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Abstract

This paper examines the effects of linear dependence on a set of
three algebraic curvature tensors constructed from symmetric bilinear
forms with respect to a nondegenerate inner product, and proceeds
to show the possibility for simultaneous orthogonal diagonalization of
these forms. Additionally the capability for simultaneous diagonaliza-
tion lends itself to some useful results regarding the eigenvalues of two
of the forms.

1 Introduction

Let V be a real vector space of finite dimension n, with elements x, y, z, w ∈
V . A multilinear function R ∈ ⊗4V ∗ is known as an algebraic curvature
tensor if it satisfies the following properties:

R(x, y, z, w) = −R(y, x, z, w),

R(x, y, z, w) = R(z, w, x, y),

R(x, y, z, w) + R(x, z, w, y) + R(x, w, y, z) = 0.
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This last property is known as the Bianchi Identity. The set of all alge-
braic curvature tensors on a vector space V is notated A(V ).

Definition 1. A bilinear form ϕ is said to be symmetric if it satisfies
ϕ(x, y) = ϕ(y, x), and a bilinear form ψ is said to be antisymmetric if
ψ(x, y) = −ψ(y, x). The set of all symmetric bilinear forms on a vector
space V is notated S2(V ∗), and the set of all antisymmetric bilinear forms is
notated Λ2(V ∗).

Definition 2. A model space is an algebraic object (V, < ·, · >,R), where
V is a vector space, < ·, · > is a bilinear form on V , and R is an algebraic
curvature tensor as previously defined. A weak model space is defined to
be (V, R).

Definition 3. A bilinear form ϕ on a vector space V is said to be nonde-
generate if ϕ(x, v) = 0 for all v ∈ V only holds when x = 0.

Definition 4. Given a basis {e1, ..., en} for a symmetric bilinear form ϕ,
some basis vector ei is said to be spacelike if ϕ(ei, ei) > 0, and timelike if
ϕ(ei, ei) < 0.

Definition 5. If {e−1 , ..., e−p , e+
1 , ...e+

q } is a basis for some nondegenerate
symmetric bilinear form ϕ, then the basis is orthonormal if it satisfies
ϕ(e±i , e±j ) = ±δij, and ϕ(e−i , e+

j ) = ϕ(e+
i , e−j ) = 0 for all i, j.

Definition 6. A symmetric bilinear form ϕ with p timelike basis vectors and
q spacelike basis vectors is said to have signature (p, q).

Theorem (Sylvester’s Law of Inertia). The signature of a symmetric
bilinear form ϕ is uniquely determined, and is invariant under isometry.

For a proof of this theorem, see [5].
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Definition 7. Given a linear map A : V → V , RA ∈ ⊗4(V ∗) can be defined
as

RA(x, y, z, w) = ϕ(Ax, w)ϕ(Ay, z)− ϕ(Ax, z)ϕ(Ay, w).

Theorem 1. If A is an endomorphism satisfying A∗ = A, then RA ∈ A(V ).

This theorem has been proved in [3]. A similar result has been proved in
[1] for the other direction provided a particular rank requirement is met.

Theorem 2. Given A : V → V , with RA ∈ A(V ). If Rank A ≥ 3, then
A∗ = A.

Theorem 3. Suppose ϕ is positive definite, Rank τ = n, and Rank ψ ≥ 3.
If {Rϕ, Rψ, Rτ} is linearly dependent, then ψ and τ are simultaneously or-
thogonally diagonalizable with respect to ϕ.

The two above theorems are proved in [1], and the primary goal of this
paper will be the extension of Theorem 3 to the case where ϕ is nondegen-
erate. In the positive definite case, self-adjoint symmetric bilinear forms can
be simultaneously diagonalized, however in the nondegenerate case, this may
not necessarily be so. Consider the following example:

ϕ =

�
0 1
1 0

�
; τ =

�
0 1
0 0

�
.

Note that

τ(e1, e2) = ϕ(τe1, e2) = 0 = ϕ(e1, e1) = ϕ(τe2, e1) = τ(e2, e1).

Thus, τ is self-adjoint with respect to the nondegenerate ϕ. However, for τ
to be diagonalizable, it must be similar to a matrix of the form

�
λ1 0
0 λ2

�

where λ1 and λ2 are the eigenvalues of τ . But,

det(τ − λI) = det

�
−λ 1
0 −λ

�
= λ2 = 0⇔ λ = 0
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As a result, τ is similar to the zero matrix, but no P can satisfy the equation
P [0]P−1 = τ , and thus τ cannot be diagonalized.

Theorem 4. A family F ⊂ Mn of diagonalizable matrices is a commuting
family if and only if it is a simultaneously diagonalizable family.

This theorem, as well as its accompanying proof, appear in [4].

Lemma 1. Let ϕ be an inner product of signature (p, q) on a vector space
V . There exists a self-adjoint linear map C: V → V satisfying C2 = In so
that defining ϕ+(x, y) := ϕ(Cx, y) fulfills the following:

1) ϕ+ is a positive definite inner product on V.
2) ϕ(x, y) = ϕ+(Cx, y) = ϕ+(x, Cy) ∀x, y ∈ V .
3) ϕ+(x, y) = ϕ(Cx, y) = ϕ(x, Cy) ∀x, y ∈ V .

This lemma, as well as its proof, can be found in [3]. The C demonstrated
in this lemma will be referred to as the change-of-signature endomor-

phism, and such a C is used to move from a nondegenerate inner product
to a positive definite one, while satisfying C = C−1 = C∗.
More explicitly, given some orthonormal basis {e−1 , ..., e−p , e+

1 , ..., e+
q } for an

inner product ϕ, C can be defined to satisfy

ϕ(Ce+
i , e+

j ) = ϕ(e+
i , e+

j ) = δij,

ϕ(Ce±i , e∓j ) = 0,

ϕ(Ce−i , e−j ) = −ϕ(e−i , e−j ) = −(−δij) = δij.

Before presenting the upcoming lemma, note that R+
CAC refers to the al-

gebraic curvature tensor constructed from CAC with respect to the inner
product ϕ+, and this notation will continue to be used throughout the re-
mainder of this paper.

Lemma 2. If A is an endomorphism, and C the change-of-signature endo-
morphism as defined above, then

1. Rϕ(Cx,Cy, z, w) = RC(x, y, z, w) = Rϕ+(x, y, z, w)

2. RA(Cx,Cy, z, w) = RAC(x, y, z, w) = R+
CAC(x, y, z, w)
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The first relationship follows from the fact that Rϕ(Cx,Cy, z, w) = ϕ(Cx,w)ϕ(Cy, z)−
ϕ(Cx, z)ϕ(Cy,w) = RC(x, y, z, w), and using the knowledge that ϕ(Cx,w) =
ϕ+(x, w), the second equality in 1) follows trivially. Additionally, RA(Cx,Cy, z, w) =
ϕ(ACx,w)ϕ(ACy, z)− ϕ(ACx, z)ϕ(ACy,w) = RAC(x, y, z, w). For the sec-
ond equality, ϕ(ACx,w)ϕ(ACy, z)−ϕ(ACx, z)ϕ(ACy,w) = ϕ+(CACx, w)ϕ+(CACy, z)−
ϕ+(CACx, z)ϕ+(CACy, w) = R+

CAC(x, y, z, w).

Theorem 5. Let C : V → V be a linear transformation under a positive
definite inner product. If C is both self-adjoint and orthogonal, then there
is an orthonormal basis for V of the eigenvectors of C with corresponding
eigenvalues of absolute value 1.

This theorem appears in [4], and demonstrates that the eigenvalues of C
as described in the previous lemma are all ±1.

Theorem 6. Suppose dim(V) ≥ 4, ϕ is positive definite, Rank τ = n, and
Rank ψ ≥ 3. The set {Rϕ, Rψ, Rτ} is linearly dependent if and only if one
of the following holds:

1) |Spec(ψ)| = |Spec(τ)| = 1.
2) Spec(τ) = {η1, η2, η2, ...}, and Spec(ψ) = {λ1, λ2, λ2, ...}, with η1 �=

η2, λ2
2 = �(δη2

2 − 1), and λ1 = �
λ2

(δη1η2 − 1) for �, δ = ±1.

This theorem was another result of [1], and will be used to compare the
spectrum of the diagonalized symmetric bilinear forms under a nondegener-
ate inner product to their spectrum in the positive definite case.

The proof of this paper’s main theorem will rely on the use of this C to
transform a nondegenerate inner product into a positive definite one. Next,
it will be shown that a linear dependence relationship between a set of three
algebraic curvature tensors in the nondegenerate case implies a different lin-
ear dependence under the new positive definite inner product. From this
point, it will be demonstrated that each piece of this new linear dependence
relationship is indeed an algebraic curvature tensor, as well as that certain
rank requirements are met, and thus given this new positive definite inner
product, the results of [1] may be applied to conclude that the symmetric
bilinear forms are simultaneously diagonalizable with respect to ϕ+ as de-
scribed above. Finally, it will be shown that the ability to simultaneously
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diagonalize the symmetric bilinear forms under the positive definite inner
product implies that they can also be simultaneously diagonalized under the
original nondegenerate inner product.

Following this, a discussion of the spectrum of each of the symmetric
bilinear forms is in order, and it will be shown that the relationships presented
in Theorem 6 also hold in the event that ϕ is nondegenerate.

2 Results

Theorem 7. Suppose ϕ is nondegenerate, Rank ψ ≥ 3, and Rank τ = n.
Additionally, assume that τ is diagonalizable with respect to ϕ. If the set
{Rϕ, Rψ, Rτ} is linearly dependent so that Rϕ is not a real multiple of Rψ or
Rτ , then ψ and τ are simultaneously diagonalizable with respect to ϕ.

Proof. Given some basis {e−1 , ..., e−p , e+
1 , ..., e+

q }, ϕ satisfies ϕ(e±i , e±j ) = δij and
ϕ(e−i , e+

j ) = ϕ(e+
i , e−j ) = 0. In order for us to consider the simultaneous diag-

onalization of τ and ψ, we need the symmetric bilinear form that we use for
our inner product to be positive definite, rather than merely nondegenerate.
Consider ϕ+, defined by ϕ+(x, y) = ϕ(Cx, y), with C : V → V is a linear
transformation defined as in Lemma 1. Additionally, Lemma 1 demonstrates
that C is self-adjoint with respect to both ϕ and ϕ+. Next, consider the two
different cases under which the set {Rϕ, Rψ, Rτ} is linearly dependent. First,
it is possible that the linear dependence relationship is between only two of
the curvature tensors. However, since Rϕ is not a multiple of Rψ or Rτ , we
simply need to check the case where c2Rψ + c3Rτ = 0. This simplifies to
Rψ = λRτ for λ ∈ R, in which case ψ is a real multiple of τ . Given that τ is
diagonalizable, it follows that ψ is diagonalizable as well on the same choice
of orthonormal basis, and the result holds. Therefore, we need only consider
the case where the linear dependence involves all three curvature tensors. If
this is true, we have c1Rϕ + c2Rψ = c3Rτ , which can be simplified to

Rϕ + �Rψ = δRτ

for �, δ = ±1. Since C is an isomorphism on the vector space, we can
consider Rϕ(Cx,Cy, z, w) + �Rψ(Cx,Cy, z, w) = δRτ (Cx,Cy, z, w), which
using Lemma 2, is equivalent to

Rϕ+ + �RψC = δRτC
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For Theorem 1.6 of [1] to be applicable, we need ψC and τC to be self-adjoint
with respect to ϕ.

Theorem 8. ψC is self-adjoint with respect to ϕ if and only if CψC is
self-adjoint with respect to the positive definite ϕ+, and similarly τC is self-
adjoint with respect to ϕ if and only if CτC is self-adjoint with respect to
ϕ+.

Proof. Using Lemma 1, ϕ(ψCx, y) = ϕ+(CψCx, y), and similarly ϕ(τCx, y) =
ϕ+(CτCx, y), and the above equivalencies follow immediately from this fact.

Let us briefly consider τ , which we know can be diagonalized with respect
to ϕ. Since we can choose a basis on which C is also diagonal, it becomes
clear that both Cτ and τC will only be nonzero on the diagonal, and their
diagonal entries will be equal. Thus we can say that τ and C commute with
one another Using this fact, we are able to show that CτC is self-adjoint
with respect to ϕ+ in the following way:

ϕ+(CτCx, y) = ϕ(C2τCx, y) = ϕ(τCx, y) = ϕ(Cτx, y)

= ϕ(τx, Cy) = ϕ(x, τCy) = ϕ+(Cx, τCy) = ϕ+(x, CτCy)

From the self-adjoint nature of CτC, we can conclude that R+
CτC ∈ A(V ).

Since we have that Rϕ+ + �R+
CψC = δR+

CτC , we can say that:

R+
CψC = �(δR+

CτC −Rϕ+).

Since the right-hand side of this equation is a linear combination of algebraic
curvature tensors, it too is an algebraic curvature tensor, and as a result we
can conclude that R+

CΨC ∈ A(V ). Once this is known, it follows that CψC
is self-adjoint with respect to ϕ+. Given this,

ϕ+(CψCx, y) = ϕ+(x, CψCy)

= ϕ(ψCx, y) = ϕ(x, ψCy)

= ϕ(Cx, ψy) = ϕ(x, ψCy)

= ϕ(x, Cψy) = ϕ(x, ψCy).
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Thus, it follows from the self-adjoint nature of CψC with respect to ϕ+

that C and ψ commute.

Using the fact that R+
CψC ∈ A(V ), the equation Rϕ+ + �R+

CψC = δR+
CτC

becomes a linear dependence relation between three algebraic curvature ten-
sors with respect to a positive definite inner product. However, given the
knowledge that ψC = Cψ and τC = Cτ , it becomes clear that CψC = ψ
and CτC = τ , demonstrating that the rank requirements for ψ and τ are
met and thus Theorem 1.6 of [1] may be applied to conclude that ψ and τ are
simultaneously orthogonally diagonalizable with respect to this new positive
definite inner product.

On the other hand, it remains to be seen that ψ and τ will be simultane-
ously diagonalizable with respect to ϕ, and to check this we must consider
whether or not the basis that diagonalizes both forms with respect to ϕ+ will
still be orthonormal with respect to ϕ. However, if we consider the family
{ψ, τ, C} with respect to ϕ+, we notice that it is a family of commuting self-
adjoint operators. It has already been shown that Cψ = ψC and Cτ = τC.
Also, the ability to simultaneously diagonalize comes with the knowledge
that ψτ = τψ by Theorem 4. Thus it follows that the result of simultaneous
diagonalization with respect to some chosen basis for ϕ+ can be extended to
include C.

Now, since we have a basis on which C is diagonal, we can express it as
follows:

C =





κ1 0 · · ·
0 κ2 0 · · ·
...

. . . . . . . . .
0 · · · κn





As a result, we can consider ϕ(ei, ej) = ϕ+(Cei, ej). Since C is now diagonal
with respect to this basis,

ϕ+(Cei, ej) = ϕ+(κiei, ej) = ciδij

However, we note that C is both self-adjoint and orthogonal with re-
spect to the positive definite ϕ+, and since it has been diagonalized, we can
conclude by Theorem 4 that all κi = ±1.
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Now, given our simultaneous diagonalization result with respect to ϕ+,
we can express ψ and τ as follows:

ψ =





λ1 0 · · ·
0 λ2 0 · · ·
...

. . . . . . . . .
0 · · · λn




; τ =





η1 0 · · ·
0 η2 0 · · ·
...

. . . . . . . . .
0 · · · ηn




.

Here, the λi represent the eigenvalues of ψ, while the ηi represent the eigen-
values of τ . It follows that:

ψ(ei, ej) = ϕ(ψei, ej) = ϕ+(Cψei, ej) = ϕ+(ψCei, ej) = κiϕ
+(ψei, ej) = κiλiδij

Similarly, for τ ,

τ(ei, ej) = ϕ(τei, ej) = ϕ+(Cτei, ej) = ϕ+(τCei, ej) = κiϕ
+(τei, ej) = κiηiδij

Thus, ψ and τ remain diagonal with respect to ϕ, and our result holds.

Theorem 9. If ϕ is nondegenerate, Rank τ = n, τ is diagonalizable with
respect to ϕ, Rank ψ ≥ 3, and dim(V ) ≥ 4, then the set {Rϕ, Rψ, Rτ} is
linearly dependent with ϕ not a real multiple of ψ or τ if and only if one of
the following holds:

1) |Spec(ψ)| = |Spec(τ)| = 1.
2) Spec(τ) = {η1, η2, η2, ...}, and Spec(ψ) = {λ1, λ2, λ2, ...}, with
η1 �= η2, λ2

2 = �(δη2
2 − 1), and λ1 = �

λ2
(δη1η2 − 1) for �, δ = ±1.

The proof of this theorem follows the same method as the proof in the
positive definite case, originally presented in [1]. First, it is assumed that
|Spec(τ) ≥ 3|, and a contradiction is reached. Then, we consider the case
where τ has two eigenvalues, both of which are repeated. The main difference
lies in the inclusion of the eigenvalues of C, which we then divide out by to
reach the same set of equations as in [1], and the remainder of the proof can
be found there.

Proof. We begin by recalling the ability to express

ψ(ei, ej) = κiλiδij; τ(ei, ej) = κiηiδij.
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Given this information, we can consider the linear dependence of {Rϕ, Rψ, Rτ}
on (ei, ej, ej, ei) for i �= j. Essentially, we are looking at the equation

Rϕ(ei, ej, ej, ei) + �Rψ(ei, ej, ej, ei) = δRτ (ei, ej, ej, ei)

ϕ(ei, ei)ϕ(ej, ej)− ϕ(ei, ej)
2 + �[ϕ(ψei, ei)ϕ(ψej, ej)− ϕ(ψei, ej)

2]

= δ[ϕ(τei, ei)ϕ(τej, ej)− ϕ(τei, ej)
2]

κiκj + �κiκjλiλj = δκiκjηiηj

Since κi is nonzero for all i, we can divide out by κiκj to obtain

1 + �λiλj = δηiηj.

Given this equation, the authors of [1] used the fact that dim(V ) ≥ 4, plug-
ging in different values for i, j ∈ {1, 2, 3, 4}. They first considered the case
where |Spec(τ)| ≥ 3 and were able to reach a contradiction regarding the
number of distinct eigenvalues of ψ from the various equations that the linear
dependence relationship leads to on different choices of basis vectors. Next,
they considered the case where Spec(τ) = {η1, η1, η2, η2, ...} for η1 �= η2. This
led to a similar contradiction, again based entirely off of evaluating the equa-
tion 1 + �λiλj = δηiηj on different basis vectors. From this, they conclude
that |Spec(τ) = 2|, and in this case it follows that |Spec(ψ) = 2|, since if τ
has spectrum {η1, η2, η2, ...}, then 1 + �λiλj = δη2

2 for all i, j ≥ 2. Thus ψ
has a spectrum of the form {λ1, λ2, λ2, ...}, and the following equations must
hold:

1 + �λ1λ2 = δη1η2

1 + �λ2
2 = δη2

2

This leads to the equations presented in the second case:

λ1 =
�

λ2
(δη1η2 − 1)

λ2
2 = �(1− δη1η2)

The converse of this has already been presented in [1], and the same methods
may be applied in the case of nondegeneracy without any negative repercus-
sions.
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3 Conclusion

We have made use of the change of signature matrix C to show that previ-
ous results regarding the simultaneous diagonalization of symmetric bilinear
forms given a linear dependence relationship among the algebraic curvature
tensors they form hold in the case that the inner product is merely non-
degenerate, with the added assumption that τ is diagonalizable. In doing
so, we have uncovered more valuable information regarding alternative ways
of expressing a linear dependence relationship in inner products of different
signature.

Additionally, we have established results regarding the eigenvalues of two
of the forms involved that show that previously established relationships
between the spectra of the symmetric bilinear forms also remain unchanged
when the inner product is nondegenerate, again given the added assumption
that τ is diagonalizable.

4 Open Questions

1. Do similar properties hold for the forms used to construct sets of four
or more linearly dependent algebraic curvature tensors, and what re-
quirements must be satisfied with respect to the signature of each form
involved?

2. If τ is not diagonalizable, but instead has a particular Jordan normal
form, what can be said about the Jordan normal form of ψ?

3. What conclusions can be drawn regarding a set of linearly dependent
algebraic curvature tensors if the bilinear forms involved are antisym-
metric?
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