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Abstract

This paper generalizes the results of Sadjadi [4] and Alley [1] by pro-
viding an algorithm to find a lower bound on the ropelength of any knot
which admits a reduced diagram. This lower bound is found by changing
this problem of geometry into one of linear programming, which is then
solved by the simplex algorithm.

1 Introduction

The task of finding a lower bound for the ropelength of a conformation that
admits a reduced diagram by means of a taut diagram has been undertaken
by several authors. Sadjadi [4] has found a lower bound for the ropelength for
reduced alternating diagrams (4 · crossing number), while Alley [1] has found a
lower bound for the ropelength for paired diagrams (4 · bridge number). Here,
we extend these results by providing an algorithm to find a lower bound for any
reduced diagram.

The ultimate goal of this study is to simply relate ropelength to invariants
of knot type, as well as to prove that the ropelength of alternating knots is at
least linear in the crossing number. Since it is forseeable that there exist non-
paired diagrams of alternating knots which could stem from conformations with
minimal ropelength, expanding past studies to include non-paired diagrams is
necessary. Please see [1], [4] for details.

2 Definitions and Terminology

A conformation is an embedding of the unit circle in R
3. A knot diagram is

a projection of a conformation onto the xy-plane; a crossing occurs when two
points on the knot have the same x- and y-coordinates. A diagram is said to be
reduced if it has no crossings that are removable as in Figure 1.

At a crossing, the arc corresponding to the point with the larger z-value is
drawn with a solid line through the crossing; the arc corresponding to the point
with the smaller z-value is drawn as a line with a break at the crossing. These

1



Figure 1: The form of a non-reduced diagram, with (knotted) arcs T1 and T2

and removable crossing in the middle.

two arcs are called an overpass and an underpass, respectively. An overpass
(underpass) is called a maximal overpass (underpass) if it cannot be ex-
tended to cross over more underpasses (overpasses). The number of crossings
occuring in a knot diagram is called the crossing number c of the diagram;
the number of maximal overpasses is called the bridge number n. We will let
pi denote the point with the maximum z-value on the arc corresponding to the
ith maximal overpass encountered as one traverses the knot from some starting
point. Similarly, let qi denote the point with the minimum z-value on the arc
corresponding to the ith maximal underpass encountered as one traverses the
knot from the same starting point. For our convenience, we will assume that qi

is encountered before pi ∀i. Let oi and ui denote the height (on the z-axis) of pi

and qi, respectively. If the ith maximal overpass crosses over the jth maximal
underpass, then the ordered pair (pi, qj) will be called a pairing.

At times it will be convenient to relabel the pi and qi as {v1, . . . , v2n}, where
the subscripts indicate the order in which the maximal overpasses and under-
passes are encountered as one travels along the knot beginning at a maximal
underpass v1. It follows that vi corresponds to an underpass when i is odd, and
to an overpass when i is even. See Figure 2 for an example.
To each knot diagram, we define a crossing information graph (CIG) con-
structed as such: there is a vertex for each pi and qj , and two such vertices are
connected by an edge if (pi, qj) is a pairing. An example is given in Figure 3.
Such a graph is necessarily bipartite, meaning that the set of vertices can be
partitioned into two nonempty subsets such that no two vertices from the same
subset are joined by an edge. The two subsets correspond to the set of maximal
overpasses and the set of maximal underpasses, which we will denote by X and
Y respectively. A matching is a set of edges from a bipartite graph with no
common endpoints. An X-matching is a matching involving all vertices in
the graph. A knot diagram is called a paired diagram if its CIG admits an
X-matching.

For any conformation K, define the ropelength of K as Rop(K) = ℓ(K)
r(K) ,

where ℓ(K) is the arc length of K and r(K) is the injectivity radius of K (r(K)
is the maximum radius a tube surrounding the knot could have without the
tube intersecting itself). It has been proven that Rop(K) is scale invariant,
so we will assume that r(K) = 1. With this assumption, it is known that in a
reduced diagram, oi−uj ≥ 2 for each pairing (oi, uj). Define the height function
h : K → {0} × {0} × R by h(x, y, z) = (0, 0, z). Denote the length of h(K) by
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ℓ(h(K)); clearly ℓ(h(K)) ≤ Rop(K). Define the taut image of K by replacing
the arc of h(K) between each h(pi) and h(qi) (as well as between each h(qi)
and h(pi+1), where the subscripts are modulo n) with a straight line segment.
It will be convenient to graph the taut image of K as the taut diagram t(K)
of K, where the vi are placed at their respective heights on the z-axis as in
Figure 4 (strictly speaking, it is the h(vi) that are at these points on the z-axis,
but it drawing the taut diagram we will write vi for brevity). The pi and qi

will be referred to as the vertices of t(K); the edges joining consecutive arcs
will be called the edges of t(K). The length ℓ(t(K)) of t(K) is defined to be∑2n

i=1 |h(vi+1) − h(vi)|, where the subscripts of the vertices are modulo 2n (that
is, v2n+1 = v1). It follows that ℓ(t(K)) ≤ ℓ(h(K)).

3 A Lower Bound for Ropelength of Conforma-

tions that Admit a Reduced Diagram

Definition 3.1: Given any taut diagram t(K), we define the reduced taut
diagram rt(K) by redefining h(vi) for i = 1, . . . , 2n (in that order) as follows:
for each underpass qi in t(K), let h(qi) = ui, and let the heights of the overpasses
immediately following and preceding qi have heights oj , ok respectively. Then in

Figure 2: A knot diagram with labelled overpasses and underpasses of a confor-
mation of the knot 819
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Figure 3: The CIG for the diagram in Figure 2, which is paired via the X-
matching (v1, v8), (v3, v6), (v5, v10), (v7, v4), (v9, v2)

Figure 4: One feasible taut diagram for the example of Figures 2 and 3; note
that any two connected vertices of the CIG are at least 2 units apart. Here,
ℓ(t(K)) = 28.

4



Figure 5: The reduced taut diagram obtained from the taut diagram of Figure
4. Note that each overpass is at or above the heights of its adjacent under-
passes, and each underpass is at or below the heights of its adjacent overpasses.
ℓ(rt(K)) = 28.

rt(K) redefine h(qi) = min(ui, oj , ok). Thus, we move qi down by the smallest
possible distance such that the overpasses immediately following and preceding
qi do not lie below qi. Similarly, for each overpass pi in t(K), let h(pi) = oi, and
let the heights of the underpasses immediately following and preceding pi have
heights uj , uk respectively. Then, in rt(K) redefine h(pi) = max(oi, uj , uk). We
also define the length of rt(K) ℓ(rt(K)) with the same formula as for ℓ(t(K)),
but with new values for some of the h(vi).

See Figure 5 for an example. Note that, since at each step we only move
underpasses down and overpasses up, we cannot create new scenarios in which
underpasses are located above their respective overpasses (and vice-versa), and
thus the process of creating rt(K) will terminate after at most 2n steps.
Lemma 3.1: ℓ(t(K)) ≥ ℓ(rt(K)).

Proof.
We will show that, in each step in the creation of rt(K), the length of

the diagram is not increased. We will show the proof for the translating of
underpasses, the case for overpasses is proved similarly.

Case 1: h(qi) is redefined to be ui.
Then the change in the length of the diagram is clearly 0.
Case 2: h(qi) is redefined to be oj or ok.
WOLOG, assume h(qi) is redefined to be oj . Then the change in the length

of the diagram is equal to new lengths of the two edges hitting qi minus the
old lengths of those edges. This equals (ok − oj) − ((ui − oj) + |ok − ui|) =
ok − ui − |ok − ui| ≤ 0.
Therefore, at each step in the creation of rt(K) the length of the diagram is not
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increased, it follows that ℓ(t(K)) ≥ ℓ(rt(K)).

Lemma 3.2: ℓ(rt(K)) = 2(
∑n

i=1 oi −
∑n

i=1 ui) (where the oi and ui are the
new heights of the vertices in rt(K)).

Proof.
We know that ℓ(rt(K)) =

∑n
i=1 |oi − ui| +

∑n
i=1 |oi+1 − ui|, where the sub-

scripts are modulo n. But by the definition of rt(K), each oi −ui and oi+1 −ui

is positive. Each oi and ui appears in each of the two sums on the right hand
side of the above equation exactly once, and so we have
ℓ(rt(K)) = 2(

∑n
i=1 oi −

∑n
i=1 ui).

Theorem 3.1: Given the CIG of a knot diagram of a reduced conformation
K, let z be the infimum of the lengths of all reduced taut diagrams that fit the
constraints of the CIG (i.e. if pi and qj are connected by an edge in the CIG,
then oj − ui ≥ 2). Then Rop(K) ≥ z.

Proof.
Combining previous results, we have Rop(K) ≥ ℓ(h(K)) ≥ ℓ(t(K)) ≥

ℓ(rt(K)) ≥ z.

4 Linear Programming and the Simplex Algo-

rithm

Here, we give an overview of the theory of linear programming and the simplex
algorithm; a more detailed account can be found in [3]. In order to remain
consistent with the notation of [3], we will momentarily redefine m, n, and c as
in the following definition.

Definition 4.1: Let A be an m × n matrix, where m ≥ n, with rows ai. Let
M and M be the sets of row indices corresponding to equality and inequality
constraints respectively, and let N be the set of column indices corresponding
to constrained variables respectively. Let x ∈ R

n. Then an instance of the
general LP is defined by:

min c · x

ai · x = bi for i ∈ M

ai · x ≥ bi for i ∈ M

xj ≥ 0 for j ∈ N

where b ∈ R
m and c ∈ R

n (c will be referred to as the cost vector). Any LP of
the form

min c · x

Ax = b

xj ≥ 0 ∀j ∈ {1, . . . , n}
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is said to be in standard form.

It is shown in [3] that any LP can be written in standard form through the
replacement of inequality constraints and unconstrained variables by equality
constraints and constrained variables (respectively); this is done by introducing
extra variables. Because of this, we will assume that any given LP is in standard
form. As in [3], we will assume that A is of rank m, which in our case will turn
out to be nonrestrictive.

Definition 4.2: A basis of A is a linearly indepenedent collection of columns
B = {Aj1 , . . . , Ajm

}. Let B be an m×m matrix whose columns are the vectors
(with subscripts in increasing order) of a given basis of A. The basic solution
corresponding to B is a vector x ∈ R

n with

xj = 0 for Aj /∈ B

xjk
= the kth component of B−1b for k = 1, . . . ,m.

If a basic solution satisfies all constraints of the LP, it is said to be a basic
feasible solution (bfs).

Assuming the set of feasible points F (the set of points satisfying all con-
straints of the LP) is nonempty, it can be shown that, for any given LP, at least
one bfs exists. One final assumption made by [3], which is again nonrestrictive
in our case, is that the set {c · x | x ∈ F} is bounded from below (otherwise the
LP would have no optimal solution). We now define the terminology necessary
for the description of the simplex algorithm.

Definition 4.3: Given an LP in standard form with m × n matrix A, b ∈ R
m

and cost vector c ∈ R
n, we define the original tableau O of the LP to be the

(m + 1) × (n + 1) matrix illustrated in Figure 6.
We will find it convenient to call the row and column adjoined to A as row and
column 0. Any (m + 1) × (n + 1) matrix derived from the original tableau of
the LP through elementary row operations is said to be a tableau T of the LP.
The lower-right m× n block of T (which is derived from A through elementary
row operations) will be called the principal matrix P of T . A will also be
called the original principal matrix of the LP.
Definition 4.4: Suppose we have a tableau T of an LP whose principal matrix
P has as a basis the columns of a subidentity matrix [Pj1 , . . . , Pjm

] (that is to
say, Pji

is the standard m-vector ei), and that T0ji
= 0 for i = 1, . . . ,m. Fur-

thermore, suppose that l is the first column from the left, excluding column 0,
such that T0l < 0, and that k is the first row from the top such that Tkl > 0
and Tk0

Tkl

= mini∈R(Ti0

Til

), where R = {i | i > 0 and Til > 0}. Then we define
the action of pivoting on Tkl as adding appropriate multiples of row k to the
other rows so that Pl = ek and T0l = 0. In this, the basis loses the vector Pjk

and gains the vector Pl.
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Figure 6: The original tableau of an LP

Note that it may not always be the case that any such k exists. However,
it can be shown that, throughout the simplex algorithm, if any such k exists,
then such an l must exist, as a consequence of our assuming that {c ·x | x ∈ F}
is bounded from below [3]. For convenience, our definition of pivoting on an
entry of T is slightly different than that of [3] in that it also defines which row
k and column l to choose (the first ones, excluding row and column 0) if more
than one fit the other constraints, so that it is only possible to pivot on at most
one entry of T . [3] includes this “tiebreaker” in the definition of the simplex
algorithm, and the the simplex algorithm proceeds the same way in each case.

Definition 4.5: Given an LP with original tableau O, we define the simplex
algorithm as follows: first, determine a basis {Aj1 , . . . , Ajm

} of A which will
yield a bfs. Then, perform row operations on O so that Pji

= ei and T0ji
= 0

for i = 1, . . . ,m. Then pivot on entries of T (the tableau derived from O) until
no k (as defined above) exists (that is to say, all the entries of T which were
originally occupied by the components of c are non-negative).

It is shown in [2] that this form of the simplex algorithm must terminate
after a finite number of steps.

Theorem 4.1: Suppose we are given an LP that has tableau T after performing
the simplex algorithm on the original tableau O. Then min(c · x) = −T00.
Furthermore, if we let the final basis of P be {Pj1 , . . . , Pjm

} (where Pji
= ei ∀i),

then a vector x which yields this solution is given by:

xk = Ti0 if k = ji for some i

xk = 0 otherwise.

Figure 7 gives an example of the original tableau and simplex algorithm
when applied to the following LP:

min x1 + x2 + x3 + x4 + x5
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Figure 7: An example of the original tableau and simplex algorithm

x1 + 2x2 + x3 = 1

2x1 + x2 + x3 + x4 = 3

2x1 + 5x2 + x3 + x5 = 4

xi ≥ 0 for i = 1, . . . , 5

The first tableau is the original, and the second tableau is after row operations
have been performed to create a subidentity matrix in columns 3, 4, and 5 (which
constitute the basis), as well as to get 0’s in the 0th row of these three columns.
This corresponds to the basic solution (0, 0, 1, 2, 3), which is a bfs. The entry on
which we perform the pivot at each step of the simplex algorithm is circled. For
example, the first entry on which we pivot is the 1 in the first row, since the first
column in the 0th row (excluding column 0) in which a negative entry is found
is column 1, and the minimum of 1

1 , 2
1 and 3

1 (obtained from dividing entries
in the 0th column by corresponding positive entries in column 1) is 1. After
the first pivot (during which column 1 is transformed into a standard vector
and enters the basis, while column 3 leaves the basis), all entries in the 0th row
(excluding column 0) are non-negative, and thus the optimal value of 4 is given
by the bfs (1,0,0,1,2).

5 Calculating the Lower Bound for Ropelength

through Linear Programming

We now wish to apply the simplex algorithm to the minimalization of ℓ(rt(K)).
In order to do this, we need to ensure that the assumptions of [3] are met, and
we need to supply a set of linearly independent columns that will result in a bfs.
The assumptions requiring that c · x have a minimum value and that Ax = b
be consistent are automatic; to ensure that rank(A) is maximal we make the
following definition.
Definition 5.1: Given a knot diagram with set of crossings C, define the set of
basic crossings S ⊆ C such that |S| is maximal and no two elements of S involve
the same overpass and underpass. The number of basic crossings is invariant of
how S is chosen, call c′ = |S| the basic crossing number.
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Definition 5.2: Given an ordering {v1, . . . , v2n} of the maximal overpasses and
underpasses of a knot diagram of a reduced conformation K, we define a total
ordering on the basic crossings of the knot diagram as follows: let basic crossing
c1 be between overpass vi1 and underpass vj1 , and basic crossing c2 be between
overpass vi2 and underpass vj2 . Then we say c1 < c2 if i1 < i2, or if i1 = i2 and
j1 < j2.

Based on how we defined z in the last section, we have the following theorem.

Theorem 5.1: Let {ck} be the totally ordered set of basic crossings of a knot
diagram of a reduced conformation K, such that ci < cj iff i < j. Let z be as
defined in Theorem 3.1, then z is the solution to the LP:

min

n∑

i=1

2oi −

n∑

i=1

2ui

∀k ∈ {1, . . . , c′}, h(vik
) − h(vjk

) ≥ 2

∀j ∈ {1, . . . , n}, oj − uj ≥ 0 and oj − uj+1 ≥ 0

oi, ui ≥ 0 ∀i

where vik
and vjk

are the overpass and underpass (respectively) corresponding
to crossing ck. We will find it more convenient to express the constraints requir-
ing that overpasses be above their adjacent underpasses by: ∀j ∈ {1, . . . , n},
uj − oj ≤ 0 and uj+1 − oj ≤ 0.

Thus, z is actually the minimum of the lengths of all reduced taut diagrams
satifsfying the constraints of the LP (it was originally defined as the infimum).
In order to solve this LP, we first need to put it into standard form. We do this
by introducing surplus variables s1, . . . , sc′ corresponding to the constraints for
each crossing, as well as introducing slack variables t1, . . . , t2n corresponding to
the constraints for pairs of consecutive vertices of rt(K). So the above LP is
equivalent to the following LP:

min

n∑

i=1

2oi −

n∑

i=1

2ui

∀k ∈ {1, . . . , c′}, h(vik
) − h(vjk

) − sk = 2

∀j ∈ {1, . . . , n}, uj − oj + t2j−1 = 0 and uj+1 − oj + t2j = 0

oi, ui, tj , sk ≥ 0 ∀i, j, k

We order the tj in this way so that, beginning at the pair of consecutive
vertices v1 and v2, the tj appear in order in the equations corresponding to the
pairs of consecutive vertices of rt(K), ending with t2n corresponding to the arcs
v2n and v1. Thus, tj can be thought of as the absolute value of the vertical
distance one has to travel to get from vj to vj+1.
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Figure 8: The form of the original tableau for any LP corresponding to the
minimizing of ℓ(rt(K))

We intend to solve this LP via the simplex algorithm, so we must first start
with the original tableau. Because of the strict ordering we have imposed on
the appearance of the variables in the constraint equations, the original tableau
for any LP fitting the above description carries a great deal of structure, which
is illustrated in Figure 8. W is a c′ × n matrix which has a single 1 in each row
(all other entries are 0), and each column of W has at least one 1. In addition,
the 1 in each row of W (other than the first row) is at least as far to the right
as the 1 in the preceding row. X is a c′ × n matrix which has a single -1 in
each row (all other entries are 0), and each column of X has at least one -1. See
Figure 8 for the forms of Y and Z, which are both 2n × n matrices.

Before giving a basic solution which will be a bfs for any LP corresponding to
the minimizing of ℓ(rt(K)), we present in Figure 9 an example of the process of
creating the subidentity matrix and getting 0’s above the basic columns, which
are marked with a dot above them. The original tableau is derived from the
CIG of Figure 3. We first multiply rows 4, 6, and 8 by -1. We then add row 3
to row 4, add row 5 to row 6, and add row 7 to row 8. Next, we add row 1 to
rows 9 and 10, add row 2 to rows 11 and 12, add row 3 to rows 13 and 14, add
row 5 to rows 15 and 16, and add row 7 to rows 17 and 18. Finally, we add -2
times each of rows 1, 2, 3, 5, and 7 to row 0, resulting in the bottom matrix of
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Figure 9. Note that, in this case, our initial bfs is actually optimal, and that
it agrees with [1]. Now we present a basic solution which is feasible for any LP
fitting the above description.
Theorem 5.2: For any LP of the form above, let A ⊆ {1, . . . , c′} with |A| = n
and ∀k, l ∈ A, vik

= vil
iff k = l. That is, A corresponds to a set of n rows in the

submatrix W in the original tableau, all of which have 1’s in different columns.
Then the set of columns of A corresponding to the variables in B = {oi | i ∈
{1, . . . , n}} ∪ {sk | k /∈ A} ∪ {tj | j ∈ {1, . . . , 2n}} is a basis which will yield a
bfs. Furthermore, the values of the oi will all be 2, the values of the sk will all
be 0, and the values of the tj will all be 2. This will correspond to the reduced
taut diagram where the underpasses are all at height 0, and the overpasses are
all at height 2.

Proof.
It is easy to see that the columns corresponding to the elements of B are

linearly independent. Each column corresponding to a tj is already a standard
vector. Each column corresponding to an sk is equal to -1 times a standard
vector, so we multiply each row k by -1. Each column corresponding to an oi

contains a 1 in exactly one row, and all of the other columns corresponding to
elements of B have a zero in that row. Since for each row corresponding to a
constraint equation for ck we have that either k ∈ A (resulting in the selection
of an oi) or k /∈ A (resulting in the selection of an sk), we have that the number
of oi’s plus the number of sk’s equals c′. Therefore |B| = c′ + 2n (since there
are 2n tj ’s; n is the bridge number), which is the required rank of the principal
matrix. Thus, in order to get a subidentity matrix we just need to perform
elementary row operations to transform all columns corresponding to oi’s into
standard vectors. This is possible, since the only spots underneath the first 1
in any such column where anything other than a 1 could occur would be in the
rows of the submatrix W corresponding to ck with k ∈ A, as well as in the
submatrix Y (in fact, such an entry in both cases must be equal to -1). We
can then add the row containing the selected 1 to these other rows, and the
other basic columns will remain standard vectors since they have a 0 entry in
that row. Therefore the columns corresponding to the elements of B are linearly
independent and form a basis.

We now find the basic solution corresponding to this basis by examining
the values of the entries in the 0th column of T after the row operations have
been performed. First, note that, in the original tableau, in the first c′ rows
(excluding the 0th row) we find the entry 2 in the 0th column, in the subsequent
2n rows we find a 0 in the 0th column. As a reminder, we obtained a subidentity
matrix from the basis by first multiplying each row k corresponding to an sk by
-1, and then adding rows containing the 1 of a basic column corresponding to
an oi (there is only one such 1 in each column) to rows beneath it in order to
obtain a standard vector in that column. After the multiplication of each row
k by -1, the value in the 0th column becomes a -2. However, since these rows
contain undesired non-zero entries in a basic column corresponding to an oi,
the row containing the 1 of the basic vector will be added to it, and the entry
in the 0th column of such a row must be a 2. Thus, each row k will end up
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Figure 9: The original tableau for the constraints given by the CIG of Figure 3,
followed by the matrix formed after creating the subidentity matrix and getting
0’s above the basic columns, which have a dot above them.
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with a 0 in the 0th column. Because of the structure of the submatrix Y, each
of the bottom 2n rows will have a row with a 2 in the 0th column added to it
exactly once, resulting in each of the bottom 2n rows ending up with a 2 in the
0th column. Keeping in mind that each of the variables not corresponding to a
basic column will have value 0, we have that each of the oi’s has value 2, each of
the ui’s has value 0, each of the sk’s has value 0, and each of the tj ’s has value
2; this is easily seen to be a bfs.

Approaching the problem of minimizing the length of a taut diagram through
the simplex algorithm allows us to easily prove the results of [1] and [4].

Theorem 5.3: Let K be a conformation that admits a reduced, paired diagram.
Then Rop(K) ≥ 4n.

Proof.
Suppose we are given a diagram with some pairing. We can assume that

each crossing included in the pairing is a basic crossing, since taking two edges
connecting the same two vertices of the CIG would contradict the fact that
these crossings are in a pairing. We will let A be the set of all k such that ck

is included in the given pairing. We shall prove that the bfs corresponding to
A found in the previous theorem (which results in the reduced taut diagram
having length 4n) is optimal. Recall that a bfs is optimal if all the entries in
the 0th row of the tableau (excluding the 0th column) are nonnegative after the
subidentity matrix is formed and the entries above the basic columns are equal
to zero. In the original tableau, as well as in the tableau resulting from the
creation of the subidentity matrix as in the preceding theorem, we have that
the entries in the 0th row are 2 in the columns corresponding to the oi’s, -2 in
the columns corresponding to the ui’s and 0 in the columns corresponding to
the sk’s and tj ’s. Thus, in order to get a 0 in the 0th row of each basic column,
we need to add -2 · (each row corresponding to ck with k ∈ A) to the 0th row.
Each such row corresponding to ck has a 2 in the 0th column, a 1 in the column
corresponding to the overpass of the crossing, a -1 in the column corresponding
to the underpass of the crossing, a -1 in the column corresponding to sk, and 0’s
everywhere else. Furthermore, since these crossings constitute a pairing, every
column corresponding to an oi has exactly one of the aforementioned 1’s below
it, and every column corresponding to a ui has exactly one of the aforementioned
-1’s below it. Thus, when -2 times each of the chosen n rows is added to the
zeroth row, the entries in the 0th row of all the columns corresponding to the oi’s
and ui’s will become 0’s. In the columns corresponding to the sk with k ∈ A,
the entry in the 0th row will increase to 2; it will remain at 0 in the columns
corresponding to sk with k /∈ A. Finally, each of the entries in the 0th row of
the columns corresponding to the tj will remain at 0. Therefore all the entries
in the 0th row of the tableau (excluding the 0th column) are nonnegative, and
our initial bfs is optimal. Since each of rows added to the 0th row has a 2 in the
0th column, T00 = n · (−2 · 2) = −4n, and the optimal value is 4n, as expected.
So we have Rop(K) ≥ 4n.
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We now have the ability to find a lower bound for the ropelength of any
conformation that admits a reduced diagram, given we have the (preferrably
machine) power to carry out the simplex algorithm. We now move in the di-
rection of finding this lower bound without directly appealing to the simplex
algorithm.

6 The Geometry of the Simplex Algorithm, and

an Application

Again, we begin by giving an overview of the material presented in [3]. For
any d, an affine subspace of R

d is a subspace S translated by a vector u:
A = {u + x | x ∈ S}. The dimension of A is that of S. Equivalently, an
affine subspace A of R

d is the set of all points satisfying a set of inhomogeneous
equations A = {x ∈ R

d | aj1x1 + . . . + ajdxd = bj ; j = 1, . . . ,m}. The di-
mension of any subset of R

d is the smallest dimension of any affine subspace
which contains it. An affine subspace of R

d that has dimension d − 1 is called
a hyperplane. Alternately, a hyperplane H = {x ∈ R

d | a · x = b}, where
a ∈ R

d, a 6= 0 and b ∈ R. A hyperplane defines two halfspaces, which are
the sets of points satisfying a · x ≤ b and a · x ≥ b, respectively. The bounded
and nonempty intersection of a finite number of halfspaces is called a convex
polytope, or simply a polytope. As the name suggests, a convex polytope
is convex, meaning that any two points in the polytope can be joined with a
line lying entirely in the polytope. A face is the nonempty intersection of a
hyperplane with the boundary of a polytope, subject to the condition that the
hyperplane does not intersect the interior of the polytope. For a polytope of
dimension d, there are three kinds of faces: a facet (of dimension d−1), an edge
(of dimension 1), and a vertex (of dimension 0).

For any set of feasible points F of an LP with original principal matrix A,
there exists a corresponding convex polytope P in R

d, where d = (number of
columns in A) - (number of rows in A). In our case, d = (c+4n)−(c+2n) = 2n.
Each point (x1, . . . , xδ) in F is mapped to the point (x1, . . . , xd) in P (by sim-
ply projecting onto the first d coordinates). In our case, the first d coordinates
are equal to the heights of the overpasses and underpasses in the reduced taut
diagram. This map can be reversed, as the dimension of the polytope ensures
that, given the values of d variables, we can solve the constraint equations to
determine the necessary values of the rest. In this mapping, bfs’s in F corre-
spond to the vertices of P , and the movement from bfs to bfs during the simplex
algorithm corresponds to the movement from vertex to vertex along the edges
of F . We first prove an important lemma.

Lemma 6.1: Let v ∈ R
2n be in a convex polytope P ; assume dim(P ) > 1.

Suppose there exists a non-zero vector y ∈ R
2n such that, for positive scalars

α, β, v − αy, v + βy ∈ P . Then v is not a vertex in P .
Proof.
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Figure 10: Illustration of the proof of Lemma 6.1

Refer to Figure 10. Let H be any hyperplane in R
2n that contains v; we

will prove that H must contain some other point in P . Let H be defined by
the equation a · x = b for some nonzero vector a ∈ R

2n and some b ∈ R. If
v − αy or v + βy ∈ H, then we are done. Otherwise, consider the function
f : [0, 1] × R

2n → R by f(λ, u) = λ(a · (v + βy)) + (1 − λ)(a · (v − αy + u)) − b.
Then f is obviously continuous, and linear in λ. Since f(0, 0) is non-zero and
f( α

α+β
, 0) = a · v − b = 0, we have that df

dλ
6= 0. We prove the case where

df
dλ

> 0, the other case is similar. Then we have f(0, 0) = a · (v − αy) − b < 0
and f(1, 0) = a · (v + βy) − b > 0. Let the line L = {v + cy | c ∈ R}. Since
dim(P ) > 1, ∃w ∈ P − L. Let ǫ > 0 be small enough so that f(0, ǫ(w −
(v − αy))) < 0. Then we have that f(1, ǫ(w − (v − αy))) = f(1, 0) > 0, and
since f is continuous, ∃λ0 such that f(λ0, ǫ(w − (v − αy))) = 0. Let the line
M = {v + βy + d(βy + αy − ǫ(w − (v − αy))) | d ∈ R}; it follows (through
algebra) that L ∩ M = {v + βy}. We have f(λ0, ǫ(w − (v − αy))) =

= λ0(a · (v + βy)) + (1 − λ0)(a · (v − αy + ǫ(w − (v − αy)))) − b

= a · (λ0v+λ0βy+v−αy+ǫ(w− (v−αy))−λ0v+λ0αy−λ0ǫ(w− (v−αy)))−b

= a · (v + βy + (λ0 − 1)(βy − αy − ǫ(w − (v − αy)))) − b = 0.

Let z = v+βy+(λ0−1)(βy+αy−ǫ(w−(v−αy))). Then z ∈ H. But clearly
z ∈ M ⊆ P (since P is convex and v+βy, v−αy+ǫ(w−(v−αy)) ∈ M∩P ), and
assuming z ∈ L produces (through algebra) λ0 = 1, a contradiction. Therefore
z ∈ H ∩ P with z 6= v, and v is not a vertex of P .

Theorem 6.1: Suppose that, for an LP corresponding to the minimizing of
the length of a reduced taut diagram, we have a feasible solution in which there
exists a vertex vi in the reduced taut diagram such that h(vi) 6= 2q ∀q ∈ Z

+ =
{0, 1, 2, . . .}. Then this feasible solution is not a bfs.

Proof.
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We shall show that the corresponding point v = (h(v1), . . . , h(v2n)) ∈ P is
not a vertex of P . We split into two cases.

Case 1: There exist vi, vj such that |h(vi) − h(vj)| 6= 2q ∀q ∈ Z
+.

WOLOG, assume h(vi) 6= 2q for any q ∈ Z
+. Let S = {k ∈ {1, . . . , 2n} | |h(vi)−

h(vk)| = 2qk for some qk ∈ Z
+}. For any l ∈ S, consider the effect that increas-

ing the height of vl (along with the other vertices corresponding to elements of
S) would have on the feasibility of the current arrangement. The only way in
which vl could be involved in a violation of the constraint equations of the LP
would be if it was moved to within 2 of a vertex connected to it, or if it was
an underpass and was moved above a consecutive overpass. But since we are
moving all vertices a distance of 0 or 2 away from vl along with vl, ∃βl > 0
such that increasing the height of all vk with k ∈ S by βl will not result in a
violation of any constraint equations involving vl. Then ∃β = mink∈S(βk) > 0
such that increasing the height of all vk with k ∈ S by β will still result in a
feasible solution. Similarly, ∃α > 0 such that decreasing the height of all vk with
k ∈ S by α will still result in a feasible solution (we will also have to consider
the constraint that we not move vertices below zero, but this again results in
our being able to decrease the h(vk) by some positive distance, since h(vi) 6= 2q
for any q ∈ Z

+). Let y ∈ R
2n be defined by:

yk = 1 for k ∈ S

yk = 0 otherwise

Then v, v − αy, v + βy ∈ P , and by the previous lemma v is not a vertex of P .
Case 2: There exists r ∈ R such that ∀i, h(vi) = 2qi + r for some qi ∈ Z

+.
Let α = mini(h(vi)), y = (1, 1, . . . , 1). Then clearly v, v − αy, v + αy ∈ P ,

and again by the previous lemma v is not a vertex of P .
Therefore, by [3], the corresponding feasible solution is not a bfs.

Corollary 6.1: There exists an arrangement of the reduced taut diagram with
minimal length in which ∀i h(vi) = 2qi for some qi ∈ Z

+.

7 Future Research

While we have successfully found an algorithm which will give a lower bound
on the ropelength of any reduced conformation, there is much to be done in
determining what this lower bound actually is. Ultimately, it would be nice to
relate this lower bound back to properties of the knot and CIG, so that one does
not have to resort to using the simplex algorithm every time one wants to find
a lower bound. In addition, finding a simple formula for such lower bounds may
allow us to make general statements about a lower bound for the ropelength of
a knot. However, in order to do this, we also need to remove the constraint that
the conformation be reduced, which is another possible direction for research.

The fact that there exists an arrangement of the taut diagram with minimum
length in which each vertex is at a height of 2 greatly reduces the number of
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arrangements one has to consider when finding one with minimum length. Now
that we have narrowed the minimalization of the length of the taut diagram to
the “discrete” case, we may be in a position to develop an entirely new algorithm
which is better tailored to this specific problem.
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