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Abstract. We show that the ropelength of any alternating con-

formation is at least 4 times the crossing number of its knot type.

This is a generalization of the known result for reduced alternating

conformations. In addition we give lower bounds on the ropelength

contribution of twists.

1. Introduction

A knot is a simple closed curve in R
3. A knot diagram is a two

dimensional representation of a knot, formed by projecting the knot
onto a plane. A crossing is a point in a knot diagram where two arcs
of the knot projection intersect. An overpass is an arc for which at
each of its crossings it passes over the other arc. An alternating knot
is is one which admits a diagram such that the crossings alternate
between overpass and underpass when traveling along the orientation
of the knot. A crossing is said to be reducible if it can be removed
as in figure 1. We will refer to the distance between an overpass and
an underpass at their crossing as the their crossing distance. A knot
diagram is reduced if it has no reducible crossings.

Figure 1. Reducible Crossing

To a given conformation, k, we associate a quantity called the injec-
tivity radius, which is the maximum thickness that can be assigned to
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the curve before it self-intersects. We define its ropelength to be the
ratio of k’s arclength to its injectivity radius, r, and we write

Rop(k) :=
arclength

r
.

Supposing K is a knot type, we define the ropelength of K to be

Rop(K) := inf
k∈K

Rop(k).

Since ropelength is scale invariant we will choose r = 1
2
. The only knot

type for which the ropelength is known precisely is the unknot, with a
ropelength of 2π.

2. Ropelength of Alternating Conformations

In order to obtain a ropelength lower bound for all alternating con-
formations we will employ Sadjadi’s methods. Lemmas 2.1 through 2.4
are a reproduction of her work. We will then employ a result by Denne,
Diao, and Sullivan.

For an alternating conformation k we label each overpass, pi, and
its underpass, qi, where 1 ≤ i ≤ cr(k). We assume that its diagram is
projected onto the xy-plane. Let oi denote the height of pi along the
z-axis at its crossing and ui the height of qi.

Figure 2. Labeled Diagram of a Trefoil

Definition Define the height function h : R
3 → R by h(x, y, z) :=

z. We will denote the image of k under h with h(k). Observe that
l(h(k)) ≤ l(k).

To find a lower bound for l(h(k)), we construct what Sadjadi called
the taut image of k. The point of crossing of each overpass of k and
the point of crossing of each underpass are selected, and each point is
connected by a line segment to the next point along the orientation of
k. Thus, the image under h of the resulting polygonal curve, which we
will write as t(k), has arc length less than or equal to that of h(k).
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Figure 3. Graph of h(k) for the trefoil above, with
paths bent for viewing

Figure 4. Graph of t(k)

Definition A pair (pi, qi) is said to be split by a point z0 ∈ R if
oi ≥ z0 ≥ ui.

Lemma 2.1. A point z0 which splits b overpass-underpass pairs of a

conformation k has at least 2b edges which cross it in t(k).

Proof. Let a be the number of unsplit pairs above z0 and b the number
split. This means that there are a + b overpasses above z0. The case
that results in the fewest edges crossing z0 is when every edge incident
with an overpass above z0 is from an underpass above z0. In this case,
since there are 2 edges incident with every overpass and underpass,
we have 2a edges joining underpasses above z0 to overpasses above z0,
leaving the remaining 2(a + b) − 2a = 2b edges to cross z0. �

Definition We now give another labeling of the overpass and un-
derpass heights, hi for 1 ≤ i ≤ 2cr(k) where hi ≥ hi+1 for all i.
Define bn to be the number of overpass-underpass pairs split by a point
z0 ∈ [hn, hn+1] where z0 ∈ (hn, hn+1) if hn 6= hn+1.
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Lemma 2.2. An alternating conformation k for which every crossing

distance is at least 1 has arclength at least
∑cr(k)−1

n=1 2bn(hn − hn+1).

Proof. There are bn pairs split by a point z0 ∈ [hn, hn+1], so there are
at least 2bn edges crossing z0 by Lemma 3.1. We know that there
are 2cr(k) − 1 intervals of the form [hn, hn+1], and each edge cross-
ing an interval [hn, hn+1] has length at least hn − hn+1, so l(t(k)) ≥
∑2cr(k)−1

n=1 2bn(hn − hn+1). �

Lemma 2.3. For an alternating conformation k where each crossing

distance is at least 1,
∑n

i=1 2(oi − ui) =
∑2cr(k)−1

n=1 2bn(hn − hn+2).

Proof. For a particular oi and ui there is some x, y ∈ {1, ..., 2cr(k)}
such that oi = hx and ui = hy. The interval [hx, hy] is partitioned by

hx ≥ hx+1 ≥, ...,≥ hy−1 ≥ hy and the length of [oi, ui] is
∑y−1

j=x hj−hj+1.
So

cr(k)
∑

i=1

(oi − ui) =

cr(k)
∑

i=1

(

y−1
∑

j=x

(hj − hj+1)

)

.

Every term in this sum is of the form hn − hn+1, and since each term
occurs once for every pair it splits, we know that each hn−hn+1 occurs
bn times in the sum. Hence,

cr(k)
∑

i=1

(oi − ui) =

2cr(k)−1
∑

n=1

bn(hn − hn+1).

This means
cr(k)
∑

i=1

2(oi − ui) =

2cr(k)−1
∑

n=1

2bn(hn − hn+1).

�

Lemma 2.4. Let k be an alternating conformation for which each

crossing distance is at least 1. Then arclength(k) ≥ 2cr(k).

Proof. We know oi − ui ≥ 1 for all i so

l(k) ≥ l(t(k)) ≥
cr(k)−1
∑

n=1

bn(hn − hn+1) =

cr(k)
∑

i=1

2(oi − ui) ≥
cr(k)
∑

i=1

2(1) = 2cr(k).

�
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Lemma 2.5. Let k be an alternating conformation with diagram D.

If for some crossing with overpass o and underpass u, |o − u| < 1,
then there exists an arc of the conformation γou from o to u which is

unknotted and has no crossings with any other arc of k.

Proof. A result from Denne, Diao, and Sullivan states that if ab is a
secant of k with |a−b| < 1, then the ball with diameter ab intersects k in
a single unknotted arc whose length is at most arcsin |a−b|. Therefore,
when we construct the ball S with diameter ou, its intersection with k

is an unknotted arc since |o − u| < 1. So there exists an arc from o to
u, γou, which is unknotted.

The sphere S projects to a circle of diameter |o − u| in D. When
viewing γou in D, since o and u have the same x and y coordinates,
the projection of γou in D is a simple closed curve, so any other arc
which crosses it must cross an even number of times. Hence, such
an arc would have either two consecutive overpasses, two consecutive
underpasses, or one of each. The first two cases contradict that D is an
alternating diagram. As for the last case, the arc would have to pass
within the sphere S, contradicting that there can be only one arc in
the sphere. �

Lemma 2.6. Given an alternating conformation k with diagram D,

let c be some crossing. If an arc along the orientation of k from the

overpass of c to the underpass or vice versa is unknotted and has no

crossings with any other arc of k, then when the arc is replaced by

a line segment from the overpass at c to the underpass, the resulting

conformation k′ is alternating and of the same knot type.

Proof. Supposing γ is the unknotted arc from the overpass o at c to
the underpass u, we know that prior to o is an underpass and after u

is an overpass since D is alternating. Hence, by replacing γ with ou

the resulting conformation has an alternating diagram when projected
onto the same plane as that of D. �

Theorem 2.1. Let K be an alternating knot and k ∈ K an alternating

conformation. Then Rop(k) ≥ 4cr(K).

Proof. If every crossing distance in D is at least 1, then we apply
Lemma 3.1. Suppose that there are some crossings with crossing dis-
tance less than 1. Consider such a crossing with overpass o and un-
derpass u. By Lemma 3.2 γou is unknotted and has no crossings with
any other arc of k. Thus, by Lemma 3.3 k′ is alternating and k′ ∈ K.
This means that arclength(k) ≥ arclength(k′) ≥ 2cr(K). Dividing by
the injectivity radius 1

2
, Rop(k) ≥ 4cr(K). �
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3. Ropelength of Twists

Lemma 3.1. It is either the case that every point on both arcs of a

twist are at least a distance 1 away from every point on the other arc

or the twist is unknotted.

Proof. We view the twist from the side and label the overpasses and
underpasses of the twist as in figure 5.

Figure 5

If a point on one arc were less than a distance 1 from some point
on the other, then we construct the ball whose diameter is the line
segment joining those two points. The intersection of the knot with
this ball is a single unknotted arc. If this arc contains the portion of
the conformation beyond the twist from Os to Ur, or from Or to Us,
then it is unknotted as in figure 6.

Figure 6

If the arc from Or to Os outside the twist is contained in the ball,
then |Or − Os| < 1, so we construct the ball with diameter OrOs.
Viewed in the diagram the twist and ball appear as in the figure below.
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Figure 7

In order for the arc to travel from Or to Os it would have to cross the
twist, contradicting that it is a twist in the diagram. The case where
Ur to Us remains in the ball leads to the same contradiction. If we
have none of the previous cases then the intersection of the knot with
the ball contains two arcs leading to a contradiction. So in all possible
cases, if a point on one arc is less than a distance 1 from a point on
the other arc, then the twist is unknotted. �

Lemma 3.2. For all A,B, h, k ∈ R,
√

1 + (A + h)2 + (B + k)2+
√

1 + (A − h)2 + (B − k)2 ≥ 2
√

1 + A2 + B2.

Proof. Let f : R
2 → R be the function f(x, y) :=

√

1 + x2 + y2. Then
f is twice differentiable on R

2 and its Hessian matrix H is

(

fxx fxy

fyx fyy

)

=





y2+1

(1+x2+y2)
3

2

−xy

(1+y2+x2)
3

2

−xy

(1+x2+y2)
3

2

x2+1

(1+x2+y2)
3

2





It is known that f is convex if and only if H is positive semi-definite

for all r ∈ R
2, so let r =

(

a

b

)

∈ R
2. Then rT Hr =

(a b)





y2+1

(1+x2+y2)
3

2

−xy

(1+y2+x2)
3

2

−xy

(1+x2+y2)
3

2

x2+1

(1+x2+y2)
3

2





(

a

b

)

=
a2(y2 + 1) − 2abxy + b2(x2 + 1)

(1 + x2 + y2)
3

2

≥ a2y2 − 2abxy + b2x2

(1 + x2 + y2)
3

2

=
(ay − bx)2

(1 + x2 + y2)
3

2

≥ 0.

So H is positive semi-definite for all r ∈ R
2 and therefore f is convex.
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By the definition of a convex function, for all x, y ∈ R
2 and θ ∈ [0, 1],

we have θf(x) + (1 − θ)f(y) ≥ f(θx + (1 − θ)y). By choosing θ = 1
2
,

x = (A + h,B + k), and y = (A − h,B − k), we have

1

2

√

1 + (A + h)2 + (B + k)2 +
1

2

√

1 + (A − h)2 + (B − k)2 =

1

2
f((A + h,B + k)) + (1 − 1

2
)f((A − h,B − k)) ≥

f(
1

2
(A + h,B + k) + (1 − 1

2
)(A − h,B − k)) =

√
1 + A2 + B2.

Hence,

√

1 + (A + h)2 + (B + k)2+
√

1 + (A − h)2 + (B − k)2 ≥ 2
√

1 + A2 + B2.

�

Definition For two curves r(t) := 〈t, yr(t), zr(t)〉 and s(t) := 〈t, ys(t), zs(t)〉
defined for 0 ≤ t ≤ d for some d ≥ 0 define

r0(t) :=

〈

t,
yr(t) − ys(t)

2
,
zr(t) − zs(t)

2

〉

and

s0(t) :=

〈

t,
ys(t) − yr(t)

2
,
zs(t) − zr(t)

2

〉

.

For convenience we will sometimes refer to the y-coordinate of r0(t)
as yr0

(t) and the z-coordinate as zr0
(t), with the same convention for

s0(t).

Lemma 3.3. Two curves r(t) := 〈t, yr(t), zr(t)〉 and s(t) := 〈t, ys(t), zs(t)〉
defined for 0 ≤ t ≤ d have a total arclength greater than or equal to

that of r0(t) and s0(t).
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Proof. By Lemma 3.2, we have that for all t

|r′(t)| + |s′(t)| =
√

1 + y′2
r + z′2r +

√

1 + y′2
s + z′2s

=

√

1 +

(

y′

r − y′

s

2
+

y′

r + y′

s

2

)2

+

(

z′r − z′s
2

+
z′r + z′s

2

)2

+

√

1 +

(

y′

r − y′

s

2
− y′

r + y′

s

2

)2

+

(

z′r − z′s
2

− z′r + z′s
2

)2

≥

√

1 +

(

y′

r(t) − y′

s(t)

2

)2

+

(

z′r(t) − z′s(t)

2

)2

+

√

1 +

(

y′

s(t) − y′

r(t)

2

)2

+

(

z′s(t) − z′r(t)

2

)2

= |r′0(t)| + |s′0(t)| .
�

Definition For r(t) := 〈t, yr(t), zr(t)〉 we may parametrize r0(t) in
cylindrical coordinates as 〈t, R(t) cos θ(t), R(t) sin θ(t)〉 where R(t) :=
√

yr0
(t)2 + zr0

(t)2 and θ(t) := tan−1
(

zr0
(t)

yr0
(t)

)

. Define

rc(t) :=

〈

t,
1

2
cos θ(t),

1

2
sin θ(t)

〉

.

Lemma 3.4. If R(t) ≥ 1
2

for all t, then the arclength of r0(t) is greater

than or equal to the arclength of rc(t).

Proof. Observe that for all t,

|r′0| =
√

1 + (R′ cos θ − Rθ′ sin θ)2 + (R′ sin θ + Rθ′ cos θ)2

=
√

1 + R′2 + (Rθ′)2 ≥

√

1 +

(

1

2
θ′
)2

= |r′c| .

�

Lemma 3.5. The minimum arclength of all arcs from rc(0) to rc(d)

on the cylinder of radius 1
2

and of height d is

√

(

π
2

)2
+ d2.

Proof. Every such path along the cylinder with the desired endpoints
corresponds to a path along a rectangle with side lengths d and π. A
straight line between the endpoints on the rectangle is the hypotenuse
of a right triangle with legs of length π

2
and d.
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Therefore, the least possible arclength is
√

(

π
2

)2
+ d2.

�

In the following theorem, we will choose that the origin lie at the
midpoint of the first crossing of the twist. The x-axis extends toward
the other crossing of the twist. The y-axis extends into the page and
the z-axis extends vertically upward from the xy-plane.

Theorem 3.1. If every plane orthogonal to the xy-plane and parallel

to the y-axis intersects each arc of the twist at exactly one point, then

the ropelength contribution of the twist is at least 2
√

π2 + 4d2.

Proof. The arcs can be parametrized as r(t) := 〈t, yr(t), zr(t)〉 and
s(t) := 〈t, ys(t), zs(t)〉 for 0 ≤ t ≤ d, and by lemma 4.3 the arcs r0(t)
and s0(t) have total arclength less than or equal to that of r(t) and
s(t).

Since r(t) − s(t) = r0(t) − s0(t) and |r(t) − s(t)| ≥ 1 for all t, we

have |r0(t) − s0(t)| ≥ 1 for all t. Then since r0(t)+s0(t)
2

lies on the axis
of the cylinder, Lemma 3.5 and Lemma 3.6 guarantee that the total
arclength of r0(t) and s0(t) is at least that of rc(t) and sc(t), meaning

at least
√

(

π
2

)2
+ d2 +

√

(

π
2

)2
+ d2 =

√
π2 + 4d2. Therefore the total

arclength of r(t) and s(t) is at least
√

π2 + 4d2 and they contribute at
least 2

√
π2 + 4d2 to the ropelength. �
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There is an immediate application of Theorem 3.1 to (n, 2) torus
knots. Provided the twists satisfy the criteria of Theorem 3.1 we can
guarentee a ropelength of at least 2π times the number of twists in a
diagram, which comes from the minimum possible ropelength contri-
bution when d = 0. The lower bound can be sharper provided we know
the values of d for all the twists. Since any minimal crossing diagram
of such a knot consists entirely of twists this may be useful in finding
lower bounds for ropelength among all minimal crossing conformations
of(n, 2) torus knots.

A potential way to obtain a ropelength contribution of 2π from
an arbitrary twist would be to parametrize its two arcs as r(t) :=
〈xr(t), yr(t), zr(t)〉 and s(t) := 〈xs(t), ys(t), zs(t)〉 and prove that the
arc length of r0(t) and s0(t) is less than that of r(t) and s(t) by the

convexity of the function f(x, y, z) :=
√

x2 + y2 + z2. The next step
would be to project r0(t) and s0(t) onto a sphere of radius 1

2
to get the

desired arclength lower bound of π.
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