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Abstract

We identify which closed three- and four-braids are hyperbolic. We
also make general claims about n-stranded closed braids and their hyper-
bolic nature.

1 Introduction

We partition all knots into three types: Torus, Satellite, and Hyperbolic
knots. A torus knot is a knot that sits on the surface of a torus in R3. A
satellite knot is a knot which contains an incompressible, non-boundary parallel
torus in its complement. A hyperbolic knot is a knot that has a complement
that can be given a metric of constant curvature -1 [1].

Prime knots, knots that cannot be written as the connect sum of two non-
trivial knots, can be any of the three types of knots. However, all connected
sums are satellite knots, by definition. These satellite knots are called ”swallow
follow”. A torus consumes one of the components of the connect sum and tra-
verses the other component. This ensures the the torus is incompressible and
non-boundary parallel. We refer to this torus as the companion of the knot K.

It is well known that, no matter what the type, any knot can be represented
by a closed braid. A braid is a set of n strings, all of which are attached to a
horizontal bar at the top and at the bottom. If we bring the bottom bar and
”attach” it to the top bar, the braid is considered to be closed [1]. The question
is, how can we tell which closed braids are of which type? More specifically,
hyperbolic? We will look at the case of closed three- and four-braids (possibly
five-braids).

We describe a braid algebraically by its word. Given an n-braid, its word will
be composed of a number of {σ1,σ2, ...,σn−1}. The subscript indicates which
two strands are crossing. For example, σ1 means that the first strand is being
crossed over the second strand. Additionally, σ−1

1 means that the second strand
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is crossing over the first strand. The figure-8 knot is represented by the braid
word σ1σ

−1
2 σ1σ

−1
2 , which looks like

Figure 1: Figure-8 knot braid representation (not closed)

In order to close the braid shown above, we would simply attach the top of
the braid to the bottom of the braid.

There are proven facts about closed braids that will be useful in the proofs
that follow. We can relate the bridge number of a knot, br(K), the number of
local maxima in the reduced alternating projection, to the number of strands in
the minimal braid representation of a knot, b(K), the braid index

br(K) ≤ b(K)

Therefore, we can say that, no matter what the projection, the bridge num-
ber will be less than or equal to the number of strands in the braid representa-
tion.

It it important to note, when given a satellite knots, br(V ), where V is the
companion to the knot K, has br(V ) > 1 because V can not be the unknot.

2 Closed Three-Braids

Lemma: If a closed three-braid is not of the form σk
1σ2,σk

1σ
−1
2 , (σ1σ2)k, or

σp
1σ

q
2, where k, p, q ∈ Z, then it is hyperbolic

Proof. Only T2,k and T3,k torus knots can be represented by a closed three-braid
(σk

1σ2 or σk
1σ

−1
2 and (σ1σ2)k, respectively).

We now consider satellite knots, which we define to be a knot which contains
an incompressible torus in its complement.

Birman and Menasco have completely classified prime satellite knots as

(σ2)k(σ1σ2
2σ1)q, where |p| ≥ 2, |q| ≥ 1

It is known that, given knots K1 and K2, the connect sum K1#K2 is a
satellite knot. Using Birman and Menasco’s (??) result, we know that the braid
of a connect sum is represented by n+(m−1) strands, where the first component
requires n strands and the second component requires m strands. Using the first
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n strands, the first component is braided completely. Then, using the nth strand
and the remaining (m−1) strands, the second component is completely braided.

In the three-braid case, the entire braid of the first component (using strands
1 and 2), meaning it is a power of σ1, is connected by the second strand to the
entire braid of the second component (using strands 2 and 3), a power of σ2.
Therefore, we can write any braid word of a connect sum as

σp
1σ

q
2, where p, q ∈ Z.

The wrapping number, w(K): the least number of times K crosses a merid-
ional disk of the companion, V, of any connect sum is always 1. Without loss
of generality, let the torus completely consume K1 and traverse K2. There is
always a disk that can be drawn on the portion of the torus around K2 that
will only intersect K2 once. This completely classifies connected sums

Claim: Any satellite knot whose wrapping number is greater than 1 cannot
be presented by a closed three-braid.

Proof of Claim: From Schubert’s result, we can use the inequality

br(K) ≥ w · br(V ), where K is a knot and V is its companion

We know that br(V ) > 2. Because we are considering only those satellite
knots whose wrapping number is greater than 1, w ≥ 2. Therefore,

br(K) ≥ 2 · 2 = 4

However, br(K) ≤ 3, where K is a closed three-braid. So there are no closed
three-braids that are satellite knots with w(K) > 1.

Birman and Menasco have completely classified prime satellite knots as

(σ2)k(σ1σ2
2σ1)q, where |p| ≥ 2, |q| ≥ 1

3 Closed Four-Braids

We now turn our attention to closed four-braids.

Lemma: If a closed four-braid representation of a knot is not of (or conju-
gate to) the form (σ1)kσ2σ3, (σ1)kσ

−1
2 σ3, (σ1)kσ2σ

−1
3 , (σ1)kσ

−1
2 σ−1

3 ,(σ1σ2)kσ3,
(σ1σ2)kσ

−1
3 , (σ1σ2σ3)k,W (σ1,σ2)(σ3)k,W (σ1,σ2)(σ

−1
3 )k or (σ2)p(σ3)q(σ2σ1σ3σ2)r,

where k, p, q, r ∈ Z, |p| > 0, |q| > 0, |r| ≥ 2, 2| only one of p,q and 2 � |r, then it
is hyperbolic

Proof. We can classify torus knots in a similar way to the three-braid case. With
four strands, we can produce T2,k, T3,k and T4,k torus knots,
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• (σ1)kσ2σ3, (σ1)kσ
−1
2 σ3, (σ1)kσ2σ

−1
3 , (σ1)kσ

−1
2 σ−1

3

• (σ1σ2)kσ3, (σ1σ2)kσ
−1
3

• (σ1σ2σ3)k

respectively.
We now consider satellite knots. As stated before, any connect sum is a

satellite knot. We construct connect sums in the same way.

Claim: In a four-braid representation of a connect sum K1#K2, one of K1

or K2 must be a two braid.

Proof of Claim: By SOMEONE’S result, we know the bridge number of a
connect sum

br(K1#K2) = br(K1) + br(K2)− 1, where K1 and K2 are nontrivial

Because we have a four braid, we know

br(K1#K2) ≤ 4

Let us consider the case where neither component is a two-braid. This means
the bridge number of either component must be greater than two to guarantee
that the component is not a two-braid. So we chose br(K1), br(K2) = 3. We
have

br(K1#K2) = br(K1) + br(K2)− 1 = 3 + 3− 1 = 5 > 4

Therefore, we cannot have both br(K1) and br(K2) > 2. Now, without loss
of generality, let br(K2) = 2. We have

br(K1#K2) = br(K1) + br(K2)− 1 = 3 + 2− 1 = 4

Now we must show that K1 must be a two braid. Using Birman and
Menasco’s result concerning connect sums of four-braids, we know that the
braid index, b(K), the smallest integer n such that a knot K can be represented
by an n-braid, of a connect sum is additive (respectively additive minus 1) under
disjoint union (respectively connected sum). Four-braids are a special case, and
have another set of conditions. Birman and Menasco’s result states

Let K be a 4-braid representative of a composite knot K. If K cannot be
represented by a closed braid of braid index < 4, then K is conjugate to a
composite 4-braid...

As stated earlier, we also know that br(K1#K2) ≤ 4. Because the braid
index is the least number of strands needed to produce a given knot, we know
that the bridge number will be less than or equal to the braid index. Therefore
we must show that the braid index must equal four in order to satisfy both
Birman and Menasco’s AND SOMEONE’S constraints. Because no nontrivial
knot can have a braid index of 1, we consider the connect sum of, without loss
of generality, b(K1) = 3 and b(K2) = 2 so that we have
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b(K1#K2) = b(K1) + b(K2)− 1 = 3 + 2− 1 = 4

The only knots that can be represented by only two strands with a bridge
index of two are T2,k torus knots. Therefore, K2 must be a two-braid.

Knowing that one component must be a two-braid and the other component
must have bridge number equal to three, we can construct any connect sum by

W (σ1,σ2)(σ3)k or W (σ1,σ2)(σ
−1
3 )k

We resume our study of satellite knots by looking at the complete set of
conjugacy classes for closed four-braids of prime knots (Birman and Menasco).
Because we are only concerned with knots, we look at which conjugacy classes
can produce knots. There is only one, namely (σ2)p(σ3)q(σ2σ1σ3σ2)r, where
k, p, q, r ∈ Z, |p| > 0, |q| > 0, |r| ≥ 2 (constraints provided by Birman and
Menasco), and 2 � |r (guarantees only one component). The other five classes
strictly produce multi-component knots. So all closed four-braid prime satellite
knots are of that form. Any braid word that is not conjugate to those forms
stated in the proof are hyperbolic.

4 Closed Five-Braids

We know the torus knots that can be represented as closed five-braids

• (σ1)kσ2σ3σ4, (σ1)kσ
−1
2 σ3σ4, (σ1)kσ2σ

−1
3 σ4, (σ1)kσ2σ3σ

−1
4 , (σ1)kσ

−1
2 σ−1

3 σ−1
4

• (σ1σ2)kσ3σ4, (σ1σ2)kσ
−1
3 σ−1

4

• (σ1σ2σ3)kσ4, (σ1σ2σ3)kσ
−1
4

• (σ1σ2σ3σ4)k

Now we must consider representations of prime knots as closed-five braids.
I plan on taking the four-braid conjugacy classes and seeing which ones, when
adding a strand, come out as knots. Then playing around with those and seeing
whether those are hyperbolic. Hopefully, they are not.

5 In Progress

In the coming weeks, here are some possible questions to work on

• Consider a hyperbolic braid of n-strands. If you add another component,
trivially or nontrivially, is the resulting link still hyperbolic?

• What happens when you connect two disjoint links by dehn surgery?

• Do links behave the same way that knots do, in the sense that any given
multi-component link is one of a torus, satellite, or hyperbolic knot?

• What is the completely classification of closed 5-braids that allow for an
incompressible, non-boundary parallel torus in its complement?
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