diagram.

Proof: We will break up the proof into cases.

• Case 1: D1 and D2 each have a switched arc on the outside of the knot
that are mirror images of each other. That is, when these arcs are broken,
creating an overpass strand and an underpass strand on both D1 and D2,
the overpass strand on D1 can be connected to the underpass strand on
D2 and the underpass strand on D1 can be connected to the overpass
strand on D2 without creating any new crossings.

– Since we are only changing one arc on each knot we can assume
that each maximal overpass and maximal underpass not touching
the broken arc stays paired as it was before we broke the arc. So
we can simply look at the arc we break. Notice that breaking a
switced arc will result in two new strands on each knot, an overpass
and an underpass strand. We connect the overpass on D1 to the
underpass on D2 and the underpass on D1 to the overpass on D2.
Then since we haven’t added any overcrossings to an overpass or
any undercrossings to an underpass we have not altered any of our
original passes. Therefore, each of the passes can stay paired as they
were before we broke the arc. Then, since D1 and D2 were paired
originally, D1#D2 must also be paired.

• Example: We can illustrate case 1 with the 820 and 821 knots (See Fig-
ure 4.4). Connecting these knots at two switched arcs produces a paired
diagram, 820#821 (See Figure 4.5).

Figure 4.4: The 820 and 821 knots, which are both paired, have switched arcs,
a and b respectively.
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Figure 4.5: The connect sum of 820 and 821, 820#821, connected at their
switched arcs. From the bipartite graph we see that 820#821 is paired.

• Case 2: D1 and D2 each have a full overarc on the outside of the knot. The
maximal overpasses that the arcs are contained in are paired on opposite
sides. Note that the case where D1 and D2 each have a full underarc on
the outside of the knot is similar.

– We can again assume that any maximal overpass or maximal under-
pass untouched by the broken arc stay paired as they were before we
broke the arc. So we can simply look at the arcs we break. Each
full overarc that we are breaking is contained in a maximal overpass.
Any given maximal overpass can only be paired at only one of its
crossing. In D1 call the paired crossing p1 and the unpaired crossing
u1. In D2 call the paired crossing p2 and the unpaired crossing u2.
Since our original overpasses were paired on opposite sides when we
connect our broken strands without creating any new crossings we
get two new maximal overpasses where one overpass contains p1 and
u2 and the other contains p2 and u2. Since our new maximal over-
passes still only contain one paired crossing, either p1 or p2, we can
leave these crossings paired as they were in D1 and D2. So D1#D2

is paired.

• Example: We illustrate this case with the 820 and 821 knots (See Figure
4.6). Connecting these knots at two full overpasses results in a paired
diagram, 820#821 (See Figure 4.7)
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Figure 4.6: The 820 and 821 knots, which are both paired, have full overpasses,
a and b respectively. Notice that overpass 1 on 820 is paired with underpass 6
and overpass 3 on 821 is paired with underpass 6. So when we break these arcs
the resulting paired and unpaired strands will be on opposite sides, allowing us

to connect a paired strand to an unpaired strand without creating any new
crossings, as desired.

Figure 4.7: The connect sum of 820 and 821, 820#821, at their full overpasses.
Note that 820#821 is paired.

• Case 3: D1 and D2 don’t contain arcs on the outside of the knot that
make it possible to connect them as in case 1 or case 2.
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– Locate arcs on D1 and D2 that match the criteria in either case 1 or
case 2. Call the arcs a1 and a2 where a1 ∈ D1 and a2 ∈ D2. One
of the knots needs to have its arc on the outside. Without loss of
generality, assume a1 is on the outside of D1. Connect a1 to D2 on
the arc closest to a2. Shrink D1 until it is small enough to fit inside
D2. Slide D1 along D2 until a1 and a2 are connected as in case 1 or
case 2 (See Figures 4.8 and 4.9). Now the proof follows from case 1
and case 2.

⊓⊔

Figure 4.8: The connect sum of 820 and 821, 820#821, after we shrink 821 and
slide it inside of 820.

Figure 4.9: The bipartite graph for the knot in Figure 4.8. Notice that this
knot is paired.

5 (p, q)-Cables of Paired Knot Diagrams

In this section we will try and determine if we can cable a paired knot, K,
in such a way that the resulting (p, q)-cable of K is paired. Recall from our
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example in section 2 that a torus is a surface generated by rotating a circle
about an axis that is in the same plane as the circle but does not intersect it
and a torus knot is any knot that lies on the unknotted torus without crossing
over or under itself while on the torus. A solid torus includes the interior of
the torus instead of just the surface. Let K1 be a knot inside an unknotted solid
torus. If we knot the solid torus in the shape of a second knot, K2 then this will
take the knot K1 that lies inside the original solid torus to a new knot inside
the knotted solid torus. This new knot, K3, is a satellite knot. The knot K2

is called the companion knot. If K1 is a torus knot, then we call the resulting
satellite knot with companion K2 a cable knot on K2. If K1 is a (p.q)-torus
knot then K3 is a (p, q)-cable knot. [2]

• Example: We can cable the trefoil using three strands and five twists (See
Figure 5.1).

Figure 5.1: The (3, 5) cable of the trefoil.

Definition 5.1 Let K be a (p, q)-cable knot. A cable arc in K is any section
of the knot that contains the p strands that run between two crossings.

Definition 5.2 Let K be a (p, q)-cable knot. switched cable arc in K is any
cable arc that runs between one overcrossing and one undercrossing.

Let K0 be a paired knot with diagram, D. Let K1 be a (p, q)-cable of K0.
We examine locally what happens when we add a twist to a cable knot. If we
add one twist to a switched cable arc we merely extend one of our overpasses
(See Figure 5.2). Since no new overpasses or underpasses are created none of
our existing pairings are affected. So we can add one twist to every switched
cable arc and still have a paired knot.

Let b be the number of switched cable arcs on K1. Notice that a switched ca-
ble arc occurs each time a cable arc strand switches from overpass to underpass.
This occurs once for each bridge in D. So b = br(D). Define a full twist to be
a twist in which the bridge number of the twist is equal to q, or the number of
strands. As noted by Kauffman in On Knots, a full twist can be expressed as a
writhe [4] The advantage of writhes is that they are easily paired. (See Figure
5.3). We can add writhes in such a way that each writhe adds a switched cable
arc. Let x = q mod p. Then q = mp + x for some integer |m| where |m| is the
number of full twists or writhes in K. So can have up to br(D) + |m| switched
arcs on our cable and x twists that cannot be exchanged for writhes.
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Figure 5.2: Adding one twist to the switched arc above extends overpass 3 but
does not affect our pairing.

Figure 5.3: Exchanging a twist for a writhe.

Theorem 5.1 Given a paired diagram, D, of a knot, K, the (p, q)-cable of K,
is paired if x ≤ |m| + br(K).

Proof: Let K be a (p, q) cable of D where D is a paired knot diagram. Begin
by pairing K in the same manner as D. That is, if overpass a is paired with
underpass b in D then in K we can pair the p overpasses that correspond to
overpass a arbitrarily to the p underpasses that correspond to underpass b.

Now we can replace our |m| full twists with |m| writhes. Note that when
exchanging a twist for a writhe we must make sure that the sign of the twist is
the same as the sign of the resulting writhe. Since we can slide a twist anywhere
we want along the knot, we can also slide our writhes wherever we would like.
We slide all of our writhes to a switched cable arc such each writhe adds a new
switched cable arc(See Figure 5.4). Adding a writhe in this manner creates p

new overpasses that pass over p new underpasses. So we can simply pair the
new overpasses with the new underpasses and all of our other pairings stay the
same.

We can add one twist to every switched arc without affecting our pairing.
Since each writhe adds one switched arc to our diagram we have |m| + br(D)
switched arcs. After we replace every full twist with a writhe we are left with x

twists. So, K is paired if x ≤ |m| + br(D). ⊓⊔
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Figure 5.4: We can slide our |m| writhes onto the switched arc above to create
one new switched cable arc for every writhe.

6 Conclusion

We began by defining a class of knots called paired knots. We then imitated the
process in [3] to generalize Sadjadi’s argument and find a linear lower bound
on ropelength for all paired conformations. We then investigated how paired
knots act under the knot operations connect sum and cabling. We showed that
the connect sum of two paired knots is paired. Then we showed that when
cabling a paired knot, given that the number of twists is less than or equal to
the number of bridges in the paired knot plus the number of writhes in the
cable, the resulting (p, q)-cable is paired.
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