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Abstract

We study the elements in the structure group of an algebraic curvature tensor R by analyzing Jordan

normal forms. Because every matrix has a unique Jordan normal form representation, up to a permutation

of the Jordan Blocks, we are able to determine which matrices taking on a specific form will be in the

structure group of some algebraic curvature tensor. A method for analyzing these forms is developed

and explained.

1 Introduction and Motivation

Let V be a finite dimensional vector space and R : V × V × V × V → R be linear in each input.

Definition 1. R is an algebraic curvature tensor if the following properties are satisfied for all x, y, z, w ∈

V :

1. R(x, y, z, w) = −R(y, x, z, w),

2. R(x, y, z, w) = R(z, w, x, y),

3. (Bianchi Identity) R(x, y, z, w) +R(x, z, w, y) +R(x,w, y, z) = 0.

Let A(V ) be the vector space of algebraic curvature tensors. It is known [3] that dim(A(V )) = n2(n2−1)
12 .

Given a manifold M paired with a smooth metric g there exists an algebraic curvature tensor at each

point p in M . Conversely, if we are given some R on a vector space V , there will exist some manifold M

with smooth metric g such that R is the Riemann curvature tensor at some point p on that manifold. Thus,

the major motivation of studying these objects is to better understand the various types of curvature one

could encounter on a manifold M with some metric g.

Definition 2. Let V be a vector space, φ an inner product, and R ∈ A(V ). Then, (V, φ,R) is a full model

space, and (V,R) is a weak model space.

Proposition 1. Let (M, g) be a smooth manifold and R ∈ A(V ). Then, (TpM, g|p, R|p) is a full model space

where TpM is the tangent space, g|p is the metric, and R|p is the algebraic curvature tensor at some point

p ∈ M .
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1.1 Structure Groups

Let α be a multilinear function from k copies of some vector space V to R. Now, if A ∈ GL(n) where

GL(n) is the set of invertible matrices, then one can consider the difference between α(x1, . . . , xn) and

α(Ax1, . . . , Axn).

Definition 3. Let A ∈ GL(n).The precomposition of A, denoted A
∗, on some tensor α has A act on the

arguments before α operates on the arguments itself. That is, A∗
α is the map,

A
∗
α : V × · · · × V

A(k)

→ V × · · · × V
α
→ V × · · · × V → R,

where A
(k)(x1, . . . , xk) = (Ax1, . . . , Axk).

Definition 4. The structure group Gα is defined as Gα = {A ∈ GL(n)|A∗
α = α}.

We now consider a few examples of known structure groups.

Example 1. Let α be a positive definite inner product. Then,

Gα = {A ∈ GL(n)|α(Ax,Ay) = α(x, y) for all x, y,∈ V } = O(n),

where O(n) is the familiar set of matrices whose transpose is their inverse.

Example 2. Let α be the zero algebraic curvature tensor. Then, Gα = GL(n).

The study of structure groups is important to the understanding of algebraic curvature tensors as they are

the symmetries of these objects. Considering Proposition 1, one can see that there will be a corresponding

structure group at each point p in the given manifold. Therefore, by studying these structure groups, one

can draw various other conclusions about the manifold itself.

There are a variety of structure group characteristics that have been previously studied. For example

[5] studied the decomposibility, and also characterized elements of these groups. Decomposibility was also

studied by [2], and [1] studied structure groups to construct new invariants not of Weyl type on curvature

homogeneous manifolds, which are manifolds with the same full model space at each point.

In the study of structure groups, it is natural to begin by taking an R ∈ A(V ) and construct its

corresponding structure group based on the properties of that tensor. We pose the opposite question.

Question 1. Given a closed subgroup H ≤ GL(n) does there exist an R ∈ A(V ) such that GR = H?

From Example 2 above, one can see that this is trivially true if H = GL(n) when R is the zero tensor.

At the other extreme, in [4] it is demonstrated that very many algebraic curvature tensors have structure

groups containing only finitely many elements.

Because our question is somewhat extensive, we approach it by considering a single A ∈ H and ask if

there exists some nonzero R such that A ∈ GR.

2 Preliminaries

We review the Jordan decomposition of linear endomorphisms as they are important to our method of

analysis in dimension 3.

2



Definition 5. A Jordan Block of size k corresponding to some eigenvalue λ ∈ R on Rk is defined as:

J(k, λ) =





λ 1 0 · · · 0 0

0 λ 1 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · λ 1

0 0 0 · · · 0 λ





.

The Jordan Block corresponding to the pair of complex conjugate eigenvalues a± b
√
−1 is defined in the

construction of the size 2k matrix where A :=

�
a b

−b a

�
and I :=

�
1 0

0 1

�
on R2 and

J(k, a, b) =





A I 0 · · · 0 0

0 A I · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · A I

0 0 0 · · · 0 A





on R2k
.

The following definition provides a common operation used with Jordan block matrices.

Definition 6. Let Ai for i = 1, . . . , n be a set of square matrices. The direct sum of Ai is:

n�

i=1

Ai =





A1 0 0

0
. . . 0

0 0 An



 .

Making use of definitions 5 and 6 in its construction, the following lemma is very important to our method

of analysis.

Lemma 1. Let A be a linear transformation of a vector space V. Choosing an appropriate basis for V, A

will decompose as the direct sum of Jordan blocks. The unordered collection of these blocks is determined by

A.

Definition 7. The Jordan normal form of A is the unordered collection of Jordan blocks from Lemma

1.

To illustrate Lemma 1, we consider an example in dimension 3.

Example 3. Let A be a 3× 3 matrix with real entries. Then, det(A− tI) will be a polynomial of degree 3,

which implies that A will have at least one real eigenvalue. Let λ be this real eigenvalue. Then, the following

Jordan normal forms are possible:

1. J(3, λ),

2. J(2, λ)⊕ J(1, η),

3. J(1, λ)⊕ J(1, η)⊕ J(1, γ),

4. J(2, a, b)⊕ J(1, λ).
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The construction of 2, 3, and 4 make use of Lemma 1. For example, consider 2.

J(2, λ)⊕ J(1, η)=

�
λ 1

0 λ

�
⊕

�
η

�
=





λ 1 0

0 λ 0

0 0 η





Now that we have reviewed Jordan normal form, we present our method of analysis.

3 Method

In first considering dimension 2, we were able draw conclusions using standard calculation because of the

trivial nature of the case. When moving to dimension 3, a different approach was developed to accomodate

the increasing complexity.

Lemma 2. Let V be a vector space and let {ei} be a basis for V . Enumerate {R(ei, ej , ek, el)} = {x1, . . . , xp} =

x where dim(A(V )) = p. Given an A ∈ GL(n), the equations A
∗
R(ei, ej , ek, el) = R(ei, ej , ek, el) can be

expressed as Kx = x for some matrix K, or equivalently, (K − I)x = 0.

It follows from Lemma 2 that (K − I)x = 0 will have solutions if either x = 0 or det(K − I) = 0. If

x is the zero vector, we are dealing with the trivial case where R is the zero tensor. This implies that the

solution space of this equation is where det(K − I) = 0, and the dimension of this space is the nullity of

K − I.

Theorem 1. If there exists a nonzero R such that A ∈ GR, then Kx = x has a nontrivial solution.

Corollary 1. The solution space of Kx = x is the set of all algebraic curvature tensors R such that A ∈ GR.

Therefore, using this method, we can learn valuable information about both the matrix A and algebraic

curvature tensor R being considered.

4 Results

Beginning with dimension 2, we use standard calculations to determine what must be preserved by an

element in the structure group of a curvature tensor R and provide a proof of a known result. We then look

at dimension 3 where Lemma 2 is applied to Jordan decompositions and used to analyze which matrices

will or will not be in the structure group of some R. We emphasize that in dimension 3, we were able to

answer the question that is the title of this paper as no, although a complete study of this situation is far

from complete.

4.1 Dimension 2

Considering dimension 2, we note that dim(A(R2)) = 1. Let the vector space V = R2 with basis

{e1, e2}. Then, the only output that must be preserved is R(e1, e2, e2, e1) by the properties of an algebraic

curvature tensor. The following result is general knowledge [3], but we give a proof to keep this presentation

self-contained.
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Theorem 2. For any nonzero R ∈ A(R2),

GR
∼= SL(2)± = {A ∈ M2(R)|det(A) = ±1}.

Proof. Let A ∈ GL(2) where Ae1 = ae1 + be2 and Ae2 = ce1 + de2. Consider the following calculation:

A
∗
R(e1, e2, e2, e1) = R(Ae1, Ae2, Ae2, Ae1)

= R(ae1 + be2, ce1 + de2, ce1 + de2, ae1 + be2)

= R(ae1, de2, de2, ae1) +R(be2, ce1, de1, be2)−R(be2, ce1, de2, ae1)−R(ae1, de2, ce1, be2)

= a
2
d
2
R(e1, e2, e2, e1) + b

2
c
2
R(e2, e1, e1, e2)− abcdR(e2, e1, e2, e1)− abcdR(e1, e2, e1, e2)

= (ad− bc)2R(e1, e2, e2, e1)

= (detA)2R(e1, e2, e2, e1)

Therefore, if detA = ±1, A∗
R = R and A ∈ GR.

Thus, if detA �= ±1, there is no algebraic curvature tensor R for which A ∈ GR.

Corollary 2. The only subgroups H of GL(2) that are structure groups for any algebraic curvature tensor

over a vector space of dimension 2 are GL(2) itself, when R is the zero tensor, and SL(2)±.

Because in this case the dimension of A(R2) is one, it may be considered trivial. However, it is important

to understand the process involved here, so that it can be applied to higher dimensional cases.

4.2 Dimension 3

In dimension 3, we know that dim(A(R3)) = 6. Now, let R ∈ A(R3) where for i = 1, 2, 3, 4, 5, 6. Ri is

defined as follows:

R1 = R(e1, e2, e2, e1),

R2 = R(e1, e3, e3, e1),

R3 = R(e2, e3, e3, e2),

R4 = R(e1, e2, e3, e1),

R5 = R(e2, e1, e3, e2),

R6 = R(e3, e1, e2, e3).

We will focus on Jordan decompositions 1 and 2 found in Example 3 and determine when matrices of

this form will be members of the structure group for some curvature tensor R.

4.2.1 J(3, λ).

Suppose

A = J(3, λ) =





λ 1 0

0 λ 1

0 0 λ





for a nonzero λ. Precomposing this matrix A with each Ri produces the 6 equations listed below. The

solution of which will determine the Ri that are nonzero along with the λ value that preserves the nonzero
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Ri.

R1 = λ
4
R1

R2 = λ
2
R1 + λ

4
R2 + 2λ3

R4

R3 = R1 + λ
2
R2 + λ

4
R3 + 2λR4 + 2λ3

R6 − 2λ2
R5

R4 = λ
3
R1 + λ

4
R4

R5 = λ
4
R5 − λ

2
R1 − λ

3
R4

R6 = λ
4
R6 + λR1 − λ

3
R2 + 2λ2

R4

To help the reader see how these equations were constructed, we illustrate an example of how the equation

R4 = λ
3
R1 + λ

4
R4 was formed.

Example 4. Writing each Aei as a linear combination, we have:

Ae1 = λe1,

Ae2 = e1 + λe2,

Ae3 = e2 + λe3.

Consider R4 = R(e1, e2, e3, e1). Now, precompose R4 with A and make use of the defining characteristics of

R in Definition 1.

A
∗
R(e1, e2, e3, e1) = R(Ae1, Ae2, Ae3, Ae1)

= R(λe1, e1 + λe2, e2 + λe3, λe1)

= R(λe1, λe2, e2, λe1) +R(λe1, λe2, λe3, λe1)

= λ
3
R(e1, e2, e2, e1) + λ

4
R(e1, e2, e3, e1)

= λ
3
R1 + λ

4
R4

Thus, if A is in the structure group of this particular R, we have that R4 = λ
3
R1 + λ

4
R4.

Once these equations were established, we applied Lemma 2, which produced the following matrix equation.





R1

R2

R3

R4

R5

R6





=





λ
4 0 0 0 0 0

λ
2

λ
4 0 2λ3 0 0

λ λ
2

λ
4 2λ −2λ2 2λ3

λ
3 0 0 λ

4 0 0

−λ
2 0 0 −λ

3
λ
4 0

λ λ
3 0 2λ2 0 λ

4









R1

R2

R3

R4

R5

R6





.

The determinant of K−I is calculated to be (λ4−1)6. Therefore, the determinant equals zero if and only

if λ = ±1. Thus, there exists some nontrivial curvature tensor R with A in its structure group. However, if

λ �= ±1, only the trivial solution of R = 0 exists.

Calculating the rank of K − I when λ = ±1, we have Rank(K − I) = 4. Thus, the nullity is 2, which

implies that there exists a 2 dimensional subspace of algeraic curvature tensors that are preserved by this

matrix A.

We can give a more thorough analysis of this case regardless of what λ is by determining which Ri are

preserved by a matrix taking on this form.

Claim 1. R1 is zero.
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Proof. Suppose R1 is nonzero. Then, λ4 = 1. Consider R4 = λ
3
R1 + λ

4
R4. Then, substituting we have

R4 = λ
3
R1+R4 which implies that λ3

R1 = 0. However, since λ is nonzero, R1 must be zero. Thus, we have

a contradiction, and R1 is zero.

Claim 2. R4 is zero.

Proof. Suppose R4 is nonzero. Then, λ4 = 1. Consider R5 = λ
4
R5 − λ

3
R4. Then, R5 = R5 − λ

3
R4 and

λ
3
R4 = 0. However, since λ is nonzero, R4 is zero. Thus, we have a contradiction, and R4 is zero.

Claim 3. R2 is zero.

Proof. Suppose R2 is nonzero. Then, λ4 = 1. Consider, R6 = λ
4
R6 − λ

3
R2. Now, R6 = R6 − λ

3
R2 and

λ
3
R2 = 0. However, since λ is nonzero, R2 must be zero. Thus, we have a contradiction, and R2 is zero.

Now, it appears that the only outputs preserved by an R with A in its structure group are R3, R5, and

R6. However, because we have also determined that the subspace of algebraic curvature tensors that could

be preserved by A is 2 dimensional, at least one of R3, R5, or R6 must be dependent on another. Thus, we

will have some degree of freedom in determining the particular R with A in its structure group.

4.2.2 J(2, λ)⊕ J(1, η).

We now consider the Jordan decomposition J(2, λ)⊕ J(1, η). Suppose,

A = J(2, λ)⊕ J(1, η) =





λ 1 0

0 λ 0

0 0 η





for some nonzero λ and η. Using our matrix A and the properties of our curvature tensors, each of the

following equations for Ri were determined.

R1 = λ
4
R1

R2 = λ
2
η
2
R2

R3 = η
2
R2 + λ

2
η
2
R3 + 2η2λR6

R4 = λ
3
ηR4

R5 = λ
3
ηR5 − λ

2
ηR4

R6 = λ
2
η
2
R6 + η

2
λR2

Using the construction found in Lemma 2, we create the following matrix equation.





R1

R2

R3

R4

R5

R6





=





λ
4 0 0 0 0 0

0 λ
2
η
2 0 0 0 0

0 η
2

η
2
λ
2 0 0 2η2λ

0 0 0 λ
3
η 0 0

0 0 0 −λ
2
η λ

3
η 0

0 η
2
λ 0 0 0 η

2
λ
2









R1

R2

R3

R4

R5

R6





.
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The determinant of K − I was calculated to be (λ4 − 1)(λ2
η
2 − 1)3(λ3

η− 1)2. Thus, for our determinant

to be zero either λ4
, λ

2
η
2, or λ3

η = 1.

Now, we consider the rank of K− I according to which of the three above equations satisfy the condition

of our determinant being zero. If λ4 − 1, λ2
η
2 − 1, or λ3

η− 1 goes to zero, the rank of K − I is 5. Thus, the

nullity is 1 and there exists a one dimensional subspace of algebraic curvature tensors that A will preserve.

The only other case we must consider is when both λ
4 − 1 and λ

2
η
2 − 1 are zero because any other

combination implies that the remaining factored component would go to zero as well. Then, we would be

dealing with a 6 dimensional subspace, which is the space with the zero tensor. So, when both λ
4 − 1 and

λ
2
η
2 − 1 are zero, λ = ±1 and η = ±1. We consider the four possible cases here and conclude that when

λ = η the rank of K − I is 3. Thus, the nullity is also 3, and there is a 3 dimensional subspace of algebraic

curvature tensors being preserved. Finally, if λ = −η, the rank of K − I is 4, so the nullity is 2. Thus, there

exists a 2 dimensional subspace of algebraic curvature tensors being preserved by A.

Using algebraic manipulation of the above equations and resulting contradictions, we determine that

R1, R3, and R5 will be the only nonzero elements.

Claim 4. R2 is zero.

Proof. Suppose R2 is nonzero. Then, R2 = λ
2
η
2
R2 implies that λ

2
η
2 = 1. Now, consider R6 = λ

2
η
2
R6 +

η
2
λR2. Because λ

2
η
2 = 1, we can rewrite R6 = R6 + η

2
λR2, which implies that η2λR2 = 0. However, both

η and λ are nonzero. Thus, R2 must be zero, and we have a contradiction.

Claim 5. R4 is zero.

Proof. Suppose R4 is nonzero. Then, R4 = λ
3
ηR4 implies that λ3

η = 1. Now, consider R5 = λ
3
ηR5−λ

2
ηR4

which can be rewritten as R5 = R5 − λ
2
ηR4. Then, λ2

ηR4 = 0. However, since both λ and η are nonzero,

R4 is zero. Thus, we have a contradiction and R4 is zero.

Claim 6. R6 is zero.

Proof. Suppose R6 is nonzero. Then, R6 = λ
2
η
2
R6 implies that λ

2
η
2 = 1. Now, considerR3 = λ

2
η
2
R3 +

2η2λR6, which can be rewritten as R3 = R3 +2η2λR6. Then, 2η2λR6 = 0. However, since both λ and η are

nonzero, R6 = 0. Thus, we have a contradiction and R6 is zero.

Therefore, we know that the outputs R1, R3, and R5 are nonzero and must be preserved by some tensor

R.

Relating this back to the determinant, we see that if R2 = R4 = R6 = 0, we are left with the equations

R1 = λ
4
R1, R3 = λ

2
η
2
R3, and R5 = λ

3
ηR5. Thus, we consider the following subcases.

Case 1. Using the above equations, one can see that if either R1, R3, and R5 are nonzero, only R3 is zero,

only R1 is zero, or both R1 and R3 are zero, then λ = η = ±1.

Case 2. If R5 = 0, then λ = ±1 and η = ±1.

Case 3. If R3 = R5 = 0, then λ = ±1 and η is a free variable.

Case 4. If R1 = R5 = 0, then η = ±
1
λ .
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Remark 1. Because in cases 3 and 4, detA is not forced to equal ±1, SL(3)± is not the solution space in

dimension 3.

Therefore, given a matrix whose Jordan normal form takes this particular decomposition, we will have

some degree of freedom in determining the R this matrix will be in the structure group of.

5 Conclusions

We studied the extent to which an arbitrary closed subgroup H of GL(n) could be the structure group

of some curvature tensor R. When H = GL(n), we are dealing with the trivial case where R is the zero

tensor. Beginning in dimension 2, we used standard calculations in our proof of the known result that for

any nonzero R ∈ A(R2), the structure group of R is SL(2)±. Thus, the only subgroups H of GL(2) that

can be realized as the structure group of some curvature tensor R are GL(2) and SL(2)±. In dimension

3, we studied two Jordan normal forms as candidates for elements in a structure group. This analysis was

done using the method described Lemma 2. For A = J(3, λ), we were able to conclude that if λ = ±1, there

exist nontrivial curvature tensors R such that A is in the structure group. Also, this matrix A preserves a

2 dimensional subspace of algebraic curvature tensors. In considering A = J(2, λ)⊕ J(1, η), we found much

more flexibility in our choice of R and that depending on the choice of R it may preserve either a 1, 2, or 3

dimensional subspace of algebraic curvature tensors.

6 Questions

Through researching structure groups and their elements using Jordan normal form, we found many

questions related to this topic that remain unresolved.

1. Although we have answered the following question for two Jordan normal forms in dimension 3, we

would like to continue investigating whether if given an A ∈ GL(n) , can you find an R such that

A ∈ GR by considering the other possible Jordan canonical forms.

2. As a follow up to 1, we would ask if you can find an R such that A ∈ GR, then find all of GR. In

particular, we would like to do this with J(3, λ) and J(2, λ)⊕ J(1, η)

3. Various algebraic curvature tensors are classified into certain types. For instance: canonical, Ricci flat,

Weyl conformal, Osserman, decomposable, and others. If A is in the structure group of some curvature

tensor R, what of these types could be found in the kernel of K − I?

4. How is the Jordan normal form of the matrix A related to the Jordan normal form of the corresponding

matrix K?

5. C. Dunn poses the following question: Let R = {R|p|p ∈ M} and G = (V, �, �,R). Given G, does there

exist a (M, g) such that R = {R|p|p ∈ M}?
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