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Abstract

The set of Satellite Knots is one of the three fundemental groups of knots, along
with Hyperbolic and Torus Knots. This set is unique in that it contains the
set of all composite, or non-prime, knots. In the field of Knot Theory we are
mostly concerned with the properties of prime knots, so for my study I focused
on the properties of a potential set of prime satellite knots. Specifically we will
examine the properties of satellite knots whose companion is a torus of type
k and whose braid diagram has an index of k. By deriving braid words from
projections of these knots we will examine the structure and properties of these
knots and develop a straight forward method for creating knots of this type.

1 Introduction

Fundemental to our study is the understanding of several basic ideas within the
field of knot theory. The most essential being the idea of the braid, or a series
of non-intersecting strands in a cylinder that intersect any given cross section of
the cylinder at exactly n points, where n is the number of strands in the braid.
It is known that every knot can be described as a braid where the end points of
corresponding strands are connected. The smallest number of strands needed to
represent a given knot is called the braid index of that knot and factors greatly
into our study.

Now to study braids we need to apply a structure that will allow us to
manipulate them in a standardized way. For that we define an elementary braid
and an algebraic description of the braid group.
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Definition 1.1. The Elementary Braid, σi, is any n-stranded braid where the
ith stand crosses in front of the (i+ 1)st strand.

Definition 1.2. The Algebraic Braid Description: Bn is the group of braids
with index n and is such that

Bn =< σi|σiσj = σjσi; |i− j| ≥ 2,σiσi+1σi = σi+1σiσi+1 >

The Elementary Braid σi

Braids are described using a series of σi’s to produce braid words that can be
manipulated using braid relations.

Example:
σ1σ

−1
3 σ2σ1σ2 = σ

−1
3 σ

2
1σ2σ1 ∈ B4

Now that we understand braids we must describe the space that these braids
will exist in. For our purposes it will be benificial to work in S3 where S3 =
R3 ∪ {∞}, and use the open-book decomposition of S3.

Definition 1.3. The Open-Book Decomposition of S3 is a descritpion of the
space using the coordinate system (r, θ, z). We denote the z-axis as the binding
axis and for a fixed value θ the set Hθ = {(r, θ, z) ∈ S3} is the disk at angle
θ with the positive x-axis. As θ ranges from 0 to 2π these disks fill the space.
Each of these disk are called a page or fiber of the Open-Book decomposition.

For the most part we will use the Braid axis of our satellite as our binding
axis in S3. Within this space we are able to create a specific type of projection
of any given link called the Arc Presentation of the Link.

Definition 1.4. The Arc Presentation of a link L is an embeding of L in the
open-book decomposition such that a finite number of Hθ exists such that each
conatain a single continuous arc of L where the end points of these arcs lay on
the binding axis.

An Arc Presentation of the Trefoil using Five Arcs

2



There are several different diagrams that can represent the arc presentation
such as the spoke or grid presentation. The spoke presentation represents an
“overhead” view of the arc presentation where each “Spoke” is labelled with the
end points of the arc it contains. The grid presentation is another version of
the arc presentation where each row represents a point on the binding axis, and
the segments in each coloumn represnt arcs that span those points. The order
of the coloumns from left to right represents the counter clock-wise order of the
arcs around the binding axis. A labelled grid presentation assigns a number to
each row, or point, and a letter to each segment, or arc.

A Grid Presentaion of the Trefoil

The minimum number of arcs needed to represent a given link in an arc
presentation is call the arc index. We can construct arc presentations of knots
using what is called a grid diagram of a link, as described by Jin and Park[4].

Definition 1.5. The Grid Diagram of a link is a diagram built using horizontal
and vertical segments such that no more than two corners exist in any row or
coloumn and the vertical segments cross above the horizontal segments. (It was
shown by Cromwell[3] that every Link is isotopic to a Grid Diagram.)

Several Grid Diagrams of Standard Knots

We can construct an arc presentation by pulling the horizontal components
horizontally toward the binding axis. It can be observed that the grid diagram
relates directly to the grid presentation due to the fact that the horizontal
segments of each are projected onto a point on the binding axis to produce the
arc presentation. From this we can go directly from the grid diagram to the
grid presentation of its arc presentation.
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The types of knots under study are the satellite knots and are defined as
follows:

Definition 1.6. A knot K is satellite if it can be completely contained within
the interior of a torus T, such that the core of T is isotopic to a non-trivial knot
and that K is incompresible in the interior of T.

To study a satellite we will need to know about the torus it is embedded
within. A meridian is an essential loop on the surface of the torus that bounds
a disk in the torus. A longitude is a simple loop on the surface of the torus that
intersects any meridian once, and is called a preffered longitude if its linking
number with the core of the torus—or framing number—is 0.

A Torus with two Meridians and a Preferred Longitude shown.

A torus is considered knotted if any preferred longitude is knotted. Birman
and Menasco[1] determined three distinct classes of tori in the context of braids.

Definition 1.7. A Type 0 torus that does not intersect the binding axis
and every Hθ intersects the torus along n unique meridian, where n is the
braid index of the core of any preferred longitude of the torus.

Definition 1.8. A Type 1 torus is such that the surface of the torus
intersects the binding axis twice and every Hθ either intersects n disks
bound by unique meridian and a disk bound by a meridian and the binding
axis or (n − 1) disks bound by unique meridian and a disk bound by a
meridian and the Binding Axis, where n is the braid index of any preferred
longitude of the torus.

Definition 1.9. A Type k torus is such that the surface of the torus
intersects the Binding Axis 2k times and the core of the torus intersects
the binding axis k times, where k ≥ 2.
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The core of the type k torus is isotopic to an arc presentation of the torus.
If the arc index of the core of the core of the torus is k then the torus can only
be of type l, where l ≥ k.

A type 0, 1 and k torus

For each type of torus a satellite is called a proper satellite when the number
of times that the satellite intersects any disk bounded by a meridian of the
companion, the wrapping number, is greater than or equal to 2.

From Cromwell’s text[2] the following is proven:

Theorem 1.1. A Proper Satellite is prime if its pattern is a prime knot or the
trivial knot.

A proper satellite with an unkot pattern is prime

With this information we will construct, to start, the braid word for a satel-
lite knot with braid index 5 and companion torus being of type 5, and move
onto the structure of higher indexed braids.
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2 Results

Our Initial interest in the 5 braid with type 5 companion comes from the fact
that it is one of two possible structures that could contain prime 5 braid satel-
lites. By constructing the braid words for this type of satellite we will be able
to classify the 5 braid prime satellites, and move towards developing a method
for constructing satellites whose companion is of type k. By creating a method
for constructing these types of satellites we come closer to classifying prime
satellites of braid index k.

For the following property of 5 braid satellites we will use three equation
developed by Birman and Menasco [1], where b(K) is the braid index of a knot
K, wn is the weight of the strands, as defined below and C is the companion
knot.

Definition 2.1.

Type 0 w is wrapping number of the satellite in the Torus

Type 1 Given to types of Disks D and d such that D is bounded by the braid
axis and a meridian of the torus and d is bounded by a meridian of the
torus, and a specifc Hθ such that Hθ intersects the torus T at 1 disk D
and n disks d, where n is the braid index of the core of the torus, then
w0 is the number of strands that intersect Hθ in a disk d and w1 is the
number of strands that intersect Hθ in a disk D.

Type k wn is the number of strands that go around each segment An in a Torus
T such that A1 ∪A2 ∪ . . . ∪An = A ∩ T where A is the braid axis.

These equations compute the braid indices of knots within a Type 0, 1 and k

Torus respectively.

Type 0: b(K) = w ∗ b(C)

Type 1: b(K) = w0 ∗ b(C) + w1

Type k: b(K) = w1 + w2 + w3 + · · ·+ wk, k > 1

Lemma 2.1. Given a knot K such that K is a prime satellite knot of braid
index 5, then the companion of K must be either a type 1 torus with braid index
2 or be a type 5 tours.

Proof. Based on Birman and Menasco’s [1] classification of Tori of either being
of type 0, 1, or k we see that there are many tori to consider. We can elimanate
cases where a braid index of 5 for a satelite knot is impossible using the equations
listed above.
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From these equations we get three cases.

Case 1: Type 0

Let A be a satellite knot of index 5 and companion torus T. For T to be a
knotted torus of Type 0 then it must be of at least braid index 2 or greater,
yet knot A’s index is not a multiple of 2, 3, 4, or 6 or greater so, based on our
equations, we can eliminate tori of these index. Therefore the only, knotted,
type 0 torus which could contain a five braid would be a torus with index 5. Yet
if the braid index of the knotted torus is five then the knot would be isotopic
to a preferred longitude of the torus, and would no longer be satellite to it.

Therefore a type 0 torus could not be a companion to a 5 braid satellite.

Case 2: Type 1

For a Type 1 torus we can use our equation to determine what arrangements of
weight and companion indices lead to a braid index of 5 for K.

w0 w1 b(C)
1 1 4
1 2 3
1 3 2
1 4 1
2 3 1
2 1 2
3 2 1
4 1 1

For the cases where w0 = 1 we can observe that K is composite, therefore it
is non-prime. For the cases where b(C) = 1 we can observe that the companion
must be the unknot, being that only the unkot has a braid index of 1.

This leaves only the 2,1,2 arrangement remaining, which could take a prime
arrangement since the wrapping number is 2 and the pattern could have a prime
form as described in Theorem 1.1.

Case 3: Type k

For a Type k torus we can see that we can have between 2 and 5 weights, where
the number of weights is equal to the type number. We know that K has one
component the knot will have a consistent weight across the torus. Therefore
b(K) = w1 +w2 +w3 + · · ·+wn = n ∗wn, since the braid index of our satellite
is 5 then n and wn must be multiples of 5 (1 or 5). If wn = 5 then n = 1, yet we
know that n = k > 1 so this is not possible. Therefore wn = 1 and n = 5 which
implies that k = 5. So a 5 braid satellite can only have a type k companion if
k = 5. The pattern of the satellite is allowed to be either prime or the unknot,
and the wrapping number is 2 so based on Theorem 1.1 this case can contain
prime satellite knots.
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The first step for describing a 5 braid satellite with companion type 5 torus
is to determine what knots allow for a type 5 torus, which we can know is related
to which knots have an arc index of 5.

Lemma 2.2. The only Knot with an arc index of 5 is the Trefoil.

Proof. Let K be a knot of arc index of 5, we can see from Cromwell’s text [2]
that the arcs of the diagram of K must have non-adjacent end points, and since
we are working in S3 the top and bottom points are considered adjacent. Also
only two arcs can meet at any point. From this we can see that there is only
one way to connect the points on the binding axis to produce a knot. Now the
projection of this diagram onto R2 with the greatest number of crossings is the
diagram were all arcs lay on the same half-plane defined by the projection of
the binding axis. For our diagram the maximum number of crossings is 5.

Figure 1 We know that each arc lays in a
unique Hθ so therefore at least one arc
can be moved from one half plane to
the other and be a projection of an
isotropic knot. Since this move reduces
the number of crossings to 3 then a
knot represented a 5 arc diagram can
at most have three crossings. We know
that the Trefoil has a 5 arc diagram
and that it is the only non-trivial knot
with three or less crossings, therefore
it is the only knot with an arc index of
5.

Now we can use this information to determine a braid word for a 5 braid
satellite with type 5 companion.
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Theorem 2.1. Let K be a 5 braid
prime satellite with a type 5 compan-
ion, then K has a braid word of the
form

K5 = {(σ1σ2σ
P
3 σ

−1
2 σ

−1
1 )(σ2σ3σ

Q
4 σ

−1
3 σ

−1
2 )

(σ1σ
R
2 σ

−1
1 )(σ2σ

S
3 σ

−1
2 )(σ3σ

T
4 σ

−1
3 )|∀q ∈

{P,Q,R, S, T}; |q| > 0, ∃!p ∈
{P,Q,R, S, T}; p = 2h, h ∈ Z}
Where K5 is the set of these knots.

Proof Given a knot K such that K is
a satellite with braid index 5 and com-
panion of type 5 then K’s companion is
a trefoil by lemma 2.2. Therefore K is
isotopic to Figure 2. This diagram can
be projected down to R2 to produce a
knot diagram of K, as shown in Figure
3.

Figure 3

The knot K surrounds a point P
that is the projection of the braid axis.
If you cut the knot at points that in-
tersect a given ray that begins at P
then you will get the braid with braid
word

σ
P
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ2σ4σ3σ

Q
4 σ

−1
3

σ
−1
2 σ

−1
4 σ3σ

R
4 σ1σ

−1
3 σ4σ2σ3σ

S
4 σ1σ2σ

−1
3

σ
−1
2 σ

−1
1 σ4σ

−1
3 σ

−1
4 σ

T
4 σ4σ2σ3σ

−1
4 σ

−1
3

σ
−1
2 σ1σ2σ3

Figure 2

By simplifing the initial braid word algebraically, as demonstrated in Ap-
pendix 1, we are left with the following braid word.

(σ1σ2σ
P
3 σ

−1
2 σ

−1
1 )(σ2σ3σ

Q
4 σ

−1
3 σ

−1
2 )(σ1σ

R
2 σ

−1
1 )(σ2σ

S
3 σ

−1
2 )(σ3σ

T
4 σ

−1
3 )
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If we look back to Figure 2 we can see that there are three possible arrang-
ments for each braid box depending on whether there are an even or odd number
of crossings or 0 crossings. The possible arrangments are depicted in Figure 4.

Figure 4: Even, 0 and Odd crossing numbers

If any braid box has 0 crossings then the knot misses a meridian disk in the
interior of the torus and is no longer satellite to it. With more than one even box
the braid becomes a multi component link and with all odd crossing numbers
then the braid will also become a link. This then implies that the braid must
have a sinlge box with an even number of crossings and all others must then be
odd.

Therefore the structure of a satellite K with braid index 5 and companion
of type 5 is
K5 = {(σ1σ2σ

P
3 σ

−1
2 σ

−1
1 )(σ2σ3σ

Q
4 σ

−1
3 σ

−1
2 )(σ1σ

R
2 σ

−1
1 )(σ2σ

S
3 σ

−1
2 )(σ3σ

T
4 σ

−1
3 )

|∀q ∈ {P,Q,R, S, T}; |q| > 0, ∃!p ∈ {P,Q,R, S, T}; p = 2h, h ∈ Z}.
Where K5 is the set of knots of this type.

�
We can see from Theorem 2.1 that the braid has a strong structure, but

requires a long braid word to represent it, to make this form more concise we
will now employ a shorthand that better illistrates the structure of this braid,
we will call this shorthand a compressed sigma notation of the braid.

σ
X
i,j = (σiσi+1 . . .σj−2σ

X
j−1σ

−1
j−2 . . .σ

−1
i+1σ

−1
i )

With this notation the braid word for Satellites with index 5 and companion
of type 5 will be (σP

1,4σ
Q
2,5σ

R
1,3σ

S
2,4σ

T
3,5), with the same bounds as previously

stated.

Figure 5: σi,j
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Now if we combine our results from Theorem 2.1 and Lemma 2.1 we get the
following result on the classification of 5 braid satellites,

Theorem 2.2. Given a knot K with braid index 5 then the knot will be a member
of the set will have one of the following braid words:

β3,5(σm
3 )(σ2σ3σ1σ2)n, n ≥ 3, β3,5 being a braid box across the 3rd to 5th strands

and the closure of β3,5 is a non-trivial knot.

(σP
1,4σ

Q
2,5σ

R
1,3σ

S
2,4σ

T
3,5), bounded as described in Theorem 2.1.

Proof. From Lemma 2.1 we know that the only possible prime satellite knot K
with a type 1 companion has a 2,1,2 configuration—so we know that the braid
must include 2 winding strands through a 2 stranded torus, and 1 strand that
cannot be removed by surgery, therefore the two strands wind through the non-
trivial 2 braid of the torus as (σ2σ3σ1σ2)n where n ≥, or the torus is trivial or a
link. The winding strands can cross themselves, σm

3 and the non-winding strand
must be included in the knot in a way that disallows surgery, so β̂3,5 must be a
non-trivial knot with index 3. If K has a type 5 companion then it would have
the form as shown in Theorem 2.1.

From this we have a complete classification of prime satellite knots of index
5. We can see that the method used to create the knot with a type 5 companion
can be expanded to higher cases, we will now use our methods from Theorem
2.1 to produce the braids of satellites with index 6 and comapanion of type 6.
We know from Jin and Park [4] that the figure-eight has an arc index of 6, so
to begin we will use it as our torus.

Theorem 2.3. Let K be a satellite knot with companion figure-eight torus T of
type 6, then K is in the set K61 . Where

K6 = {σA
1,3σ

B
2,6σ

C
1,4σ

D
3,5σ

E
4,6σ

F
2,5 | ∀q ∈ {A,B,C,D,E, F}

; |q| > 0, ∃!p ∈ {A,B,C,D,E, F}; p = 2h, h ∈ Z}

Proof. From Lemma 2.3 we know that there are two type 6 companion trefoils
and from Jin and Park [4] we know that there is also a type six companion
figure-eight. The diagrams above show the satellites contained in each possible
torus, with a counter-clockwise orientation. So applying the same method as
used for Theorem 2.1 we can produce the braid words above, the algebraic
simplification, along with the projections of these knots onto R2 can be found
in appendix 2. Similarly we can see that the braids require the same bounds as
found in Theorem 2.1 through the same reasoning.
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Figure 6: Satellite Contained Within a Type 6 Figure Eight

Looking at our results thus far we can begin to see some of the overarching
structure to these sets of knots. First we can observe that there seems to be
a definite relationship between the grid presentation, or grid diagram, and the
braid structure. Second we can observe that the bounds on the numbers of
crossings apear to be consistent for every braid of this type.

(σA
1,3σ

B
2,6σ

C
1,4σ

D
3,5σ

E
4,6σ

F
2,5) (σP

1,4σ
Q
2,5σ

R
1,3σ

S
2,4σ

T
3,5)

Figure 7: Labelled Grid Presentation of Companions and the Corresponding
Braids of the Satellites
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Theorem 2.4. Given a labelled grid
presentation of a companion torus with
labelled arcs {a, b, c, . . . ,ω} such that
arc a spans (Xa, Ya), arc b spans
(Xb, Yb) and so on, where X∗ and
Y∗ are the interger labels of the rows
that the segment * begins and ends on,
(X∗ < Y∗), then the braid word for the
corresponding satellite would be

(σα
Xa,Ya

σ
β
Xb,Yb

. . .σ
γ
Xω,Yω

)

Proof Let K be an index k satellite
knot such that its companion torus T
is type k about the braid axis. Let H
be a cylinder in the neighborhood of
the braid axis.

If we project T onto the surface of
H and then cut H along a vertical seg-
ment that does not contain the projec-
tion of T the result will be a grid pre-
sentation of T. Similarly If you project
K onto the surface of H and cut H
along a vertical segment that only con-
tains horizontal segments of the projec-
tion of K, then the resulting diagram
would be a valid braid diagram of K.

Figure 8: Satellite With Type 5
Trefoil, and the Cylinder H

The segments of K that are interior of the cylinder H would lay below the
segments of K that lay exterior to H and the segments that lay above would be
bounded in by the projection of T, therefore the resulting grid presentation and
braid diagram would be related, where the arcs of T bound a braid box that
crosses the strands that are positioned at either end of T. So the braid would
be isotopic to the above braid word.

�
With this information we can now determine the bounds on the crossing

numbers of satellites with index k and type k companion.

Theorem 2.5. Given a satellite with braid index k and companion torus of type
k then the structure of the braid will be as follows:

Kk = {σα
i,jσ

β
i,jσ

γ
i,j . . .σ

ω
i,j |∀q ∈ {α,β, γ, . . . ,ω};

|q| > 0 : ∃!p ∈ {α,β, γ, . . . ,ω}; p = 2h, h ∈ Z}
where {α,β, γ, . . . ,ω} contains k elements and i and j represent unspecified
strand numbers such that i < j.
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Proof. Let K be a satellite knot with braid index k and comapnion Torus T of
type k around the braid axis. From Theorem 2.3 we can conclude that the braid
word will have the form (σα

i,jσ
β
i,jσ

γ
i,j . . .σ

ω
i,j) where i and j represent unkwown

strand designations, i < j, and {α,β, γ, . . . ,ω} contains k elements. We know
that the local diagrams for each braid box can only have an even, odd, or zero
crossing configuration as dipicted in Figure 4. If every box had an odd number
of crossings then the strands would not reverse direction at any point within the
torus, yet it is known that the link ineterior of the torus is bidirectional, which
implies that K would be a two component link when every braid box has an odd
number of crossings, therefore at least one must be even. If 2 or greater braid
boxes had an even number of crossings then K would also form a link with more
than one component. Finally if any braid box had zero crossings then K would
not intersect every meridian within the interior of the torus and would no longer
be satellite. Therefore ∀q ∈ {α,β, γ, . . . ,ω}; |q| > 0 : ∃!p ∈ {α,β, γ, . . . ,ω}; p =
2h, h ∈ Z

Now we have a complete method for constructing satellite knots with index k

and companion torus of type k which we can apply to create more braid words.
Such as the case where k = 7.

Result 2.1. Using our results and results from the work of Jin and Park [4] we
can determine the structure of any satellite knot of braid index 7 and companion
being of type 7 and arc index 7 to be a subset one of the following sets:

Knot 51: β71 = {σP
27σ

Q
16σ

R
57σ

S
46σ

T
35σ

U
24σ

V
13}

Knot 52: β72 = {σP
16σ

Q
57σ

R
46σ

S
25σ

T
13σ

U
24σ

V
37}

Knot 819: β73 = {σP
37σ

Q
26σ

R
15σ

S
47σ

T
36σ

U
25σ

V
14}

These braids have the same bounds as shown in Theorem 2.4 and have a
type 7 companion of the knot notted to its left.

3 Conclusion

In conclusion our study of this class of satellite knots has produced a complete
classification of prime five braids and a methodology through which satellites can
be constructed from any given type k torus, these satellites have a braid index
of k and are bidirectional within the torus. These knots have fairly interesting
properties and provide an insight into satellite knots as a whole.
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3.1 Open Questions

Continuing this study I plan to investigate several open questions on the pri-
mality of these knots and multi-component links of similar structure, some of
these open questions include:

1. Are all satellite knots of this structure prime?

2. What does the pattern of these knots (pretzel) tell us about their structure
and what is the relationship between this pattern and the type k torus?

3. What properties would a satellite link with companion torus of type k

have?

4. What properties would a satellite knot of index 2k and companion of type
k have?

5. Can satellites with companion of type k, but arc index k− 1 have a braid
index of a(k − 1)?

6. Is the closed braid with the structure

Kk = {σα
i1,j1σ

β
i2,j2

σ
γ
i3,j3

. . .σ
ω
in,jn |∀q ∈ {α,β, γ, . . . ,ω};

|q| > 0 : ∀p ∈ {α,β, γ, . . . ,ω}; p �= 2h, h ∈ Z}

a non trivial link?

7. Can you determine the companion torus of a given satellite knot?

8. Can you determine the companion torus for a given satellite link?
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4 Appendix

For this appendix the symbol ∼= will be used to represent that the two braid
words are isotopic when closed.

4.1 Theorem 2.1: Algebraic Simplification of Braid

K5 = σ
P
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ2σ4σ3σ

Q
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

R
4 σ1σ

−1
3 σ4σ2σ3

σ
S
4 σ1σ2σ

−1
3 σ

−1
2 σ

−1
1 σ4σ

−1
3 σ

−1
4 σ

T
4 σ4σ2σ3σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3

σ1σ
−1
3 σ4σ2σ3σ

S
4 σ1 = σ

−1
3 σ4σ1σ2σ1σ3σ

S
4

= σ
P
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ2σ4σ3σ

Q
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

R
4 σ

−1
3 σ4σ1σ2σ1σ3

σ
S
4 σ2σ

−1
3 σ

−1
2 σ

−1
1 σ4σ

−1
3 σ

−1
4 σ

T
4 σ4σ2σ3σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3

σ1σ2σ1σ3σ
S
4 σ2 = σ2σ1σ2σ3σ2σ

S
4

= σ
P
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ2σ4σ3σ

Q
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

R
4 σ

−1
3 σ4σ2σ1σ2σ3σ2

σ
S
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ
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4.2 Theorem 2.3: Algebraic Simpflication of Braids and

Related Diagrams

4.2.1 Diagrams

4.2.2 Algebraic Simplification
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3 σ

−1
2 σ1σ3σ4σ5σ2σ3σ4σ

D+1
5 σ

−1
4 σ

−1
3

σ
−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ3σ4

σ
A
5 . . .σ

F−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ3σ4

∼=
σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ3σ4σ

A
5 . . .σ

F
5

∼= σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ3σ4σ

A
5 σ

−1
4 σ

−1
3 σ

−1
5 σ4σ

B
5 σ

−1
4 σ2σ3σ

C
4 σ

−1
3

σ
−1
2 σ1σ3σ4σ5σ2σ3σ4σ

D+1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F
5

σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ3σ4σ

A
5 = σ

−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1

= σ
−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ

−1
5 σ4σ

B
5 σ

−1
4 σ2σ3σ

C
4 σ

−1
3

σ
−1
2 σ1σ3σ4σ5σ2σ3σ4σ

D+1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F
5

σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ

−1
4 σ

−1
3 σ

−1
5 σ4σ

B
5 σ

−1
4 σ2σ3σ

C
4 σ

−1
3 σ

−1
2 =

σ
−1
3 σ

−1
2 σ

−1
4 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1

= σ
−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ

−1
5 σ

−1
4 σ

−1
3 σ

−1
2

σ
−1
1 σ1σ3σ4σ5σ2σ3σ4σ

D+1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F
5

σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ

−1
1 σ1σ3σ4σ5 = σ2σ3σ4σ

−1
5 σ

−1
4 σ

−1
3 σ

−1
2
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= σ
−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ2σ3σ4σ

−1
5 σ

−1
4

σ
−1
3 σ

−1
2 σ2σ3σ4σ

D+1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F
5

σ
−1
5 σ

−1
4 σ

−1
3 σ

−1
2 σ2σ3σ4σ

D+1
5 = σ

D
5

= σ
−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
3 σ

−1
2 σ

−1
4 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ2σ3σ4σ

D
5 σ

−1
4

σ
−1
3 σ

−1
2 σ1σ2σ3σ

E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ4σ3σ4σ

F
5

σ
−1
4 σ

−1
3 σ2σ3σ

A
4 σ

−1
3 σ

−1
2 σ

−1
4 . . .σ4σ3σ4σ

F
5 = σ

−1
3 σ

−1
4 σ

−1
3 σ2σ

A
3 σ

−1
2 . . .σ3σ4σ

F
5 σ3

= σ
−1
3 σ

−1
4 σ

−1
3 σ2σ

A
3 σ

−1
2 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ2σ3σ4σ

D
5 σ

−1
4 σ

−1
3 σ

−1
2

σ1σ2σ3σ
E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ3σ4σ

F
5 σ3

σ
−1
3 σ

−1
4 σ

−1
3 . . .σ

F
5 σ3 = σ

−1
4 σ

−1
3 . . .σ

F
5

∼= σ
−1
4 σ

−1
3 σ2σ

A
3 σ

−1
2 σ3σ

B
4 σ

−1
3 σ1σ2σ

C
3 σ

−1
2 σ

−1
1 σ2σ3σ4σ

D
5 σ

−1
4 σ

−1
3 σ

−1
2 σ1

σ2σ3σ
E
4 σ

−1
3 σ

−1
2 σ

−1
1 σ3σ4σ

F
5

We can simplify our braid word by applying our compressed notation, σm
i,j .

∼= σ
A
2,4σ

B
3,5σ

C
1,4σ

D
2,6σ

E
1,5σ

F
3,6
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