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Abstract

In this paper we take a look at the Jones polynomial and the Tutte polynomial for alternating knots
as well as the first and second twist number. We then examine the second twist number and extend it to
2-bridge knots and try to compute the second twist number in terms of things we can compute strictly
from tangles that correspond to the given knot. The goal at the end of this paper is to be able to get a
list of numbers(tangles) and be able to compute its second twist number.
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1 Introduction

A knot is defined as a simple closed curve in ℝ3. A knot diagram is the projection of a knot onto a plane
with over and under crossings. A link is made up of one or more components, a knot is a link with one
component. In the late 1920’s Kurt Reidemeister showed that knots can be equivalent up to isotopy with a
combination of moves that are now refered to as Reidemeister Moves. These three moves are illustrated in
Figure 1.

In knot theory we want to be able to distinguish between different knots. To make this distinction we
have what are called knot invariants. A knot invariant is a quantity that is defined for each knot and which
is the same if the knots are equivalent up to ambient isotopy. The knot invariant can range from a number
up to something like a polynomial. The first knot polynomial discovered was in 1923 by James Waddell
Alexander II. Then in 1969, John Conway showed a variation of this polynomial using a skein relation but
its significance was not realized until the discovery of the Jones polynomial in 1984.

The paper will be organized as follows. In section 2 the Reidemeister moves will be mentioned as well
as the the Bracket polynomial and its rules. We will see how the Bracket polynomial is invariant under
Reidemeister moves I, II, and III. In section 3 we introduce the Jones polynomial as well as the Tutte
polynomial and their relation. An explanation as to how to get a multigraph and its dual graph from a knot
diagram will also be explained. In section 4 we look at the second twist number and the effect certain twists
on a knot diagram have on its graph. In section 5 we look at a new way to find the second twist number in
terms of the knot diagram.

2 Bracket Polynomial and the Jones Polynomial

I begin by introducing the Kauffman Bracket polynomial which Kauffman defines in [1].

Definition 1 Let L be an unoriented link diagram and let L be the element of the ring ℤ [A,A−1,−A2,−A−2]
defined by:

1. < O > = 1

2. < O ∪ L > = (−A2 −A−2) < L >
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3. = A +A−1 , or

= A +A−1 .

Figure 1: Reidemeister Moves I, II, and III

Kauffman showed that the bracket polynomial is invariant under Reidemeister moves II and III but not
I. In order to show that the bracket is invariant under Reidemeister move I the writhe of a link L needs to
be defined.

Definition 2 The writhe denoted w(L) is the sum of all crossings where each crossing is given a value of
either +1 or -1, depending on the orientation.

We start by illustrating invariance of the Bracket polynomial under R-moves II and III:

∙ =

= A +A−1

= A(A +A−1 ) +A−1(A +A−1 )

= A2 +AA−1 +AA−1 +A−2

= A2 +AA−1(−A2 −A−2) +AA−1 +A−2

= AA−1 =

∙ =

= A +A−1

= A +A−1

=

Now we will see what we get when we compute the bracket polynomial for Reidemeister move I:

∙ =

= A +A−1

= A +A−1(−A2 −A−2)
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= A +(−A−A−3)

= (A−A−A−3)

= −A−3

Figure 2: A negative crossing -1, and a positive crossing +1.

Definition 3 The X polynomial is a polynomial of oriented links and is defined to be

X(L) = (−A3)−w(L) < L >

Since neither w(L) and < L > are affected by moves II and III, X(L) is unaffected by II and III and as we
will subsequently see, X(L) is also unaffected by move I.

Let’s see what happens to X(L) when we look at Reidemeister move I:

W = W − 1 W = W = −A−3

X = (−A3)−W

= (−A3)−W +1(−A−3)

= (−A3)−W (−A3)(−A−3)

= (−A3)−W

= X
As we can see, we get what we want to get, showing that in fact it is not affected by R-move I. The Jones

polynomial is then obtained from the X polynomial by simply replacing A by t−
1
4 .

3 The Jones Polynomial and the Tutte Polynomial

Now, we will look at the Jones polynomial by looking at the simple weighted graphs of twist diagrams. This
description can be found in [4], we include it here for completeness.

Notation

1. G = (V,E) is a multi graph with a set V of vertices and a set E of edges.

2. G̃ denotes a spanning subgraph of G in which parallel edges are deleted and instead are given multi-
plicities, i.e., the number of parallel edges. The subgraph G̃ = (V, Ẽ) has a set of vertices V and a set
Ẽ of edges.
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Figure 3: Fig. 8 knot with positive and negative checkerboard graph; multigraph and its weighted simple
graph; dual graph

3. Define n(j) to be the number of edges e ∈ Ẽ with a multiplicity �(e) and �(j) ≥ j.

4. k(G) is the number of components of a graph G.

5. The Tutte polynomial of a multi graph G is

TG(x, y) :=
∑

F⊆E (x− 1)k(F )−k(E)(y − 1)∣F ∣−∣V ∣+k(F )

Let K be an alternating link with an alternating plane projection P (K) the projection region can be
colored with 2 colors such that adjacent faces have different colors. Each color is assigned a graph and
every region gives rise to a vertex. Two adjacent vertices of the same color are connected by an edge if the
corresponding regions are adjacent to a common crossing. These graphs are then called checkerboard graphs
as explained in [4].

Since for an alternating link K all edges are either positive of negative, we have a positive and negative
checkerboard graph. Letting G be the positive checkerboard graph and a be the number of vertices in G
then b can be the number of vertices in the negative checkerboard graph. Where w is the writhe number.

From [4], we know that these checkerboard graphs are dual to each other and the Jones polynomial of
an alternating link K with positive checkerboard graph G satisfies:

VK(t) = (−1)wt(b−a+3w)/4TG(−t,−1/t).
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Example 1

F k(F ) ∣F ∣ (x− 1)k(F )−k(E)(y − 1)∣F ∣−∣v∣+k(F )

a, b, c, d 1 4 (x− 1)0(y − 1)2

   a, b, c 1 3

   a, b, d 1 3 4(y − 1)1

   a, c, d 1 3

   b, c, d 1 3

    a, b 2 2 (x− 1)(y − 1)

    a, c
1 2

    a, d
1 2

    b, c 1 2 5

    b, d 1 2

    c, d 1 2

     a 2 1

     b
2 1 4(x− 1)

     c 2 1

     d 2 1

     0 3 0 (x− 1)2

Now, we have that the Jones polynomial satisfies:

VK(t) = (−1)wt(b−a+3w)/4TG(−t,−1/t)

Where w is the writhe and in our example when given an orientation, the Fig. 8 knot has w = 0 and
from looking at both of our graphs we see that a = 3 and b = 3 which makes the first half just 1. What we
are left with is now TG(−t,−1/t) which is simply adding all the terms from our table and doing the correct
substitution,
TG(−t,−1/t) = (y − 1)2 + 4(y − 1) + 4(x− 1) + (x− 1)(y − 1) + 5 + (x− 1)2

= y2 − 2y + 1 + 4y − 4 + 4x− 4 + xy − x− y + 1 + 5 + x2 − 2x+ 1
= t2 − t+ 1− t−1 + t−2

Which is indeed the correct Jones polynomial for the Fig. 8 knot.

4 2-Bridge Knots

From [4], we have:

Theorem 1 Let VK(t) = ant
n + an+1t

n+1 + ⋅ ⋅ ⋅+ amt
m be the Jones polynomial of an alternating knot K

and let G = (V,E) be a checkerboard graph of a reduced alternating projection of K. Then,

1. ∣an∣ = ∣am∣ = 1

2. ∣an+1∣+ ∣am−1∣ = T (K)

3. ∣an+2∣+ ∣am−2∣+ ∣am−1∣∣an+1∣ = T (K)+T (K)2

2 + n(2) + n∗(2)− tri− tri∗
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Figure 4: 2-bridge knot with 5 tangles

where T (K) is the twist number, n(2) is the number of edges with multiplicity greater than 2 in Ẽ
and n∗(2) the corresponding number in the dual checkerboard graph.

The number tri is the number of triangles in the graph G̃ = (V, Ẽ) and tri∗ corresponding to tri in the
dual graph.

The proof can be found in [4].

Definition 4 Given b1, b2, ⋅ ⋅ ⋅ , b2i+1, a 2-bridge knot can be constructed by building a knot with a diagram
and bi crossings in each tangle.

b1

b2

b3

b4

b2i

b2i+1

Figure 5: 2-bridge knot with a2i+1 tangles
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Figure 6: 5 twist knot with the checkerboard graph; weighted simple graph; dual graph

5 SecondTwist Number

Theorem 2 Given b1, b2, ⋅ ⋅ ⋅ , b2i+1 with bi, b2i+1 > 2 then tri+ tri∗ = {#bi = 1}

Proof. Looking at the two different cases we being with the positive checkerboard graph:

b1

b2

b3

b4

b2i

b2i+1

b1 - 1

b3 - 1

b2i+1 - 1

b2

b6

b2i

Given a list of tangles with corresponding crossings the weighted simple graph will have tri triangles when
b2i+1 has only 1 crossing. Looking at figure 6, it can be seen that the third tangle has 1 crossing which
corresponds to a triangle in the weighted simple graph. There is only a triangle for each k such that
a2k+1 − 1 = 0. The number of vertices corresponds to one less than the number of crossings in each of the
right tangles while the weighted edges correspond to the number of crossings in each tangle on the left.
Since we know that adding crossings to the right side tangles will add more vertices and edges, it is clear
that the only way to get triangles is by having only one crossing.
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For the dual graph we have:

b1

b2

b3

b4

b2i

b2i+1

a1

a2 - 1

a3

a5

a4 - 1

a2i - 1
a2i+1

Looking at the diagram and its corresponding graph it can be seen that the triangles will correspond to
tangles that are on the right side of the diagram with one crossing. The weighted edges will also correspond
to the right tangles and will have a weighted number equal to the number of crossings. The number of
vertices will now correspond to the left tangles and will be one vertex less than the number of crossings.

From [4] we have that
am−1 = (−1)∣v∣−1(∣v∣ − 1− ∣Ẽ∣)
∣am−1∣ = ∣Ẽ∣+ 1− ∣v∣
∣an+1∣ = ∣Ẽ∗∣ − ∣v∗∣+ 1

Looking at the general forms of the graphs we get that:
∣Ẽ∗∣ = (i+ 1) +

∑i
j=1 a2j

∣v∗∣ =
∑i

j=1 a2j + 2
We can then conclude that
∣an+1∣ = (i+ 1) +

∑i
j=1 a2j − (

∑i
j=1 a2j + 2) + 1 = i

For G, we have that:
∣Ẽ∣ =

∑i
j=0 a2j+1 + i

∣v∣ =
∑i

j=0 a2j+1

∣am−1∣ = ∣Ẽ∣ − ∣v∣+ 1 = i+ 1

Theorem 3 Given b1, b2, ⋅ ⋅ ⋅ , b2i+1 the second twist number of a 2-bridge knot will be

∣an+2∣+ ∣am−2∣ = (T (K)−1)2
4 + 2(n(2) + n∗(2))

Proof. We have that n(2) + n∗(2) + tri+ tri∗ = 2i+ 1 = T (K) therefore,

∣an+2∣+ ∣am−2∣+ i(i+ 1) = T (K)+T (K)2

2 + n(2) + n∗(2)− tri− tri∗

∣an+2∣+ ∣am−2∣+ T (K)−1
2 (T (K)−1

2 + 1) = T (K)+T (K)2

2 + n(2) + n∗(2)− tri− tri∗

∣an+2∣+ ∣am−2∣+ T (K)2−1
4 = T (K)+T (K)2

2 + n(2) + n∗(2)− tri− tri∗

∣an+2∣+ ∣am−2∣ = 2T (K)+T (K)2+1
4 + n(2) + n∗(2)− tri− tri∗
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With tri+ tri∗ = T (K)− n(2)− n∗(2):

∣an+2∣+ ∣am−2∣ = 2T (K)T (K)2+1
4 + n(2) + n∗(2)− T (K) + n(2) + n∗(2)

∣an+2∣+ ∣am−2∣ = (T (K)−1)2
4 + 2(n(2) + n∗(2))

Now that we have been able to find the second twist number and can compute the second twist number
for any 2-bridge knot what it means diagrammatically remains an open question.
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