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Abstract

This paper provides an upper bound on the ropelength of certain families of
knots which is linear in the crossing number. A modified version of the notation
described by Dowker and Thistlethwaite is used to identify desired structures
in knot diagrams that allow for algorithmic construction of certain knots on a
cubic lattice.

1 Introduction

A knot is a closed, non-intersecting curve in 3-space. There is interest in knowing
how much rope is needed to form particular knots given a specified radius and
whether there are patterns for certain types of knots. To that end, upper bounds
on the minimal ropelength of particular knots or families of knots are examined.
This paper will not consider links of more than one knot component although the
following results could reasonably be modified to accomodate such structures.

A conformation of a knot is a physical realization of the knot. The ropelength
of a particular conformation is the ratio of the arclength of the rope to its radius.
The ropelength of a knot K, or Rop(K), is the smallest ratio over all possible
conformations of K. The ropelength of a knot is scale invariant so we will fix
the radius of the rope to always be one which also means that the curvature at
any point on the knot can not exceed one.

We will use the term planar projection of a knot to mean a conformation
that has been projected onto a plane. We will say that a planar projection of
a knot is R-2 reduced if the projection presents no opportunities for a crossing-
removing Reidemeister 2 move and if the conformation is reduced in the usual
sense: a conformation is reduced if crossings can not be removed simply by
fixing one part of the knot and rotating or untwisting the other part as in the
figure below.

Figure 1: P1 and P2 represent knotted arcs of the knot.

1.1 The Cubic Lattice

As it pertains to upper bounds for ropelength, any known ropelength of a con-
formation is an upper bound on the knot itself and conformations can be con-
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structed or embedded on a cubic lattice. Embedding a knot on a cubic lattice
is done by drawing it in three-space with edges of unit length only in directions
that are perpendicular to the x, y, or z plane. As with the original knot, the
curve must be closed and non-intersecting. Since we are using a radius of one,
we must also demand that the distance between any two parallel edges must be
at least two. The length of this curve is simply the number of edges used to
construct it. Though the corners exceed the curvature specifications, it is easy
to see that a spacing of at least two units between parallel strands of the knot
allows us to curve each corner into a quarter circle with one unit radius without
making two strands closer than two units away from each other. The length of
the knot once its corners have been smoothed into quarter circles will be shorter
than the original curve on the cubic lattice with the right-angled corners, so the
total number of edges becomes an upper bound on the ropelength of the knot.

For the purposes of this paper, we will only be us-
ing two parallel planes of the cubic lattice which al-
lows us to simplify our diagram even more by project-
ing it onto one of those planes. The planes will be
two units apart in order to satisfy the rope radius of
one. In the event that two different points on the lat-
tice are mapped to the same point via the projection,
the resulting diagram will show a crossing where one
strand is segmented to denote that it travels under-
neath. Also, our diagrams will use red dots to signify
what would be a change of plane on the cubic lattice
meaning each red dot also represents two additional
edges. The figure to the right is an example of the
4-crossing knot, or figure-8 knot, having been embedded on a cubic lattice and
projected down to one plane. The total number of edges for this diagram of the
figure-8 knot is 80.

1.2 Modified Dowker Sets

Let P be a planar projection of a knot K. Beginning at any point on P and
heading in a fixed direction, we assign integers consecutively beginning with 0 to
each crossing every time a crossing is encountered in a manner similar to Dowker
and Thistlethwaite [1]. Hence, each crossing will be assigned two numbers: one
for the undercrossing and one for the overcrossing.

Definition 1.1: A crossing pair C ∈ Z × Z of P consists of any two numbers
assigned to the same crossing of P in the scheme described above, where the
first entry is filled by the number assigned to the undercrossing.

Definition 1.2: A Modified Dowker Set (MDS) D of P is an unordered set of
all the crossing pairs of P given a starting point on P and a fixed direction in
which to traverse and label the crossings of P . As with other sets, we allow |D|
to signify the number of elements in D, which is the number of crossings in P .
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Definition 1.3: Let U = {(u1, o1), (u2, o2)} ∈ D, where D is an MDS. U is a
twist unit if |u1−o2| = 1 or |D|−1 and |u2−o1| = 1 or |D|−1. In other words,
U is a twist unit if each pair’s undercrossing is consecutive modulo |D| to the
other pair’s overcrossing.

Definition 1.4: Let T be a subset of an MDS, D, where 2 ≤ |T | ≤ |D|. We will
define T to be a twist if there exists an ordering of T , say T = {p1, p2, ...p|T |},
such that ∀i ∈ N where i < |T |, {pi, pi + 1} is a twist unit and ∀q ∈ D\T ,
both {q, p1} and {q, p|T |} are not twist units. p1 and p|T | are called the ends of
the twist. By this definition, any two distinct twists from the same MDS are
necessarily disjoint.

We make a note that our definition of twist requires at least 2 crossings though
other authors have allowed twists to consist of only 1 crossing.

Lemma 1.4.1: Suppose a planar projection of a knot P ad-
mits a twist T . If an end of T connects back to itself without
crossing anything else in between, then P is not a reduced
diagram.

Proof 1.4.1: The figure to the right portrays what happens
at the end of the twist if it loops back on itself without crossing
anything else in between. This presents a Reidemeister 1 move
opportunity so the diagram can not be a reduced diagram.

Lemma 1.4.2: If a twist has an even number of crossings and one end connects
to the other end, then that twist can not be part of a link with one component.

Proof 1.4.2: The figure to the left illustrates this
scenario where the box with T inside represents an
even number of crossings in the twist. T having an
even number of crossings means that the strand coming
into it from the top-left will exit out the bottom-left,
so it can not be connected to the other strand in the
twist as it is a closed loop.

Definition 1.5: A knot K can be called an n - twist
knot if it admits an R-2 reduced planar projection P
with MDS D such that there are distinct T1, T2, ...Tn ∈
D where D = T1 ∪ T2 ∪ ... ∪ Tn.

Lemma 1.5.1: It can not be the case that one end of a twist connects to the
end of a different twist twice.

Proof 1.5.1: Let T1 and T2 denote the twists that are connected twice end to
end. Let p1 and p2 be the ends in question of T1 and T2 respectively. There are
two possible cases in which this could happen:

Case 1: They connect in such a way that the projection of T1 and T2 is alternat-
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ing. Since T1 and T2 are disjoint, p1 /∈ T2 and p2 /∈ T1. If the projection is still
alternating, then the undercrossing strand of p1 would become the overcrossing
strand of p2 and vice versa. However, this would make {p1, p2} a twist unit so
T1 and T2 could not be twists by definition which is a contradiction.

Case 2: They connect in such a way that the projection of
T1 and T2 is not alternating. T1 and T2 themselves must
remain alternating so if combined they are no longer alter-
nating, the undercrossing strand and overcrossing strand
of p1 must become the undercrossing strand and over-
crossing strand respectively of p2. This results in a Rei-
demeister 2 move opportunity to decrease the number of
crossings as the figure to the right shows. However, since
we have required our projections to be R-2 reduced, this
leads to a contradiction.

2 One-Twist Knots

Lemma 2.1: Suppose K is a 1 - twist knot, that is K admits a planar projection
P with MDS D such that D is a twist. Then Rop(K) ≤ 20 ∗ |D|.

Proof 2.1: It is sufficient to show that K can be constructed on a cubic lattice
with 20 ∗ |D| edges.

We first observe that |D| must be odd because if it were even, then K would be
a link of two components by lemma 1.4.2.

The algorithm proceeds as follows:

Step 1: We begin at the origin on the upper
plane, which is denoted with the green dot
on the figure to the right.
Step 2: Do steps 3 and 4 a combined total
of |D| − 1 times.
Step 3: Go East 4 units, change planes.
Step 4: Go South 4 units, change planes.
Step 5: Go East 4 units.
Step 6: Go North 2∗|D| units, change planes
Step 7: Go West 2 ∗ |D| units.
Step 8: Do steps 9 and 10 a combined total
of |D| − 1 times.
Step 9: Go South 4 units, change planes.
Step 10: Go East 4 units, change planes.
Step 11: Go South 4 units.
Step 12: Go West 2 ∗ |D| units, change planes.
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Step 13: Go North 2 ∗ |D| units. End.

From step 1 to step 7 we have not yet made any crossings and we end up
exactly 2 edges East and North from where we started in the opposite plane.
Thus, every time we execute either step 8 or step 9 we add a crossing which
gives |D| − 1| crossings. In addition, step 11 also produces a crossing before
looping back around to the origin for a total of |D| crossings.

From step 2 to step 5 we will have gone East 2∗|D|+2 times and South 2∗|D|−2
times. Similarly, from step 8 to step 11 we will go East an additional 2 ∗ |D|− 2
times and South an additional 2 ∗ |D| + 2 times. Thus, we go both East and
South a total of 4 ∗ |D| times each. Steps 6, 7, 12, and 13 tell us to go both
West and North a total of 4 ∗ |D| times each making the total of units travelled
in the cardinal directions 16 ∗ |D|. In addition, we change planes 2 ∗ |D| times,
and since each change requires 2 units to be travelled, the total length of the
arc is 20 ∗ |D|.

Theorem 2.2: If K is a 1 - twist knot then Rop(K) ≤ 20 ∗ c where c is the
minimal crossing number of K.

This results directly from the fact that the 1 - twist projection of a knot is
alternating and reduced. Kauffman showed that in such cases the number of
crossings is the minimal crossing number [2].

3 Two-Twist Knots

Analyzing 2-twist knots is more tedious than 1-twist knots as we will have to
consider the different ways in which 2-twist knots can be connected diagram-
matically. Also, we will need to consider whether there are restrictions on the
number of crossings in the twists themselves. Once we have narrowed down the
possibilities, we will then produce the algorithms for constructing 2-twist knots
on a case by case basis. Since the diagrams may not be alternating, we will also
need to show that the upper bound is linear in the minimal crossing number
and not the number of crossings in the diagram.

Lemma 3.1: Suppose a prime knot K is a 2 - twist knot, that is K admits a
planar projection P with MDS D such that D = T1 ∪ T2 where T1 and T2 are
distinct twists. Then Rop(K) < 20 ∗ |D|.

Proof 3.1: It is sufficient to show that K can be constructed on a cubic lattice
with less than 20 ∗ |D| edges.

We will first examine the circumstances in which the two twists could be ad-
joined and possible values of |T1| and |T2|. Lemma 1.4.1 tells us that no end
of any twist can connect to itself and lemma 1.5.1 tells us that the twists can
not be connected end to end. Alternating versus non-alternating aside, we are
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left with two possibilities of connecting the two twists as seen below. The boxes
with T1 and T2 inside represent any additional crossings T1 and T2 might have
except for the ones already depicted.

First, let us consider the diagram on the left. If either |T1| or |T2| is even, then
the whole diagram represents a link of more than one component by lemma
1.4.2. If both |T1| and |T2| are odd, then the diagram represents a composite
knot which can be seen if we were to cut the two strands connecting T1 and T2.
The knot would then disintegrate into two 1 - twist knots: one with |T1| crossings
and the other with |T2| crossings. Furthermore, both of these scenarios remain
unchanged if the projection is non-alternating. Since we are only considering
prime links of only one component, we can conclude that the diagram on the
left can not occur.

Thus, we are left with the diagram above
on the right where neither twist is con-
nected to itself in any way. However, it
can not be the case that both |T1| and
|T2| are odd in in this diagram either as
it would also be a link of two components
as depicted in the figure to the right. An
odd number of crossings means that an
incoming strand will come into the twist
from one side and exit on the other side.

This scenario also remains unchanged if
the projection is non-alternating so we
are left with the following four cases: |D|
is even and P is alternating; |D| is even
and P is non-alternating; |D| is odd and
P is alternating; or |D| is odd and P is
non-alternating. Nevertheless, we have

7



shown that in every case no twist can be connected to itself in any way, so
the 2 - twist projections will have the same basic shape.

Case 1: |D| is even and P is alternating

The case where |T1| = |T2| = 2 is the figure-8 knot which we were already able
to embed on a cubic lattice with 80 or 20∗|D| edges in Section 1.1 of this paper.
If |T1| 6= 2 or |T2| 6= 2, let m = max{|T1|, |T2|} and n = min{|T1|, |T2|}. We
can therefore assume that m > 2.

Step 1: We begin again at the origin on the
upper plane, which is denoted with the green
dot on the figure to the right.
Step 2: Go West 4 units, South 4 units, then
change planes.
Step 3: Do steps 4 and 5 a combined total
of m − 2 times.
Step 4: Go East 4 units, change planes.
Step 5: Go South 4 units, change planes.
Step 6: Go East 4 units, North 4 units, then
change planes.
Step 7: Go North 2 ∗ m − 6 units.
Step 8: Do steps 9 and 10 a combined total
of n times.
Step 9: Go North 4 units, change planes.
Step 10: Go East 4 units, change planes.
Step 11: Go South 2 ∗ m + 2 ∗ n − 4 units.
Step 12: Go West 2 ∗ n + 2 units, change planes.
Step 13: Do steps 14 and 15 a combined total of m − 2 times.
Step 14: Go West 4 units, change planes.
Step 15: Go North 4 units, change planes.
Step 16: Go North 2 ∗ n + 2 units.
Step 17: Go East 2 ∗ m + 2 ∗ n − 4 units.
Step 18: Do steps 19 and 20 a comined total of n times.
Step 19: Change planes, go South 4 units.
Step 20: Change planes, go West 4 units.
Step 21: Change planes, go West 2 ∗ m − 6. End.

The total number of units travelled in each of the cardinal directions is 4 ∗m +
4 ∗n− 4. Together with the 2 ∗m+2 ∗n change of plane moves for 4 ∗m+4 ∗n
more units travelled, the total number of edges required to construct K on the
cubic lattice is 20 ∗ m + 20 ∗ n − 16.

Since m + n = |T1| + |T2| = |D|, Rop(K) < 20 ∗ |D|.
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Case 2: |D| is even and P is non-alternating

The procedure for the non-alternating case
only differs from the alternating case in that
the non-alternating case does not need to
change planes as many times. The twists
themselves must remain alternating by def-
inition so the only places where two over-
passes or underpasses can occur consecu-
tively is from an end of one twist to the end
of another. Thus, we modify the above algo-
rithm in the follow way:

Steps 6 and 21 should no longer change
planes. The last instance of step 10 and
the first instance of step 19 should no longer
change planes. The diagram to the right il-
lustrates where change of plane moves are
omitted using blue dots.

With 4 fewer change of planes moves the resulting number of edges used becomes
20 ∗ |D| − 24.

It must also be noted that as the 4 crossing knot was the exception in the
alternating case, if the crossings are adjusted to be non-alternating then the
number of edges required is 20 ∗ |D| − 8.

Case 3: |D| is odd and P is alternating

The diagram of the case when |D| is odd is similar to the case when |D| is even
but the algorithm does differ. Either |T1| or |T2| is odd and the other is even,
so let o be whichever one is odd and e be whichever one is even.

Step 1: Start at the origin which will be our upper plane.
Step 2: Go West 4 units, South 4 units, and change planes.
Step 3: Do steps 4 and 5 a combined total of o − 2 times, so step 4 will have
been done one more time than step 5.
Step 4: Go East 4 units and change planes.
Step 5: Go South 4 units and change planes.
Step 6: Go East 2 ∗ e + 2 units.
Step 7: Go North 2 ∗ o + 2 ∗ e − 4 units.
Step 8: Do steps 9 and 10 a combined total of e times.
Step 9: Change planes and then go West 4 units.
Step 10: Change planes and then go South 4 units.
Step 11: Go South 2 ∗ o − 6 units and change planes.
Step 12: Go South 4 units, West 4 units, and change planes.
Step 13: Do steps 14 and 15 a combined total of o − 2 times.
Step 14: Go North 4 units and change planes.
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Step 15: Go West 4 units and change planes.
Step 16: Go North e ∗ 2 + 2 units.
Step 17: Go East 2 ∗ o + 2 ∗ e − 4 units.
Step 18: Do steps 19 and 20 a combined total of e times.
Step 19: Change planes and go South 4 units.
Step 20: Change planes and go West 4 units.
Step 21: Change planes and go West 2 ∗ o − 6 units. End.

The total number of units travelled in each of the cardinal directions is 4 ∗ o +
4 ∗ e − 4. Together with the 2 ∗ o + 2 ∗ e change of plane moves for 4 ∗ o + 4 ∗ e
more units travelled, the total number of edges required to construct K on the
cubic lattice is 20 ∗ o + 20 ∗ e − 16.

Since o + e = |T1| + |T2| = |D|, Rop(K) < 20 ∗ |D|.

Case 4: |D| is odd and P is non-alternating

As with case 2, the only places that can be non-alternating are from an end of
one twist to the end of the other. We use the same algorithm as in case 3 but
with the following modifications:

Steps 11 and 21 should no longer change planes. The first instance of steps 9
and 19 should no longer change planes.

With 4 fewer change of planes moves, the number of edges used is 20 ∗ |D| − 24.

Lemma 3.2: If a prime knot K is a non-alternating 2 - twist knot, that is K
admits a planar projection P with MDS D such that D = T1 ∪T2 where T1 and
T2 are distinct twists, then the minimal crossing number of K is |D| − 1.

Proof 3.2: In this case, we can move one strand so that the diagram becomes
alternating while eliminating one crossing and remaining reduced. The move is
illustrated by the figures below:
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Even if there are no additional crossings in T1 and T2 other than the two for each
already depicted, the diagram is still reduced. Now that it is also alternating,
we can use Kauffman’s results to conclude that |D| − 1 is the minimal crossing
number [2].

Theorem 3.3: If a prime knot K is a 2 - twist knot, then Rop(K) < 20 ∗ c
where c is the minimal crossing number of K.

This follows directly from lemmas 3.1 and 3.2:

In the alternating case, c = |D| [2]. Thus, Rop(K) = 20∗|D|−16 =⇒ Rop(K) <
20 ∗ c. In the non-alternating case, c = |D| − 1 so Rop(K) = 20 ∗ |D| − 24 <
20 ∗ |D| − 20 =⇒ Rop(K) < 20 ∗ c as well. The only possible exception is the
4 crossing, non-alternating case, where the number of edges would come out to
be 20 ∗ c + 12 if constructed as a 2-twist knot. However, the 4 crossing, non-
alternating conformation can be reduced to the trefoil which is a 1-twist knot
and we have already shown that the ropelength of 1-twist knots does not exceed
20 ∗ c.

Consequently, this means that the ropelength of the family of knots that can be
conformed into 2-twist knots is also bounded above linearly in the minimal cross-
ing number regardless of whether the 2-twist conformation is non-alternating.
As an example, we can reverse the step used in lemma 3.2 to turn the alternat-
ing, 6-crossing, non-twist knot below into a non-alternating, 7-crossing, 2-twist
knot and then the theorem would apply.

4 Further Study

4.1 N - Twist Knots

An appropriate question to ask at this point is whether it is possible to construct
any n - twist knot on a cubic lattice so that the length is bounded above linearly
in the minimal crossing number. One of the difficulties in defining a rigorous
alogrithm for drawing knots with more than two twists is that more than two
twists can be connected in more than one way. Nevertheless, a linear upper
bound for these knots seems plausible though it might depend on how many
twists there are and how they are connected.
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4.2 Non-Twist Knots

The hope would be that the algorithms for twist knots could somehow be mod-
ified to accomodate some or all non-twist knots. One way this hope could be
realized is if it could be shown every knot admits some projection in which it is
an n - twist knot for some n. If n - twist knots were shown to have ropelengths
which were bounded above linearly in the minimal crossing number then the
linear upper bound question would be solved.

4.3 Sharper Upper Bounds

The upper bounds established by this paper are not sharp as there are ways
of modifying the diagrams so that fewer edges are used while still only using
two planes of the cubic lattice. For instance, 1 - twist knots constructed in a
more circular shape require fewer edges than if constructed along a diagonal.
It may prove necessary to have better upper bounds as the number of twists
increases so that if a knot needed to be conformed to an n - twist knot by adding
crossings, the upper bound would still be proportional to the minimal crossing
number.
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