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Abstract

We examine various properties of algebraic curvature tensors in order
to construct a basis for all algebraic curvature tensors on an m-dimensional
vector space V . We also show that if dim(V ) = 4, then we can construct
any algebraic curvature tensor using at most 6 symmetric bilinear forms.

1 Introduction and Preliminaries

When seeking to describe a geometric object in space, perhaps the most obvious
way to proceed is by describing “how much” the object curves in space. In
differential geometry this idea has been formalized as the concept of curvature.
Algebraically, this can be described using an algebraic curvature tensor.

Definition 1.1. Let V be a vector space, x, y, z, w ∈ V and R : V ×V ×V ×V →
R, a multi-linear function satisfying

1. R(x, y, z, w) = −R(y, x, z, w),

2. R(x, y, z, w) = R(z, w, x, y), and

3. (Bianchi Identity) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

Then, R is an algebraic curvature tensor.

Definition 1.2. If V is a vector space with metric < ·, · >, orthonormal ba-
sis {e1, ..., em} and algebraic curvature tensor R, then the Ricci tensor with
respect to these objects is defined by

ρ(x, y) =
m∑
i=1

< ei, ei > R(x, ei, ei, y)

Definition 1.3. An algebraic curvature tensor R is called an Einstein cur-
vature tensor if there exists c ∈ R such that the corresponding Ricci tensor
ρ(x, y) = c < x, y > for any x, y ∈ V . Additionally, R is called Ricci-flat if
ρ(x, y) = 0 for all x, y ∈ V .

We write A(V ) to denote the set of all algebraic curvature tensors on V . If φ is
a symmetric bilinear form, denoted φ ∈ S2(V ∗), then we can define an algebraic
curvature tensor, Rφ by

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

It is known that span{Rφ ∈ A(V )|φ ∈ S2(V ∗)} = A(V )[1], however, we will
explicitely state a basis when dim(V ) = 4 and use that basis to generate a
basis when dim(V ) ≥ 5. If {e1, ..., em} is a basis for V , we will write Rijkl for
R(ei, ej , ek, el) as the components of R with respect to this basis.
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Theorem 1.4. If V is a vector space of dimension m and A(V ) is the set of
all algebraic curvature tensors on V , then the dimension of A(V ) is m2(m2−1)

12 .

Proof. Let {e1, ..., em} be an basis for V and let R be an algebraic curvature
tensor. It is clear that all of the curvature components of R involve two, three
or four of our basis vectors.

Concerning the components that involve two of the basis vectors, consider
the number

(
m
2

)
. This is the number of all possible pairs of numbers 1, ...,m,

up to the order they appear in. Therefore,
(
m
2

)
corresponds to all of the curva-

ture components of the form Rijji, and this is all of the curvature components
involving 2 basis vectors.

Now, we will attempt to determine the number of components involving 3
basis vectors in terms of m. Consider

(
m
3

)
, which will give us all of the triples

of three distinct numbers i, j and k, up to the order they appear in. Then, each
triple corresponds to three independent curvature components, Rijki, Rijkj and
Rkijk. Thus, there are 3

(
m
3

)
independent components involving 3 basis vectors.

Finally, we seek to determine the number of components involving 4 basis
vectors. In this case, each component will have a unique basis vector in each slot.
We will now consider

(
m
4

)
, which will give us all possible quadruples i, j, k, l such

that they are all distinct. Because our algebraic curvature tensor must satisfy
the Bianchi identity, we know that

Rijkl +Rjkil +Rkijl = 0.

Hence, Rijkl and Rjkil are independent curvature components, but Rkijl is not
because Rijkl + Rjkil = −Rkijl. Therefore, for each quadruple there are 2 cor-
responding independent curvature components and the number of components
involving 4 basis vectors is 2

(
m
4

)
.

Summing each of these pieces yields
(
m
2

)
+ 3
(
m
3

)
+ 2
(
m
4

)
= m2(m2−1)

12 . There-

fore, we need m2(m2−1)
12 independent curvature components to determine an

algebraic curvature tensor and thus dim(A(V )) = m2(m2−1)
12

Let V be a vector space and < ·, · > an inner product on V , then according
to [3], [4], we can, in general, construct the Chern basis {e1, ..., em} such that
this basis is orthonormal, and

R1i1j = 0 for 2 ≤ i < j ≤ m, R122j = 0 for 3 ≤ j ≤ m and R1323 = 0.

From [5], if dim(V ) = 4 and R is Einstein, then we can construct the Singer-
Thorpe basis {f1, ..., f4} such that

R1221 = R3443 = a,R1331 = R2442 = b, R1331 = R2332 = c;
R1234 = α,R1342 = β,R1423 = γ, and

Rijki = 0,

where α+ β + γ = 0 by the Bianchi identity and a+ b+ c = τ
4 , where τ is the

scalar curvature.
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Definition 1.5. If V is a vector space of dimension m, R ∈ A(V ) and φi ∈
S2(V ∗), then ν(R) is the least number such that

R =
ν(R)∑
i=1

αiRψi .

We then define
ν(m) := sup

R∈A(V )

ν(R).

In other words, ν(m) is the maximal number of symmetric bilinear forms
one could possibly need to construct any algebraic curvature tensor in a vector
space of dimension m. It was shown in [1] and [2] that m

2 ≤ ν(m) ≤ m(m+1)
2 .

We will show how to improve on that upper bound if m = 4.

2 A Basis for Dimension Four and Higher

Let V be a vector space, < ·, · > a positive definite metric and let {e1, e2, e3, e4}
be a basis for V . Then, dim(A(V )) = 20. Consider B = {φi ∈ S2(V ∗)|i =
1, ..., 20}, where

φ1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

φ2 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

φ3 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



φ4 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

φ5 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

φ6 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



φ7 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

φ8 =


1 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

φ9 =


1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0



φ10 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

φ11 =


0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

φ12 =


0 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



φ13 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

φ14 =


0 0 0 1
0 0 0 0
0 0 1 0
1 0 0 0

φ15 =


0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



φ16 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 1

φ17 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

φ18 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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φ19 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

φ20 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



Each φi represents a symmetric bilinear form written with respect to this
inner product, where the i, j entry of each matrix corresponds to φk(ei, ej). Each
was constructed with a very specific reason in mind. We can see from the proof
that dim(A(V )) = 4 that there are 20 independent curvature components that
completely determine an algebraic curvature tensor on a 4-dimensional vector
space. We can break these independent curvature components into 3 groups. If
i, j, k, l are distinct indices and 1 ≤ i, j, k, l ≤ 4, then the first group is those
curvature components of the form Rijji. The second group is those curvature
components of the form Rijki. And the last group is those curvature components
of the form Rijkl. We can correspondingly group our symmetric bilinear forms
into 3 groups. The first group contains φ1, ..., φ6, the second group contains
φ7, ..., φ18 and the final group consists of φ19 and φ20.

In dimension 4, the only curvature components that depend on all 4 basis
vectors are R1234 and R1432. We grouped our forms so that φ19 and φ20 cor-
respond to the curvature components of the form Rijkl. Examining Rφ19 and
Rφ20 , it is easy to see that Rφ19(e1, e2, e3, e4) = 1 and Rφ20(e1, e4, e3, e2) = 1.
There are other non-zero curvature components of Rφ19 and Rφ20 - notice that
Rφ19(e1, e4, e4, e1) = 1 and Rφ20(e3, e4, e4, e3) = 1 - however, for any i 6= 19, 20,
Rφi(e1, e2, e3, e4) = Rφi(e1, e4, e3, e2) = 0.

If we examine our second grouping of φ7, ..., φ18, it is easy to see that each
of these symmetric bilinear forms corresponds to a unique curvature component
such that Rφn(ei, ej , ek, ei) = 1, and, Rφm(ei, ej , ek, ei) = 0 for any m 6= n. For
example, Rφ7(e1, e2, e3, e1) = 1, and, for any i 6= 7, Rφi(e1, e2, e3, e1) = 0.

In our last group, which contains φ1, ..., φ6, each form was constructed to give
only one non-zero entry. It is easy to see from the structure of these forms that
Rφ1(e1, e2, e2, e1) = 1, Rφ2(e1, e3, e3, e1) = 1, and so on. Because of how we con-
structed these 20 symmetric bilinear forms, we present the following proposition.

Proposition 2.1. The set B is a basis for A(V ).

Proof. Fix αi ∈ R such that

R =
20∑
i=1

αiRφi = 0.

We will show that αi = 0 for i = 1, ..., 20, and thus B is a linearly independent
set. We will do so by observing what happens if we plug in each of the 20
curvature components known to be independent and to completely determine
an algebraic curvature tensor in dimension four.
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To begin, notice that Rφi(e1, e4, e3, e2) 6= 0 if and only if i = 20. Therefore,
it is clear that α20 = 0. Similarly Rφi(e1, e2, e3, e4) 6= 0 if and only if i = 19.
Again, it is easy to see that this implies α19 = 0.

If we consider the curvature components of three distinct indecies, then
Rφγ (ei, ej , ek, ei) 6= 0 if and only if γ = 7, ..., 18. Each possible combination
of three of our basis vectors corresponds to exactly one φi with i = 7, ..., 18.
For example, Rφi(e1, e2, e3, e1) 6= 0 if and only if i = 7. Therefore, αi = 0 for
i = 7, ..., 18.

Lastly, we must consider what happens when we use only two of our basis vec-
tors. There are six such situations. Observe that R1441 = α3−α11−α14−α19 =
0. However, we know that α11 = α14 = α19 = 0, and thus α3 = 0. Since we
know that if i ≥ 7, then αi = 0, a similar case will arise for each αj for
j = 1, ..., 6. Therefore, if

∑20
i=1 αiRφi = 0, then αi = 0 for i = 1, ..., 20, and, the

set {Rφi ∈ A(V )|i = 1, ..., 20} is linearly independent and a basis for A(V ).

An interesting observation can be made about using this basis to generate a
basis when dim(V ) ≥ 5. If V is a 5-dimensional vector space, then dim(A(V )) =
50. Therefore, there are 50 independent curvature components which completely
and uniquely determine R ∈ A(V ). We can split these curvature components
into groups as we did previously, a group of the curvature components of 2
indices, a group of the curvature components of 3 indices and a group of the
curvature components of 4 indices. We could proceed as we did in dimension 4
and simply construct a symmetric bilinear form for each of these 50 curvature
components. However, this would simply be an excercise in patience. Notice
that since R : V × V × V × V → R, there are no curvature components of
5 indices. Therefore, we can obtain a basis for A(V ) by taking our basis for
algebraic curvature tensors in dimension 4 and inserting rows and columns of
zeros to make them determine algebraic curvature tensors in dimension n.

Let 1 ≤ i, j, k, l ≤ n and i, j, k, l be distinct. We can easily define φγ such
that Rφγ (ei, ej , ek, el) = 1. If i ≤ j ≤ k ≤ l, then, so long as x 6= i, j, k, l,
ex ∈ ker(φγ). We define the remaining 16 entries of φγ so that φγ(ei, el) =
φγ(el, ei) = 1 and φγ(ej , ek) = φγ(ek, ej) = 1 and φγ(en, em) = 0 otherwise.
Notice that the matrix representation of φγ looks similar to φ19, except that φγ
has extra rows and columns of zeros. The other case is where i ≤ l ≤ k ≤ j.
We construct φξ the same way, except now it will look like φ20 with extra rows
and columns of zeros.

We will now seek to define φω such that Rφω (ei, ej , ek, ei) = 1. To begin,
choose one 1 ≤ i ≤ n and let φω(ei, ei) = 1. Then, we get a different symmetric
bilinear form for by letting every combination of φω(ej , ek) = 1 where j, k 6= i.
This will give us a different for for every combination of i, j and k, and, each
φω will resemble φ7, ..., φ18 with extra rows and columns of zeros.

Lastly, and most easily, we get construct forms that represent the remaining
curvature components by simple choosing all possible combinations of i and j
such that φ(ei, ei) = φ(ej , ej) = 1 and φ(en, em) = 0 otherwise. Each of these
will resemble φ1, ..., φ6 with extra rows and columns of zeros. Proceeding as
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such will yield a basis for A(V ), regardless of the dimension of V .

3 An Upper Bound for ν(4).

As we stated in the introduction, ν(m) ≤ m(m+1)
2 . Therefore, it is known that

ν(4) ≤ 10. We will improve on this upper bound.

Theorem 3.1. ν(4) ≤ 6.

Proof. Let V be a four-dimensional vector space with a positive definite
metric g and an algebraic curvature tensor R. We can define a Chern basis for
V , {e1, e2, e3, e4}, with respect to g and R such that

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.

Therefore, since we know that in dimension 4 there are 20 independent cur-
vature components, with respect to a Chern basis, there are only 14 inde-
pendent curvature components that could possibly be non-zero. Thus, R =∑6
i=1 αiRφi + α12Rφ12 +

∑20
j=14 αjRφj . We will show that R can be written as∑6

i=1 βiRψi for six symmetric bilinear forms ψi. To do this, we will start by
viewing R in terms of our basis and proceed to build a new algebraic curvature
tensor R̂ by building new symmetric bilinear forms ψ1, ..., ψ6 and substituting
Rψi for some combination of the basis vectors. We will then check to see where
R̂ and R differ and proceed to change some of our constants, namely α1, ..., α6,
so that R̂ = R. We will examine 4 possible cases, which depend on the values
of α19 and α20.

We will first examine the case where α19 = α20 = 0. In this case, note that
R =

∑6
i=1 αiRφi + α12Rφ12 +

∑18
j=14 αjRφj . To begin to reduce the number of

symmetric bilinear forms we use to construct R, we will construct a new form
that will contribute the same information to R̂ as α12Rφ12 +α15Rφ15 +α18Rφ18 .
We will call this form φ12,15,18 and will define it by

φ12,15,18 =


0 0 0 0
0 α12α15 0 −α15α18

0 0 −α12α15 α12α18

0 −α15α18 α12α18 0

 .
If we let R̂ =

∑6
i=1 αiRφi + α14Rφ14 + α16Rφ16 + α17Rφ17 + 1

α12α15α18
Rφ12,15,18 ,

then notice that R 6= R̂. This can be seen since, for example, R2332 = α4 −
α18−α19, but, R̂2332 = α4− α12α15

α18
−α19, where in this case α19 = 0. However,

notice that the unique information that was contributed to R by Rφ12 , Rφ15 and
Rφ18 is preserved since R2342 = R̂2342 = α12, R3243 = R̂3243 = α15 and R4234 =
R̂4234 = α18. Any changes this substitution made to the overall structure of R
will be accounted for by altering some of our constants later.

There is the question of what happens if α12 = 0, α15 = 0 or α18 = 0. Let
i, j, k be distinct with i, j, k = 12, 15, 18, in no particular order.
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If αi = αj = 0, then we would simply let R̂ =
∑6
i=1 αiRφi +

α14Rφ14 + α16Rφ16 + α17Rφ17 + αkRφk , and R̂ would be built using
the same number of symmetric bilinear forms as when α12, α15 and
α18 were non-zero.

If αi = 0 and αj , αk 6= 0, then define φj,k by

φ12,15 =


0 0 0 0
0 0 −α12 α12α15

0 −α12 α15 0
0 α12α15 0 0

 ,

φ12,18 =


0 0 0 0
0 0 α12α18 −α12

0 α12α18 0 0
0 −α12 0 α18

 and

φ15,18 =


0 0 0 0
0 0 α15α18 0
0 α15α18 0 −α15

0 0 −α15 α18

 .
We then let R̂ =

∑6
i=1 αiRφi + α14Rφ14 + α16Rφ16 + α17Rφ17 +

1
αjαk

Rφj,k . Notice that this construction of R̂ requires the same
number of symmetric bilinear forms as in the case where α12, α15

and α20 are non-zero.

In each of the above cases it is still true that R2342 = R̂2342 = α12, R3243 =
R̂3243 = α15 and R4234 = R̂4234 = α18. For sake of notation, we will write R̂ as
if we are assuming that αi 6= 0 unless it is explicitly stated otherwise. However,
we will always show how to accomidate if αi = 0 for some i = 1, ..., 18.

Next, we will build a new symmetric bilinear form that will contribute the
same information to R̂ as α14Rφ14 + α17Rφ17 . Thus, we will substitute Rφ14,17

for α14Rφ14 + α17Rφ17 , where

φ14,17 =


0 0 0 α14α17

0 0 0 0
0 0 α14 −α17

α14α17 0 −α17 0

 .
So now,

R̂ =
6∑
i=1

αiRφi + α16Rφ16 +
1

α12α15α18
Rφ12,15,18 +

1
α14α17

Rφ14,17 .

Notice that if α14 = 0 or α17 = 0, then making this substitution is not necessary
since writing R̂ =

∑6
i=1 αiRφi + α16Rφ16 + 1

α12α15α18
Rφ12,15,18 + αiRφi , where

i = 14 or 17 and R̂ =
∑6
i=1 αiRφi +α16Rφ16 + 1

α12α15α18
Rφ12,15,18 + 1

α14α17
Rφ14,17
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requires the same number of symmetric bilinear forms. After this substitution,
we still have that R 6= R̂ and this substitution leads to further differences
between R and R̂, similar to the example we cited after the first substitution.
We will begin to rectify these problems by changing our coefficients and forcing
R = R̂.

For any curvature component with 4 distinct indices Rijkl = R̂ijkl = 0,
since α19 = α20 = 0. For any curvature component with 3 distinct indices,
Rijki = R̂ijki, even after the substitutions. Therefore, we will check to make
sure that Rijji = R̂ijji for any 2 distinct indices i and j. Since R1331 = α2−α17

and R̂1331 = α2, and, since R1441 = α3 − α14 and R̂1441 = α3 − α14α17, let

α̃2 = α2 − α17, and

α̃3 = α3 − α14 + α14α17.

Define φ1,2,3 by

φ1,2,3 =


α̃1α̃2α̃3 0 0 0

0 α̃1 0 0
0 0 α̃2 0
0 0 0 α̃3

 .
Where, because we have not specified otherwise, it can be assumed that α̃1 = α1.
In R̂, we then replace α1Rφ1 + α2Rφ2 + α3Rφ3 with Rφ1,2,3 so that

R̂ =
6∑
i=4

αiRφi+α16Rφ16 +
1

α12α15α18
Rφ12,15,18 +

1
α14α17

Rφ14,17 +
1

α̃1α̃2α̃3
Rφ1,2,3 .

Now, R̂1221 = α1 − α16 − α20 = R1221, R̂1331 = α2 − α17 = R1331 and R̂1441 =
α̃3−α14α17 = α3−α14 = R1441, as needed. Notice that if αi = 0 for i = 1, 2, 3,
then by making φ1,2,3(ei, ei) = 0 and removing αi from the other entries of
φ1,2,3, we have a symmetric bilinear form that still yields the information we
desire.

We will now define α̃4, α̃5 and α̃6, to ensure R̂2332 = R2332, R̂2442 = R2442

and R̂3443 = R3443. Since R2332 = α4 − α18 and R̂2332 = α4 − α12α15
α18

+ 1
α̃3

,
R2442 = α5 − α15 and R̂2442 = α5 − α15α18

α12
+ 1

α2
and R3443 = α6 − α12 and

R̂3443 = α6 − α12α18
α15

− α17
α14

+ 1
α1

, let

α̃4 = α4 − α18 +
α12α15

α18
− 1
α̃3

α̃5 = α5 − α15 +
α15α18

α12
− 1
α̃2

and

α̃6 = α6 − α12 +
α12α18

α15
+
α17

α14
− 1
α̃1
.

If α4 = α5 = α6 = 0, then R̂ = α16Rφ16 + Rφ12,15,18 + Rφ14,17 +
Rφ1,2,3 = R, and we have therefore expressed R using less than or
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equal to 6 symmetric bilinear forms.

If α̃i = 0 and α̃j = 0 for 4 ≤ i < j ≤ 6, then we can replace
α4Rφ4 + α5Rφ5 + α6Rφ6 with α̃kRφk in R̂, where 4 ≤ k ≤ 6 and
k 6= i, j. Therefore, R̂ = α̃kRφk + α16Rφ16 + 1

α12α15α18
Rφ12,15,18 +

1
α14α17

Rφ14,17 + 1
α̃1α̃2α̃3

Rφ1,2,3 = R, and we have expressed R using
less than or equal to 6 symmetric bilinear forms, as we set out to do.

If α̃i = 0 and α̃j , α̃k 6= 0 for 4 ≤ i, j, k ≤ 6, then we can define a
new symmetric bilinear form φj,k, where,

φ4,5 =


0 0 0 0
0 α̃4α̃5 0 0
0 0 α̃4 0
0 0 0 α̃5

 ,

φ4,6 =


0 0 0 0
0 α̃4 0 0
0 0 α̃4α̃6 0
0 0 0 α̃6

 and

φ5,6 =


0 0 0 0
0 α̃5 0 0
0 0 α̃6 0
0 0 0 α̃5α̃6

 .
We then replace α4Rφ4 + α5Rφ5 + α6Rφ6 with 1

α̃iα̃j
Rφj,k − Rφi in

R̂. Thus,

R̂ = α16Rφ16 + 1
α12α15α18

Rφ12,15,18 + 1
α14α17

Rφ14,17

+ 1
α̃1α̃2α̃3

Rφ1,2,3 + 1
α̃iα̃j

Rφj,k −Rφi = R,

and we have expressed R using less than or equal to 6 symmetric
bilinear forms, as needed.

If α̃4, α̃5 and α̃6 are all non-zero, then we can then write

R̂ = α16Rφ16 + 1
α12α15α18

Rφ12,15,18 + 1
α14α17

Rφ14,17

+ 1
α̃1α̃2α̃3

Rφ1,2,3 + 1
α̃4α̃5α̃6

Rφ4,5,6 = R,

where

φ4,5,6 =


0 0 0 0
0 α̃4α̃5 0 0
0 0 α̃4α̃6 0
0 0 0 α̃5α̃6

 .
Then we have again expressed R using less than or equal to 6 sym-
metric bilinear forms.
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Therefore, since this exhausts all of the cases , we have shown that if α19 = α20 =
0, then we can find 6 symmetric bilinear forms such that R =

∑6
i=1 βiRψi , as

was our goal.

Next, we will consider the case where α19 6= 0 and α20 = 0. The process
will be similar to the previous case, except that our substitutions and how we
redefine our constants at the end will be different.

To begin, we will define the symmetric bilinear form φ16,17 by

φ16,17 =


0 0 0 −α16α17

0 0 0 α16

0 0 0 α17

−α16α17 α16 α17 0

 .
Then, let

R̂ =
6∑
i=1

αiRφi+α12Rφ12+α14Rφ14+α15Rφ15+α18Rφ18+α19Rφ19+
1

α16α17
Rφ16,17 .

Again, R̂ 6= R, but by changing some of our constants in our last step, as we
did in the previous case, we will fix their differences. Notice, however, that
R4234 = α18 and R̂4234 = α18 − 1, so let α̃18 = α18 + 1.

Next, we will remove α12Rφ12 + α15Rφ15 from R̂ and repace them with
Rφ12,15 , which we defined in case 1. Now,

R̂ =
6∑
i=1

αiRφi +α14Rφ14 +α18Rφ18 +α19Rφ19 +
1

α16α17
Rφ16,17 +

1
α12α15

Rφ12,15 .

Our next substitution is to remove α14Rφ14 +α18Rφ18 +α19Rφ19 from R̂ and
substitute Rφ14,18,19 in their place, where

φ14,18,19 =


0 0 0 α14α19

0 0 α̃18α19 0
0 α̃18α19 α14α̃18 0

α14α19 0 0 α14α̃18

.

After this substitution,

R̂ =
6∑
i=1

αiRφi +
1

α16α17
Rφ16,17 +

1
α12α15

Rφ12,15 +
1

α14α̃18α19
Rφ14,18,19 .

We have assumed that α19 6= 0. If α14 = 0 and α18 = 0, then there is no need
to make this substitution. If either α14 = 0 or α18 = 0, we can change our form
to accomidate this fact. For example, if α14 = 0, then define

φ18,19 =


0 0 0 α19

0 0 α̃18α19 0
0 α̃18α19 0 0
α19 0 0 α̃18

.
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Then, R̂ =
∑6
i=1 αiRφi + 1

α16α17
Rφ16,17 + 1

α12α15
Rφ12,15 + 1

α̃18α19
Rφ18,19 . We

will now evaluate the differences between R and R̂ and change some of our
coefficients to force R = R̂.

This last step will be almost identical to the last step in the first case. The
only difference will be how we define out constants. Again, if i, j, k, l are distinct
indices, then Rijkl = R̂ijkl and Rijki = R̂ijki. We will let

α̃1 = α1 − α16,

α̃2 = α2 − α17and

α̃3 = α3 − α14 − α19 + α16α17 +
α14α19

α18
.

Again, we will replace α1Rφ1 + α2Rφ2 + α3Rφ3 with Rφ1,2,3 in R̂. Now,

R̂ =
6∑
i=4

αiRφi+
1

α16α17
Rφ16,17+

1
α12α15

Rφ12,15+
1

α̃18α19
Rφ18,19+

1
α̃1α̃2α̃3

Rφ1,2,3 .

Notice that now R̂1221 = α1 − α16 − α20 = R1221, R̂1331 = α2 − α17 = R1331

and R̂1441 = α̃3 − α16α17 − α14α19
α18

= α3 − α14 − α19 = R1441.
Now, let

α̃4 = α4 − α18 − α19 −
α12

α15
+
α̃18α19

α14
− 1
α̃3
,

α̃5 = α5 − α15 +
α16

α17
+ α12α15 −

1
α̃2

and

α̃6 = α6 − α12 +
α17

α16
− α14α̃18

α19
− 1
α̃1

and write

R̂ =
1

α16α17
Rφ16,17+

1
α12α15

Rφ12,15+
1

α14α̃18α19
Rφ14,18,19+

1
α̃1α̃2α̃3

Rφ1,2,3+
1

α̃4α̃5α̃6
Rφ4,5,6 .

It is easy to check that R̂ = R, and so we have found less than or equal to 6
symmetric bilinear forms ψ1, ..., ψ6 such that R =

∑6
i=1 βiψi, as needed.

Our next case is the case in which α19 = 0 and α20 6= 0. To begin this case,
let R̂ =

∑6
i=1 αiRφi + α12Rφ12 + α14Rφ14 + α16Rφ16 + α17Rφ17 + α20Rφ20 +

1
α15α18

Rφ15,18 , where φ15,18 is as it was defined in the first case.
Next, define

φ12,16,20 =


0 α16α20 0 0

α16α20 α12α16 0 0
0 0 0 α12α20

0 0 α12α20 α12α16

.

We will replace α12Rφ12 + α16Rφ16 + α20Rφ20 in R̂ with Rφ12,16,20 so that R̂ =∑6
i=1 αiRφi +α14Rφ14 +α17Rφ17 + 1

α15α18
Rφ15,18 + 1

α12α16α20
Rφ12,16,20 . Similarly
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to when we constructed φ14,18,19, if α12 = 0 or α16 = 0, we can construct φ16,20

or φ14,20 to accomodate this fact.
Our next step is to replace α14Rφ14 +α17Rφ17 with Rφ14,17 , which we defined

in case 1. This leaves us with

R̂ =
6∑
i=1

αiRφi +
1

α15α18
Rφ15,18 +

1
α12α16α20

Rφ12,16,20 +
1

α14α17
Rφ14,17 .

The only remaining step to show that we can write R =
∑6
i=1 βiRψi is

essential the same to the last step in the first two cases. The only difference,
once again, is how we define our constants. First, let

α̃1 = α1 − α16 − α20 +
α16α20

α̃12
,

α̃2 = α2 − α17and
α̃3 = α3 − α14 + α14α17.

Then, let

α̃4 = α4 − α18 + α15α18 −
1
α̃3
,

α̃5 = α5 −−α15 −
α̃12α16

α20
− 1
α̃2

and

α̃6 = α6 − α12 − α20 +
α15

α18
+
α̃12α20

α16
+
α17

α14
− 1
α̃1
.

If we define

R̂ =
1

α15α18
Rφ15,18+

1
α12α16α20

Rφ12,16,20+
1

α14α17
Rφ14,17+

1
α̃1α̃2α̃3

Rφ1,2,3+
1

α̃4α̃5α̃6
Rφ4,5,6 ,

then it is easy to check that R = R̂ and so we have found less than or equal to
6 symmetric bilinear forms such that, as needed.

Our last case is that in which α19 6= 0 and α20 6= 0. This case then splits
into 2 new cases.

If α19 6= 1, then let

φ15,17 =


0 0 0 α17

0 0 α15 0
0 α15 0 −α15α17

α17 0 −α15α17 0

 .
Then, define R̂ =

∑6
i=1 αiRφi + α12Rφ12 + α14Rφ14 + α16Rφ14 +

α18Rφ18 + α19Rφ19 + α20Rφ20 + 1
α15α17

Rφ15,17 . Notice that R3243 =
R̂3243 and R4134 = R̂4134. However, R1234 = α19 and R̂1234 =
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α19 + 1. Thus, let α̃19 = α19 − 1. Since we assumed that α19 6= 1,
we know that α̃19 6= 0.

If we continue to redefine R̂ so that we have

R̂ =
6∑
i=1

αiRφi+
1

α15α17
Rφ15,17+

1
α12α16α20

Rφ12,16,20+
1

α14α18α̃19
Rφ14,18,19 ,

where φ12,16,20 and φ14,18,19 are defined as in previous cases, the only
difference being that α19 is replaced with α̃19, then Rijkl = R̂ijkl
and Rijki = R̂ijki for any distinct indices 1 ≤ i, j, k, l ≤ 4. We will
proceed to define our constants. In this case, let

α̃1 = α1 − α16 − α20 +
α16α20

α12
,

α̃2 = α2 − α17and

α̃3 = α3 − α14 − α̃19 +
α17

α15
+
α14α̃19

α18
.

Then, let

α̃4 = α4 − α18 − α19 +
α15

α17
+
α18α̃19

α14
− 1
α̃3
,

α̃5 = α5 − α15 −
α12α16

α20
− 1
α̃2

and

α̃6 = α6 − α12 − α20 + α15α17 +
α12α20

α16
− α14α18

α̃19
− 1
α̃1
.

By letting

R̂ = 1
α15α17

Rφ15,17 + 1
α12α16α20

Rφ12,16,20 + 1
α14α18α̃19

Rφ14,18,19

+ 1
α̃1α̃2α̃3

Rφ1,2,3 + 1
α̃4α̃5α̃6

Rφ4,5,6 ,

it is easy to check that R = R̂ and thus we have written R using less
than or equal to 6 symmetric bilinear forms, as needed.

The other case is where α19 = 1. In this case, let

φ̂15,17 =


0 0 0 α17

0 0 α15 0
0 α15 0 −2α15α17

α17 0 −2α15α17 0

 .
We will then let α̃19 = α19

2 . Since α19 6= 0 by assumption, α̃19 6= 0.
We then define R̂ =

∑6
i=1 αiRφi + α12Rφ12 + α14Rφ14 + α16Rφ14 +

α18Rφ18 +α19Rφ19 +α20Rφ20 + 1
2α15α17

Rφ15,17 , and so, R1234 = R̂1234.
If we continue to redefine R̂ so that we have

R̂ =
6∑
i=1

αiRφi+
1

2α15α17
Rφ15,17+

1
α12α16α20

Rφ12,16,20+
1

α14α18α̃19
Rφ14,18,19 ,
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where φ12,16,20 and φ14,18,19 are defined as in previous cases, the only
difference being that α19 is replaced with α̃19, then Rijkl = R̂ijkl
and Rijki = R̂ijki for any distinct indices i, j, k, l. We will proceed
to define our constants. In this case, let

α̃1 = α1 − α16 − α20 +
α16α20

α12
,

α̃2 = α2 − α17and

α̃3 = α3 − α14 − α̃19 +
α17

2α15
+
α14α̃19

α18
.

Then, let

α̃4 = α4 − α18 − α19 +
α15

2α17
+
α18α̃19

α14
− 1
α̃3
,

α̃5 = α5 − α15 −
α12α16

α20
− 1
α̃2

and

α̃6 = α6 − α12 − α20 + 2α15α17 +
α12α20

α16
− α14α18

α̃19
− 1
α̃1
.

By letting

R̂ = 1
2α15α17

Rφ15,17 + 1
α12α16α20

Rφ12,16,20 + 1
α14α18α̃19

Rφ14,18,19

+ 1
α̃1α̃2α̃3

Rφ1,2,3 + 1
α̃4α̃5α̃6

Rφ4,5,6 ,

it is easy to check that R = R̂ and thus we have written R using less
than or equal to 6 symmetric bilinear forms.

This then covers all of our cases. Since in each case we have shown that, given R,
we can find six symmetric bilinear forms ψ1, · · · , ψ6 such that R =

∑6
i=1 βiRψi ,

we have shown that ν(4) ≤ 6, as we set out to.

Remark 3.2. It is interesting to note that the only time we actually needed 6
symmetric bilinear forms to construct R was when α̃i = 0 and α̃j , α̃k 6= 0 for
4 ≤ i, j, k ≤ 6. If R is defined so that this does not happen, then ν(R) ≤ 5.

4 Summary

We found a basis for algebraic curvature tensors on a 4-dimensional vector
space and were able to generalize this for a vector space of dimension m. In
constructing the basis for dimension 4, the most important observation was
that dim(A(V )) is derived from how many independent curvature components
determine an algebraic curvature tensor in V . Building a different symmetric
bilinear form to represent each of these curvature components yields the basis.
In dimension m, it is easy to find the forms because they look similar to those
we used in dimension 4, especially the forms that correspond to Rijkl.

14



We were also successful in reducing the upper bound on ν(4) from 10 to 6.
Ignoring some of the details - the details were very explicitly shown above - the
process was as follows.

If α19 = 0 and α20 = 0, we define φ14,17 and φ12,15,18 to contribute the
same information as α12Rφ12 + α14Rφ14 + α15Rφ15 + α17Rφ17 + α18Rφ18 . By
letting R̂ = 1

α14α17
Rφ14,17 + 1

α12α15α18
Rφ12,15,18 +α16Rφ16 , we have constructed a

curvature tensors such that R̂ijkl = Rijkl and R̂ijki = Rijki, but R̂ijji 6= Rijji.
To fix this, we define α̃1, ..., α̃6 such that

R̂ =
6∑
i=1

α̃iRφi +
1

α14α17
Rφ14,17 +

1
α12α15α18

Rφ12,15,18 + α16Rφ16 = R

. Then, define φ1,2,3 and φ4,5 such that

R̂ = 1
α̃1α̃2α̃3

Rφ1,2,3 + 1
α̃4α̃5

Rφ4,5 + α̃6Rφ6 + 1
α14α17

Rφ14,17 + 1
α12α15α18

Rφ12,15,18 +
α16Rφ16 = R

There are many nuances to the proof, such as when certain αi = 0. There
are also other cases with other values of α19 and α20, but the process is similar.

5 Open Questions

We end with some open questions that arose from this research.

1. Is ν(4) = 6? Can we decrease the upper bound of ν(m) by a similar
amount as m grows? Can we find a new upper bound for ν(m) in general?

2. Can we find a general way to determine ν̃(m), which denotes sup(ν(R)),
where R is a specific kind of algebraic curvature tensor (i.e. Einstein, IP,
etc.)? We know that in dimension 4, the Singer-Thorpe basis exists for
Einstein tensors. This basis send all but a few curvature components to
zero and even forces some equalities among the remaining components.

Also, because the Ricci tensor depends on an orthonormal basis, and the
Ricci tensor is not affected by the value of Rijkl, it seem the dimension
of all Einstein tensors on a vector space should be however many compo-
nents are needed to determine if the Ricci tensor is diagonal with only 1
eigenvalue plus 2

(
m
4

)
for the components of the form Rijkl.

3. Can we find a basis-free way to determine when ν(R) = 1, 2, 3, 4, 5 or 6 in
dimension 4? In [2], they show that in dimension 3, ν(R) dependes on the
Eigenvalues of the Ricci tensor. Can we find a similar result in dimension
4?

4. It is obvious that if we can write

R =
ν(R)∑
i=1

βiRψi
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and Rank(ψj) = 2 for some 1 ≤ j ≤ ν(R), then the linear combination
of ν(R) symmetric bilinear forms which we used to construct R is not
unique.

Can we always write

R =
ν(R)∑
i=1

βiRψi

such that Rank(ψi) ≥ 3 for all i? If we can, then is this construction of
R unique?
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