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Abstract

In this paper we will be using modp-coloring, determinants of coloring matrices
and knots, and techniques from linear algebra to prove that the knot sum of
two non-tricolorable knots is non-tricolorable.



0.1 Introduction

The goal of this paper is to prove that when you compose two knots together
as a knot sum, if neither of the knots used in the knot sum is tricolorable, then
the knot sum will also not be tricolorable. First, let’s introduce some terms.
Some good sources for this and more background material include Knot
Theory by C. Livingston and The Knot Book by C. Adams, A knot can be
thought of as a rope in 3-space, where different crossings are made and the
ends of the rope are connected together. Imagine tying your shoelaces and
then connecting the two ends so you cannot undo the knot.
More formally, a knot is an embedding of a circle in 3-dimensional space. [6]

Figure 1: Example of a Knot
[7]

A link is a set of knotted loops all tangled up together. [2] A well-known
example of a link is the Olympic Rings. It is a link with 5 components,
specifically 5 unknots. Many people denote knots as links, because knots are
links of one component.

Figure 2: Example of a Link
[8]

When P. G. Tait started working with knot theory in the late 1800’s one of the
main problems that he posed was developing the means of proving that knots
are distinct. [1]
How can we tell that two knots are distinct or equivalent, though?
Two knots K and J are called equivalent if K can be changed into J withouth
breaking the any arcs of the knot. The notion of equivalence also satisfies the
definition of an equivalence relation in that it is symmetric, transitive, and
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reflexive. So proving that it is impossible to deform one knot into another is
the same as proving that those knots are in different equivalence classes.
We must also consider knot invariants, which are values or functions that are
the same across the entire equivalence class of the knot which we are
concerned with. Knot invariants include knot complements, Kauffman and
Jones Polynomials [9], minimal crossing number, and p-colorings of knots.
Using these knot invariants helps in the proofs of unanswered or open
questions in knot theory.
Tricoloring is the simplest invariant which distinguishes the trefoil knot from
the unkot, and it was introduced by R. Fox around 1960. [11]
A link diagram L is tricolored if every arc is colored red (r), blue (b), or
yellow (y), and at any given crossing either all three colors appear or only one
color appears. A knot is called tricolorable if its diagrams are tricolorable, and
when a knot diagram has every arc colored the same color, it is called a trivial
tricoloring.
Also, if a knot diagram must use n colors, where n>3, the knot is not
tricolorable, it is n-colorable. [See modp coloring in Section 3]

Figure 3: Examples of Tricolorings (Nontrivial and Trivial)

Two oriented knots (or links) can be summed by placing them side by side and
joining them by straight bars such that orientation is preserved in the sum.
We call this a knot (or connect) sum.

The knot sum of knots K1 and K2 is denoted K1#K2 = K2 # K1 [See Fig. 8
as an example of the knot sum of the two knots in Fig 7.]

At the Knot Theory Workshop at Wake Forest University in 2002, Colin
Adams suggested some open questions about knots, including one on
colorability. Adams’ suggestion was to find a pair of non-tricolorable knots
whose composition (or knot sum) is tricolorable or show that this is not
possible. [10] Our goal is to prove that this situation is not possible.
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0.2 Przytycki’s Proof

In 1994,Józef Przytycki published a proof which proves this question of the
tricolorability of knots sums. His approach is slightly different from the
approach in this paper.
For instance, when Przytycki talks of tricolorability, he denotes the number of
different tricolorings by tri(L). Note that the unknot only has trivial colorings,
so tri(unknot)= 3.
Przytycki proves many facts about tricolorings, including:
Lemma 1.4: tri(L) is always a power of 3.
For this situation, lemma 1.5 is more important. This answers Adams’
question on tricolorability. We repeat Przytycki’s argument for completeness
Lemma 1.5a: tri(L1)tri(L2) = 3tri(L1#L2) [4]
Proof: An n-tangle is a part of a link diagram placed in a 2-disk, with 2n
points on the disk boundary (n inputs and n outputs). We show first that for
any 3-coloring of a 1-tangle (a tangle with one input and one output; See
Figure 1), the input arc has the same color as the output arc. Consider a
trivial component, C, such as an unknot. Let T be our 3-colored tangle, and
let the 1-tangle T ′ be obtained from T by adding C close to the boundary of
the tangle, where it only cuts T near the input and output. The 3-coloring of
T can be extended to a 3-coloring of T ′ (in three different ways) because of
ambient isotopy. But if we try to color C, we immediately see that it is
possible if and only if the input and out put arcs of T have the same color.
Thus if we consider a knot sum L1#L2, we see from above that the arcs
joining L1 and L2 have the same color. Therefore the formula tri(L1)tri(L2) =
3tri(L1#L2) follows. We can see from this lemma that if you take 2 links

and

Figure 4: 1-tangles

which are non-tricolorable, or in otherwords only have trivial tricolorings
(tri(L)=3), then the number of tricolorings of L1#L2 has to be 3. [4]

0.3 Determinants and Coloring Matrices

To algebraically prove the knot sum of two nontricolorable knots is
nontricolorable, we will use the concept of determinants of knots.
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A knot diagram can be labeled with a modp coloring if each edge can be
labeled with an integer from 0 to p-1 such that:

1. at each crossing the relation 2x− y − z≡0 modp holds, where x is the
label on the overcrossing and y,z are the labels on the undercrossings,
and

2. at least two labels are distinct

Note: p is restricted to odd prime numbers. [1] We will see later that if the
determinant of a knot is not prime it can be reduced down to a prime number.
Also, observe when p = 3, this is a tricoloring.

The coloring system of equations (CSE) of a knot diagram is the system of
equations assigned to the knot diagram by reading the equation 2x-y-z≡0 with
respect to the specified modulus. [3]

The coloring matrix of a knot is the matrix of the coefficients of the CSE,
where the rows are the crossings and the columns are the arcs. [3]
EXAMPLE:

Figure 5: Trefoil

CM: 2 −1 −1
−1 −1 2
−1 2 −1


CSE:

2(x1)-x2-x3≡0
2(x3)-x1-x2≡0
2(x2)-x1-x3≡0

The above example labels each crossing and arc of the trefoil graph. The
coloring matrix looks at the crossings and labels the overcrossing with a 2 and
undercrossings with -1. If there is an arc that is not in the crossing we are
looking at, then we label it with 0 in the coloring matrix. [See Figure 3]
But how do we find p for a mod p coloring?
When we look at the coloring matrix of a knot diagram, the determinant of
that matrix is zero because it is linearly dependent. Deleting any one column
and any one row of the coloring matrix of a knot diagram yields a new matrix.
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This new matrix will give you a new determinant. The determinant of a knot
is the absolute value of the determinant of the associated (n− 1) x (n− 1)
matrix. [1]
Theorem 1: The knot can be labeled mod p if and only if the corresponding
set of equations has a nontrivial mod p solution. [1] In other words, so long as
the determinant of the smaller matrix is p or a multiple of p, then the knot
can be labeled mod p.
Also, the number of solutions of the matrix is determined by the modp nullity
of the matrix. This is to say how many p-colorings are possible on a knot
diagram. An example of this is the trefoil. The trefoil is tricolorable, but there
are 9 different tricolorings (3 of which are trivial).
Theorem 2: The determinant of a knot and its mod p rank are independent
of the choice of diagram and labeling. [1] This tells us that no matter what
projection of the knot we are looking at, every projection has the same
determinant and mod p rank
Lemma: A knot is p-colorable if and only if p divides d, where d is the
determinant of the knot.
Notice from this lemma that if the determinant of a knot is not divisible by
three, then the knot is not tricolorable.

EXAMPLE

Figure 6: Figure 8 knot
−1 2 0 −1
0 −1 −1 2
−1 −1 2 0
2 0 −1 −1


This is the coloring matrix for this figure eight knot diagram. The
determinant of this matrix is 0. A row and column must still be deleted to
find the determinant of the knot. If the last row and column are eliminated
the new matrix looks like:  −1 2 0

0 −1 −1
−1 −1 2



5



The determinant of this 3 x 3 coloring matrix is 5, which implies the
determinant of the knot is 5. So by the above lemma, this knot diagram is
5-colorable. If the determinant of a knot is 15, then it is 3-colorable and
5-colorable.
In this paper, when we see det(K1) for some knot we are looking at the
absolute value of the determinant of the coloring matrix for that knot.
These determinants of knots are the central part of the algebraic proof of
Adams’ question.
Conjecture: det(K1#K2)= ±det(K1)*det(K2)
This is to say that the determinant of the knot sum K1#K2 is equal to the
multiplication of the determinants of the knots K1 and K2

We will prove this conjecture in section 5.

0.4 Knot sums and determinants

Let’s look at what happens with the coloring matrices of knot sums. Notice
the xi’s are the arc labels, and the circled numbers are the crossing labels.

Figure 7: Two 6-Crossing Knots

Here we have two 6 crossing knots and their respective coloring matrices.
Denote the knot on the left side as K1 and knot on the right side as K2.
The coloring matrix for K1= M1 =

2 0 −1 −1 0 0
−1 −1 0 0 0 2
0 2 0 0 −1 −1
0 −1 −1 0 2 0
0 0 2 −1 −1 0
−1 0 0 2 0 −1
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and M2= 
−1 0 0 2 0 −1
2 0 0 −1 −1 0
−1 −1 0 0 2 0
0 2 −1 −1 0 0
0 −1 −1 0 0 2
0 0 2 0 −1 −1


det(K1)= 9 and det(K2)= 11. The knot sum of these two knots looks like:

Figure 8: K1#K2

Figure 9: Coloring Matrix of K1#K2

det(K1#K2)= 99 (after we delete a row and column from the CM)
Notice this 12 x 12 coloring matrix. The lines indicate a unique sectioning
that occurs. The top left 6 x 6 matrix looks almost exactly like the coloring
matrix M1. The only change is the squared 0 where the squared -1 should be.
Similarly, the bottom right 6 x 6 matrix looks like the coloring matrix of M2

except for the circled 0 where the circled -1 should be. We will call these
similar matrices M1* and M2*, respectively.
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Lemma: Let K1 be the knot diagram on the left side of the knot sum with m
crossings and the coloring matrix M1, and K2 be the knot diagram on the
right side with n crossings and the coloring matrix M2. There is a way to
always get a knot sum coloring matrix M1#M2 to have the structure where we
have M1* (the similar matrix to M1) in the m x m block in the top left corner,
M2* in the n x n block in the bottom right corner, with the rest of the matrix
M1#M2 filled with zeros with the exception of a -1 in the (m+1, m) spot and
(m,n) spot.
Proof: Assume K1 be the knot diagram on the left side of the knot sum with
m crossings and the coloring matrix M1, and K2 be the knot diagram on the
right side with n crossings and the coloring matrix M2.
The knot sum arcs are the two connecting arcs in the diagram. For example,
in Figure 5, the knot sum arcs are x6 and x12.
To clarify any misconception, when it is mentioned that an arc is “going into”
a crossing on an oriented knot is shown below in Figure 10:

Figure 10: Crossing Example

To get the specific structure of the coloring matrix shown above, then:

1. The orientation of the arcs on K1 and K2 where the knot sum arcs will
connect the two knots cannot be the same direction. So if we look at
Figure 4, x6 in K1 and x6 in K2 end up having the knot sum arcs in
Figure 5. So those two arcs cannot have the same orientation, and they
do not (one of the arcs is oriented up, the other is oriented down).

2. At the first crossings that knot sum arcs pass going from one side of the
diagram to the other side, the knot sum arc should be going into a
crossing as an underarc. In Figure 5, notice the knot sum arc x12 goes
from the right side to the left side of the diagram, and at the first
crossing it comes to on the left side (crossing 6) it is an underarc.

3. After labeling the orientation of each knot, knowing which arcs will turn
into knot sum arcs, label the mth crossing of K1 and the first crossing of
K2 such that both of those crossings will have a knot sum arc going into
them.

4. When looking at the individual diagrams (before they are summed
together), the arcs going into the mth crossing of K1 and the first
crossing of K2 should be labeled xm and xn respectively.
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If we cannot do this at first, we can switch K1 and K2 (such that K2 is now on
the left and K1 on the right), rotate one of the knot diagrams, or switch all the
crossings in one of the diagrams to achieve the above requirements.

0.5 Proof

In this section we will prove using these coloring matrices and determinants
that when we knot sum two nontricolorable knots together, the knot sum will
also be nontricolorable.
First, take a closer look at the coloring matrix M1#M2. We have the m x m
coloring matrix M1* in the top left corner and the n x n coloring matrix M2*
in the bottom right corner.
Proposition 1: det(M1*) = ±det(K1) and det(M2*)= ±det(K2)
First, let A=[aij ] be an n x (n+1) matrix whose columns sum to the zero

vector. Let Âk be the matrix with the kth column removed.
Lemma: det(Âk) = (-1)k+1det(Â1)
Proof: Let Âk be the matrix with the kth column removed.
The determinant of this matrix will have the following structure:

det = a11|Âk11| − a21|Âk21|...... + a(n+1)1|Âk(n+1)1|

= −
∑

a1j |Âk1j | − a2j |Âk2j |..... + a(n+1)j |Âk(n+1)j |

= −
n+1∑
j=2

det[Aj , A2, ..., Âk, ....An+1]

= −det[Ak, A2, ..., Âk, ..., An+1]

= (−1)k+1det[A2, ..., Ak, ..., An+1]

= (−1)k+1detÂ1

Corollary: det(Âk) = (-1)j+kdet(Âj)
Proof:

det(Âk) = (−1)k+1det(Â1)

= (−1)k+1((−1)j+1det(Âj))

= (−1)k+jdet(Âj)

If we look at the row with just one -1 and a 2 in either M1 or M2, we will say
the -1 is in the jth column and the 2 is in the kth column. From this we get:

detM = (−1)1+j(−1)det(Âj) + (−1)1+k ∗ 2 ∗ det(Âk)

= (−1)jdet(Âj) + (−1)1+k ∗ 2 ∗ (−1)j+k ∗ det(Âj)

= det(Âj)[(−1)j + 2(−1)j+1]

= (−1)jdet(Âj)[1− 2]

= (−1)j+1det(Âj)
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From this we can see that the determinant of M1 and M2 will always be equal
to the positive or negative determinant of its respective knot
Now consider the general coloring matrix M1#M2 again [See Figure 8]. Recall
that M1 is an m x m matrix and M2 is an n x n, making the coloring matrix
M1#M2 an (m+n) x (m+n) matrix. The determinant of this (m+n) x (m+n)
matrix is zero. To find the determinant of this knot we must delete a row and
column.
Notice in Figure 8 the placement of the circled (and squared) -1’s. One is in
the (m,n) spot, and the other is in the (m+1,m) spot.
Since we can choose any row and column to delete we will delete the mth row
and mth column such that both of those -1’s are also deleted. Figure 9 shows
the structure of the coloring matrix after the deletion of the row and column.

Figure 11: General (m+n) x (m+n)Coloring Matrix

A well-known fact and a property of square matrices is that if you have:

M=(
A 0
0 B

)
where A,B are smaller square matrices, the det(M)=(detA)(detB)
We have already shown that det(M1*)= ±K1 and det(M2*)=±K2, so we
know the determinant of the m x m or n x n matrix that is left after deleting
a row or column.
The smaller (m-1) x (m-1) or (n-1) x (n-1) matrix will have the same
determinant as its respective knot up to sign. (det((m-1) x (m-1))=
±det(K1), similar for K2) We have no doubt of this because we deleted the
only row that changed in that respective coloring matrix.
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Figure 12: General (m+n-1) x (m+n-1) Coloring Matrix

So taking into consideration both cases, in case 1, det(A)= ±det(K1) and
det(B)=det(M2*)= ±det(K2). It clearly follows that det(K1#K2) =
±det(K1)det(K2).
Thus, if neither of the knots K1 nor K2 are tricolorable, meaning neither of
their determinants are divisible by 3, then det(K1#K2) will also not be
divisible by 3, and therefore not tricolorable.
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