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Abstract

We consider the linear dependence of 3 canonical algebraic curvature tensors and
extend previous results of others by working in the higher signature setting.

1 Introduction

Let V be a finite dimensional real vector space with an inner product ϕ. Let’s begin with
some important definitions.

Definition 1. An inner product satifies the following properties where u, v, and w are

vectors and α is a scalar:

1. ϕ(u+ v, w) = ϕ(u,w) + ϕ(v, w)

2. ϕ(α · v, w) = α · ϕ(v, w)

3. ϕ(v, w) = ϕ(w, v).

Definition 2. Let V ∗ be the set of all linear functions from V to R. An algebraic curvature
tensor is a function R ∈ ⊗4(V ∗), satisfying the algebraic identities of the curvature tensor

of a Riemannian manifold:

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y)

R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

The last property is known as the Bianchi Identity.

Definition 3. Let ϕ be a bilinear form on V . We say ϕ is symmetric if ϕ(v, w) = ϕ(w, v)
for all v, w ∈ V , and we say ϕ is positive definite if for all v ∈ V , ϕ(v, v) ≥ 0, and equal to

zero only when v = 0.

Although this paper uses cases where positive definiteness is not assumed, it is still necessary
to know what forms are considered positive definite as this still comes up in this paper.

Definition 4. An inner product, ϕ, is nondegenerate if and only if, for all x �= 0 ∈ V , there

exists y �= 0 ∈ V such that ϕ(x, y) �= 0.

Let ϕ be a symmetric bilinear form on V . For all x, y, z, w ∈ V , let Rϕ be defined by

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w). (1.a)
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Definition 5. A : V −→ V , then the adjoint of A, denoted A∗, with respect to ϕ, is

characterized by the equation ϕ(Ax, y) = ϕ(x,A∗y). A is said to be self-adjoint if A = A∗.

If ϕ is nondegenerate and Ψ : V −→ V is self-adjoint, then

ψ(y, x) = ϕ(Ψy, x) = ϕ(y,Ψ∗x) = ϕ(Ψ∗x, y) = ϕ(Ψx, y) = ψ(x, y).

We can also define the following

Rψ(x, y, z, w) = ϕ(Ψx,w)ϕ(Ψy, z)− ϕ(Ψx, z)ϕ(Ψy, w) = Rϕ(Ψx,Ψy, z, w) (1.b)

Rτ (x, y, z, w) = ϕ(Tx,w)ϕ(Ty, z)− ϕ(Tx, z)ϕ(Ty,w) = Rϕ(Tx, Ty, z, w) (1.c)

where Ψ and T are self-adjoint with respect to ϕ and Ψ, T : V → V . Note that Rψ and Rτ

are algebraic curvature tensors as long as ψ and τ are symmetric [2].

Definition 6. We define the Spec(Ψ) as the set of eigenvalues of Ψ, repeated according to

multiplicity, and |Spec(Ψ)| as the number of distinct elements of Spec(Ψ).

The following theorem from Diaz [1] inspired this paper.

Theorem 1. Suppose dim V ≥ 4, ϕ is positive definite, Rank τ = dim V , and Rank ψ ≥ 3.
The set {Rϕ, Rψ, Rτ} is linearly dependent if and only if one of the following is true:

(1) |Spec(ψ)| = |Spec(τ)| = 1

(2) Spec(τ) = {η1, η2, η2, . . .}, and Spec(ψ) = {λ1,λ2,λ2, . . .}, with η1 �= η2, λ2
2 = ε(δη22−1),

and λ1 = ε
λ2
(δη1η2 − 1).

Diaz worked with the assumption that ϕ is positive definite, Rank τ is equal to the dimension
of the vector space so that τ−1 exists, and Rank ψ is greater than or equal to 3. We study
the linear dependence of {Rϕ, Rψ, Rτ} in the event that ϕ is not positive definite, but
merely nondegenerate. Smothers [4] explored change of signature endomorphism to show
that the theorem presented by Diaz applies to the nondegenerate situation, although there
is considerable difficulty in transferring the nondegenerate case to the positive definite one.
According to Smothers, there exists a change of signature endomorphism that could take
you from ϕ (not necessarily positive definite) to ϕ+ (which can be positive definite).

Definition 7. Let there be a change of signature endomorphism. It’s signature is denoted

by (p, q) with p time-like vectors and q space-like vectors.

This technique involves a change of signature endomorphism with signature (4,4) in this
particular case. This will be dicussed in detail in the next section. We will also point out
that Smothers obtained partial results by appliying this idea.

Using the following theorems given by Diaz and Dunn [2], we reduce the equation aRϕ +
bRψ + cRτ = 0 by noticing that if one or more of a, b, or c are zero, and none of ϕ,ψ, or τ
have a rank less than 3, then the following theorem applies:

Theorem 2. Suppose Rank ϕ ≥ 3. The set {Rϕ, Rψ} is linearly dependent if and only if

Rψ �= 0, and ϕ = νψ for some ν ∈ R.

Otherwise, we have a,b,c = 0, and we are left with the case that Rϕ = εRψ + δRτ where
ε and δ are a choice of signs. Below is the theorem from which Diaz and Dunn introduced
this equation.

Theorem 3. Suppose ϕ is positive definite, Rank τ = n, and Rank ψ ≥ 3. If {Rϕ, Rψ, Rτ}
is linearly dependent, then ψ and τ are simultaneously orthongonally diagonalizable with

respect to ϕ.
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2 Change of Signature

Definition 8. Let C represent our change of signature endomorphism. Then C is an

endomorphism that exists in the vector space and has the following properties:

1. C is self-adjoint with respect to ϕ.

2. C2 is the identity.

3. The symmetric bilinear form ϕ+(x, y) := ϕ(Cx, y) is positive definite.

4. On an orthonormal basis,

[C] =

�
−Iq 0
0 Ip

�

Lemma 1. Suppose Rank τ = dimV , Rank ψ ≥ 3. If {Rϕ, Rψ, Rτ} is linearly dependent,

then R+
ϕ+ = εR+

ψ+ + δR+
τ+ .

Proof. By definition of a change of signature endomorphism:

1) Using the symmetric bilinear form, ϕ+(x, y), we can construct the following:

R+
ϕ+(x, y, z, w) = ϕ+(x,w)ϕ+(y, z)− ϕ+(x, z)ϕ+(y, w).

2) Given ϕ+(x, y) = ϕ(Cx, y), we compute the following, note that ϕ(ψCx, y) = ϕ(C2ψCx, y) =
ϕ+(CψCx, y):

RΨ(Cx,Cy, z, w) = ϕ(ΨCx,w)ϕ(ΨCy, z)− ϕ(ΨCx, z)ϕ(ΨCy,w)
= ϕ+(CΨCx,w)ϕ+(CΨCy, z)− ϕ+(CΨCx, z)ϕ+(CΨCy,w)
= R+

CΨC(x, y, z, w).

Follow the same process for τ to get R+
CTC(x, y, z, w).

3) Using the equation found from Theorem 3, we get:

Rϕ(Cx,Cy, z, w) = εRψ(Cx,Cy, z, w) + δRτ (Cx,Cy, z, w)
Rϕ+(x, y, z, w) = εR+

CΨC(x, y, z, w) + δR+
CTC(x, y, z, w)

= εR+
ψ+(x, y, z, w) + δR+

τ+(x, y, z, w).

Remark. CΨC = ψ+ and CTC = τ+ when CΨC is self-adjoint with respect to ϕ+ if and
only if C and Ψ commute, similarly for CTC. Therefore, it is not clear if R+

ψ+ is an algebraic

curvature tensor (the same for R+
τ+), so we cannot yet apply the result Diaz obtained. Only

one needs to be proven to be self -adjoint in order for Rϕ+ = εR+
ψ+ + δR+

τ+ to be true.

It is important to note that CΨC = ψ+ means CΨC = Ψ+ and similarly, CTC = τ+

means CTC = T+.
If CΨC is self-adjoint, then the following will hold:

ϕ+(CΨCx, y) = ϕ+(x,CΨCy)
ϕ(ΨCx, y) = ϕ(Cx,CΨCy)
ϕ(ΨCx, y) = ϕ(x,ΨCy)

= ϕ(CΨx, y)
⇒ ΨC = CΨ.

Similarly if CTC is self-adjoint:

ϕ+(CTCx, y) = ϕ+(x,CTCy)
ϕ(TCx, y) = ϕ(Cx,CTCy)
ϕ(TCx, y) = ϕ(x, TCy)

= ϕ(CTx, y)
⇒ TC = CT.

Which would mean that either Ψ and C or T and C commute.
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3 Linear Dependency and Decomposition of the Vector Space

Suppose the signature of ϕ = (4, 4) and the basis is {e1, e2, e3, e4, f1, f2, f3, f4}, then we have
the following representations of ϕ and ψ:

ϕ =





−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





The calculation of ψ and C is illustrated below.

ψ =

�
A B

−BT D

�
and C =

�
−I 0
0 I

�

ψC =

�
−A B
BT D

�
and Cψ =

�
−A −B
−BT D

�

We assume

ψ =





λ1 0 0 0 a b c d
0 λ2 0 0 e f g h
0 0 λ3 0 i j k l
0 0 0 λ4 m n o p
−a −e −i −m λ5 0 0 0
−b −f −j −n 0 λ6 0 0
−c −g −k −o 0 0 λ7 0
−d −h −l −p 0 0 0 λ8





and similarly,

τ =





η1 0 0 0 ā b̄ c̄ d̄
0 η2 0 0 ē f̄ ḡ h̄
0 0 η3 0 ī j̄ k̄ l̄
0 0 0 η4 m̄ n̄ ō p̄
−ā −ē −ī −m̄ η5 0 0 0
−b̄ −f̄ −j̄ −n̄ 0 η6 0 0
−c̄ −ḡ −k̄ −ō 0 0 η7 0
−d̄ −h̄ −l̄ −p̄ 0 0 0 η8





Consider the decomposition of the vector space to V = W+⊕W− whereW+ = span{f1, . . . , fj}
and W− = span{e1, . . . , ei}. Now we present the following conjecture that was expected to
show that the relationship between ϕ, ψ, and τ holds as it did in 3.

Theorem 4. Suppose Rank τ = dim V , Rank ψ ≥ 3, and the signature of ϕ is equal to dim
V . Let the set {Rϕ, Rψ, Rτ} be restricted to the vector space W+. The set {Rϕ, Rψ, Rτ} is

linearly dependent if and only if ϕ|
W+

is positive definite and ψ|
W+

and τ|
W+

are symmetric,

then ψ|
W+

and τ|
W+

are simultaneously diagonalizable with respect to ϕ.

Proof. Show that all the off diagonal values are zero. We start with the following calculations,

R+
ϕ+(e3, e1, e1, f3) = ϕ+(e3, f3)ϕ+(e1, e1)− ϕ+(e3, e1)ϕ+(e1, f3)

= 0 · 0 + 0 · 0
= 0.
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By computation you can see that R+
ϕ+(e3, e1, e1, f3) = 0 = R+

ϕ+(e3, e2, e2, f3) and

R+
ψ+(e3, e1, e1, f3) = ψ+(e3, f3)ψ+(e1, e1)− ψ+(e3, e1)ψ+(e1, f3)

= −kλ1 + 0 · 0
= −kλ1.

We can see that R+
ψ+(e3, e1, e1, f3) = −kλ1 and by further calculation R+

ψ+(e3, e2, e2, f3) =

−kλ2. Now we can use R+
ϕ+ = εR+

ψ+ + δR+
τ+ to build the following equations:

0 = εkλ1 + δk̄η1 (1)

0 = εkλ2 + δk̄η2. (2)

Multiply Equation 1 by λ2 and Equation 2 by λ1, then subtract the equations to get

0 = δk̄(η1λ2 − η2λ1)
= δk̄(η1λ2

2 − η2λ1λ2)
= δk̄(η1ε(δη22 − 1)− η2ε(δη1η2 − 1))
= k̄(η1η22 − η1 − η1η22 + η2)

0 = k̄(−η1 + η2)
⇒ k̄ = 0.

Since λ1 and λ2 are not equal (and similarly η1 �= η2), substitute k̄ into Equation 1 to get

0 = εkλ1

0 = kλ1

⇒ k = 0.

Repeat this process for e, f, g, h, i, j, k, l,m, n, o, p and ē, f̄ , ḡ, h̄, ī, j̄, k̄, l̄, m̄, n̄, ō, p̄.

R+
ϕ+(e2, e1, e1, f1) = 0

R+
ψ+(e2, e1, e1, f1) = −eλ1

R+
τ+(e2, e1, e1, f1) = −ēη1

...
R+

ϕ+(e4, e1, e1, f4) = 0

R+
ψ+(e4, e1, e1, f4) = −pλ1

R+
τ+(e4, e1, e1, f4) = −p̄η1.

However, when we compute a, b, c, d and ā, b̄, c̄, d̄, the results are inconclusive.

R+
ϕ+(e1, e1, e1, f1) = 0

R+
ψ+(e1, e1, e1, f1) = −aλ1 + aλ1 = 0

R+
τ+(e1, e1, e1, f1) = −āη1 + āη1 = 0

...
R+

ϕ+(e1, e1, e1, f4) = 0

R+
ψ+(e1, e1, e1, f4) = −dλ1 + dλ1 = 0

R+
τ+(e1, e1, e1, f4) = −d̄η1 + d̄η1 = 0.

Unfortunately, we can go no further and the proof remains unfinished.

The relationship between ψ, τ , and ϕ almost holds as it did in the theorem presented in
Diaz [1]. It is surprising to be able to apply this theorem, but not be able to conclude that
all ϕ(ei, fj) = 0. Perhaps if there was another relationship between the eigenvalues of ψ and
τ that would allow us to complete the proof. Based on our results we were able to find that
the operators almost commute and are very close to being simultaneously diagonalizable.
These results widen the applications of the theorem presented in Diaz [1] and Smothers [4].
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Future Questions

1. Is it possible to complete the conjecture presented? That is, must a = b = c = d =
ā = b̄ = c̄ = d̄ = 0?

2. Characterize when the hypotheses of Theorem 3 are satisfied. What happens if any of
them fail in this constuction?

3. Is there a similar result about simultaneous diagonalizability for Rϕ built from anti-
symmetric tensors?

4. How else could results in [1] be applied?

5. What if ϕ is degenerate? Or, what if τ does not have full rank? For instance, what if
ϕ is positive semi-definite, and ker ϕ = ker τ?
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