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Abstract

Investigate ropelengths of the family of knots known as French Sinnet
knots. It is shown that the ropelength of this family of knots is linearly
bounded by the crossing number. This result is expanded to include all
Lissajous knots.
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1 Introduction
First, it is necessary to define a few key terms to establish an adequate back-
ground. A knot is a simple, closed curve in Euclidean 3-space. A knot diagram
or projection is an image that represents a particular knot. An example of
this can be seen with the figure-eight knot in figure 1. The crossing number,

Figure 1: two projections of the figure-eight knots

denoted Cr(K), of a knot type is the minimum number of crossings over all pro-
jections. An alternating diagram alternates between over and undercrossings as
you traverse the diagram. It is worth noting that an alternating diagram has
the minimum number of crossings over all projections.

A polygonal knot is a knot made from line segments. An example of a
polygonal knot can be seen in figure 2. A cubic lattice knot is a polygonal knot

Figure 2: Polygonal knot

with all vertices on Z3 and all edges length 1. An example of a cubic lattice
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knot can be seen in figure 3. The ropelength of a knot K, denoted Rop(K),
where Rop(K) = `(K)

r(K) . `(K) is the arclength of K, and r(K) is the radius
of K. Since we can assume without loss of generality that r(K) = 1, we see
that Rop(K) = `(K). The cubic lattice is useful for finding upperbounds on
ropelength, because the length of a knot on a cubic lattice is always greater
than or equal to the original length. Then when we find an upperbound for the
length of a knot of the cubic lattice, we have found an upperbound for Rop(K).

Example 1.1 Here is an example of a knot that has been drawn on the cubic
lattice. The under- and overcrossings have been preserved, and the black dots
indicate places where a line segment is coming out of the page to lift a piece
above another. The length of the side of each square is 2 so that we can place
the line segments going up in the middle of them. Thus since the base diagram
has 24 line segments, it has a length of 48. Then we also need to take into
consideration the 14 line segments coming out of the page, which gives us a
total length of 62 for the diagram.

Figure 3: Cubic Lattice

2 French Sinnet Knots
In this section, a class of Lissajous Knots is discussed and named. First we
define a Lissajous knot.

Definition 2.1 Knots which can be parameterized using

x(t) = Axcos(Bxt+ Cx),

y(t) = Aycos(Byt+ Cy),

z(t) = Azcos(Bzt+ Cz).

are called Lissajous knots.
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We can set Ax = Ay = Az = 1 and Cz = 0, because this only changes the
amplitudes, which does not change the topology of the knot [2].

Definition 2.2 A French Sinnet knot is a Lissajous knot K with coprime fre-
quencies By ≥ Bx ≥ 1 and Bz = 2bxBy −Bx −By, and phases Cx = π (2Bx−1)

(2Bz)

and Cy = π
2Bz

.

This family of Lissajous knots are called French Sinnet knots, because they
are a plat closure of French Sinnet braids defined by Kohno [3]. When viewed
along the z-axis, K, a French Sinnet knot, has an alternating diagram [2].

Figure 4: Bx = 3, By = 5 French Sinnet knot

From Section 2.1 of [1] we see that a Lissajous knot K has 2BxBy − Bx −
By crossings. Since French Sinnet knots are a class of Lissajous knots, this
also applies to French Sinnet knots. However, since French Sinnet knots are
alternating, the number of crossings becomes the crossing number, Cr(K).

Example 2.3 As an example, we show the crossing number for French Sinnet
knot with Bx = 3, By = 4.

Cr(K) = 4(3− 1) + (4− 1)(3)
= 4 · 2 + 3 · 3
= 8 + 9 = 17

We can see from the cubic lattice in Figure 5 that for a constant Bx it
appears that we can calculate how many more segments will need to be added
for each additional By. We start with the base case when Bx = 2, By = 3 as
in Figure 5, and remembering that each line segment in the diagram is actually
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length 2 so that we can add segments to raise segments at crossings, we see that
the diagram has 24 · 2 = 48 base segments plus 14 segments coming out of the
page. Thus the Bx = 2, By = 3 case has length 62.

French Sinnet knots and Lissajous knots both require that Bx, By be rela-
tively prime. For the following proofs, when induction is used, the case when
Bx, By are not relatively prime is still acceptable, because this only means that
the French Sinnet knots and Lissajous knots become French Sinnet links and
Lissajous links. The equations will still work as expected. Thus, in the follow-
ing diagram of the cubic lattice for the French Sinnet knot where Bx = 2 and
By = 3, we then see the next case which is actually a French Sinnet link where
Bx = 2 and By = 4.

Figure 5: Bx = 2, By = 3 and Bx = 2, By = 4 Cubic Lattice

We know from earlier that for Bx = 2, By = 3 the length of the lattice will
be 62. Then we can look at the diagram for Bx = 2, By = 4 and see that is
has 32 · 2 = 64 base segments and 20 segments coming out of the page for a
total length of 84. We see that this requires 22 additional segments when By is
increased by 1.

Lemma 2.4 For each additional By, the cubic lattice length of the French Sin-
net knot becomes 12Bx − 2 units longer.

Proof. As seen in figure 5, the only addition to the cubic lattice for By = 4 is
an additional row of Bx squares. Thus there are 2 · 4Bx additional base pieces,
since each piece is of length 2, and there are Bx + (Bx− 1) additional crossings.
This means that for each additional By, the Lissajous knot is

2 · 4Bx + 2[Bx + (Bx − 1)]
= 8Bx + 4Bx − 2
= 12Bx − 2

units longer. The number of crossings is multiplied by 2, because for each
overcrossing, the line segment must be raised which requires two additional
raising segments.

5



Lemma 2.5 A French Sinnet knot K where Bx = 2, can be constructed on the
cubic lattice using `(K) = 22By − 4 edges.

Proof. This is proved by induction.
P (3) : 22(3)− 4 = 62 which is the length of the cubic lattice of a Lissajous knot
with By = 3. We start with 3, because it is a requirement of French Sinnet
knots that By > Bx > 1.
Next we want to show that assuming the P (n) case works, the P (n + 1) case
will work.

22(n+1)−4 = 22n+22−4 = (22n−4)+22 = `(Kn)+22 by the inductive hypothesis

Therefore by Lemma 2.4 we see that this is equal to `(Kn+1).

Lemma 2.6 For each additional Bx, the cubic lattice length of the French Sin-
net knot becomes 12By − 2 units longer.

Proof. As seen in figure , the only addition to the cubic lattice for Bx = 4 is
an additional row of By squares. Thus there are 2 · 4By additional base pieces,
since each piece is of length 2, and there are By + (By − 1) additional crossings.
This means that for each additional Bx, the Lissajous knot is

2 · 4By + 2[By + (By − 1)]
= 8By + 4By − 2
= 12By − 2

units longer. The number of crossings is multiplied by 2, because for each
overcrossing, the line segment must be raised which requires two additional
raising segments.

Theorem 2.7 For a French Sinnet knot K, the length of the knot is denoted
`(K) such that `(K) = 2[4BxBy + Cr(K)].

Proof. We will prove this using double induction. For the initial case we will
use P (2, 3), since By > Bx > 1. By lemma 2.5, we know that the equation for
length for the initial case is `(K) = 22By − 4. After plugging in our By, we see
that `(K) = 22(3)− 4 = 62, which we know is true from our diagram.
Next we want to show that assuming P (2, By) is true, P (2, By+1) is true. This
is proved by Lemma 2.5, since we are keeping Bx = 2, and letting By = n+ 1.
Now we want to assume that P (Bx, By) is true, and show that P (Bx + 1, By)
is true. P (Bx + 1, By) = 2[4(Bx + 1)By + Cr(KBx+1)]. Then

P (Bx + 1, By) = 2[4(Bx + 1)By + Cr(KBx+1)]
= 2[4BxBy + 4By + 2By(Bx + 1)−By − (Bx + 1)] by Proposition ??
= 2[6BxBy + 6By −By −Bx − 1]
= 2[4BxBy + Cr(K)] + 12By − 2
= `(K) + 12By − 2 by the inductive hypothesis
= `(KBx+1,By

)
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This result is improved upon by Corollary 3.5 in the next section.

3 Lissajous Knots
For alternating knot diagrams, we know that the number of crossings is the min-
imum number over all projections, and thus is the crossing number of the knot.
In this aspect, it was useful to use French Sinnet knots to develop the equations
from the previous sections. However, some Lissajous knots are nonalternating,
and the equations for additional Bx and By still work for nonalternating knots.
Thus we define a new variable c as follows:

Definition 3.1 Let K be a Lissajous knot. Then c(K) is the number of cross-
ings in the Lissajous diagram of K.

The following two lemmas are used to prove the theorem at the end of the
section.

Lemma 3.2 For By > Bx > 1, ByBx > By +Bx.

Proof. Since By > Bx > 1 and Bx − 1 ≥
By(Bx − 1) ≥ By, then
By(Bx − 1)−Bx ≥ By ≥ By −Bx > 0.
Thus, ByBx −By −Bx > 0, and ByBx > By +Bx.

Lemma 3.3 BxBy ≤ c

Proof.

c = 2BxBy −Bx −By by Section 2.1 of [1]
= 2BxBy − (Bx +By)
> 2BxBy −BxBy by lemma 3.2
= BxBy

Theorem 3.4 If K has a Lissajous diagram with c crossings, then the rope-
length of K is O(c).

Proof.

`(K) ≤ 2[BxBy + c]
= 2BxBy + 2c
≤ 2c+ 2c by lemma 3.3
= 4c

Corollary 3.5 If K is a French Sinnet knot with crossing number Cr(K), then
the ropelength of K is O(Cr(K)).
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4 Crossing Number
It is known that not all knots are Lissajous knots, for example, the trefoil knot.
However, it is known that all knots are Fourier − (1, 1, k) knots by Theorem
3.3 in [4]. A Fourier − (1, 1, k) knot is one which can be represented by the
parametric equations

x(t) = Axcos(Bxt+ Cx),
y(t) = Aycos(Byt+ Cy),
z(t) = Az1cos(Bz1t+ Cz1) + . . .+Azk

cos(Bzk
t+ Czk

).

Since a Lissajous diagram is determined by the projection in the xy plane, we
see that this shows that all knots have a Lissajous diagram. In this section we
will investigate the relationship between the crossing number of a knot K and
the number of crossings in its Lissajous diagram while discussing Lamm’s proof.
First we consider the case for two-bridge knots.

Lamm begins with a theorem that if α ∈ Bs is a braid, with a closure a knot,
then α is conjugate to a rosette braid, and he follows this with Corollary 1.4 to
say that every knot K is the plat closure of a rosette braid with br(K) strings.
He goes on to define a checkerboard diagram, and says a knot diagram is
called a checkerboard diagram of type (2b, n), if it is the plat closure of a braid
σε22 . . . σ

ε2b−2
2b−2 · α with α ∈ R(2b, n) and ε2, . . . , ε2b−2 ∈ ±1

The group of pure braid group generators for a two-bridge knot is R(4, 4) =
{A12, A13, A14, A23, A24, A34}. The braid images of these generators can be seen
in figure 6.

, , , , ,

Figure 6: The pure braid group generators

We can make each of the pure braid group generators into a checkerboard
diagram. Once this is done, we see that each of them has 12 crossings in this
form.

Let K be a two-bridge knot where K is the plat closure of a braid α. For
two-bridge knots π0 = (2, 3), and by Lemma 2.2 in [4], we see that there is a
sequence of operations which transforms ᾱ to β̄ such that π(β) = π0. Then in
the proof of Theorem 2.3 in [4], we see that for two-bridge knots we can create
a pure braid β = σ2α where π(α) = π0. Since β is a pure braid, by definition it
can be written in terms of the pure braid generators.

Conjecture 4.1 Let the number of pure braid generators needed to generate β
be denoted g(β). Then g(β) ≤ Cr(K).
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Conjecture 4.2 Let the number of crossings in the checkerboard diagram for
a knot K be cc(K). Then cc(K) ≤ 12Cr(K) + 1.

Example 4.1

Figure 7: Two-bridge example

We see that the knot above can be generated by 4 of the pure braid generators
using Lamm’s method. Since each generator has 12 crossings in the checkerboard
diagram and there is an additional σ−1, we see that this knot will have 4·12+1 =
49 crossings in the checkerboard diagram.
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