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Abstract. In this paper we study ways in which link data may be recovered from the B-graph G
of an alternating link diagram D of link L. In particular we find explicitly the coefficients of the
three-variable backet (Kauffman square bracket) of D in terms of the Tutte polynomial of G. We
go on to show how both polynomials capture the twist number of alternating 2-bridge and 3-braid
link diagrams. Finally, we discuss the open questions of recovering the signature of L (when L is a
knot) or the first homology group of the double cover of S3 branched over L from G.

1. Introduction

1.1. Basic Definitions.
For the purposes of this paper, a knot is the image of a smooth embedding of S1 into S3. A
k-component link is the image of a smooth embedding of tkS1 into S3. Note that a knot is a
1-component link. Two links are said to be equivalent if there exists an isotopy of S3 taking one
to the other.

A diagram of a link is a projection of the link onto an equatorial copy of S2 of S3 so that the
projection is everywhere locally homeomorphic to R or to ′+′ (i.e. each crossing is between two
strands). Where the projection is homeomorphic to ′+′, we say there is a crossing. We partially
erase the strand of the crossing which is further south so that we may visualize the knot in S3, as
in Figure 1. The partially erased strand is said to be the undercrossing strand, while the solid
strand is said to be the overcrossing strand.

Figure 1. An alternating diagram of a 1-component link (i.e. a knot).
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Figure 2. A knot diagram (black) with a nugatory crossing. Shown is a simple
closed curve (orange) intersecting the diagram exactly at the nugatory crossing, with
D intersecting both components of S2 excluding the curve.

Figure 3. A split link (black). Shown is a simple closed curve (orange) not inter-
secting the diagram which divides the diagram into two parts.

A diagram is said to be alternating if, when tracing the diagram, once comes upon crossings
alternatingly on undercrossing and overcrossing strands, as in Figure 1. A link is said to be
alternating if it has an alternating diagram.

Given a link diagram, a crossing is said to be nugatory if there exists a simple closed curve γ in
S2 so that D intersects γ only at the nugatory crossing and D intersects both components of
S2 − γ (see Fig. 2).

Finally, a link L is said to be split if for some diagram D of L, there exists a simple closed curve γ
in S2 so that D does not intersect γ and D intersects both components of S2 − γ (see Fig. 3).
Clearly a knot cannot be split.

We study only alternating links in this paper.

1.2. Associating a planar graph with an alternating link.
We describe a procedure to give a 1-1 correspondence between alternating link diagrams and
planar embedded graphs (up to planar isotopy). Given a diagram, we may eliminate a crossing by
performing a smoothing, in which we erase a small neighborhood of the crossing and pairwise
connect the four remaining ends, as in Figure 4. Up to isotopy, there are two choices of
smoothings at a crossing, called A-smoothing and B-smoothing (again, see Fig. 4).

A state s of a link diagram is a choice of smoothing at every crossing, resulting in |s| disjoint
simple closed curves, as in Figure 5.
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Figure 4. Left to right: A crossing, the A-smoothing of that crossing, the B-
smoothing of the crossing

Figure 5. Left: a 3-component link. Right: a state of the link.

Figure 6. Left to right: An alternating link (checkerboard shaded), its all-B-
smoothing state, its B-graph.

Given a link diagram D, the B-graph G of the diagram is defined as follows: for each loop in the
all-B-smoothing state, G has one corresponding vertex. For each crossing in D, two (not
necessarily distinct) loops in s meet. G has one edge between the vertices corresponding to these
loops. If D is an alternating non-split link, then the loops in s will enclose either the black or
white regions in S2 checkerboard shaded with respect to s, as in Figure 6. This yields a natural
embedding of G in the plane; moreover the diagram (naturally viewed as a 4-valent graph) is
clearly the medial graph of G. If D is alternating and split, then G is the disjoint union of the
B-graphs of the split components.

Given a planar embedded graph G, there exists a unique link diagram (up to planar isotopy)
which

• is the medial graph of G,
• is alternating,
• has all-B-smoothing state with loops corresponding to faces enclosing vertices of G.

And of course, G is the B-graph of this diagram. This gives the desired 1-1 correspondence
between planar embedded graphs and link diagrams.
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Figure 7. Two diagrams of the same link, related by a flype. The flype moves a
crossing of two strands betwen tangles J,K to the other two strands between J,K
while flipping J .

1.3. The three-variable bracket of a link diagram.
We give a terse definition of the three-variable bracket 〈D〉(A,B, d) of a link diagram D (for more
information see e.g. [Ka],[L]). Let S be the set of all states of D, and for each s ∈ S let a(s) be
the number of A-smoothings in s and b(s) the number of B-smoothings. Then

〈D〉 =
∑
s∈S

Aa(s)Bb(s)d|s|−1.

This is not a link invariant, as three-variable brackets of two different diagrams of a link may not
agree. However, it is invariant under a flype (illustrated in Fig. 7): it is easy to see that if s, s′ are
states of the two diagrams in Figure 7 which agree in K,J and both have A-smoothings or both
have B-smoothings at the extra crossing, then a(s) = a(s′), b(s) = b(s′), |s| = |s′|.

Tait’s Flyping theorem [Me], whose proof is beyond the scope of this paper, says that any two
reduced, alternating diagrams of the same link are related by a sequence of flypes. Therefore, the
three-variable bracket is an invariant of reduced, alternating links. If L is an alternating link, we
may write 〈L〉 to denote 〈D〉, where D is any reduced, alternating diagram of L.

1.4. The Tutte polynomial of a graph.
We give a similarly brief definition of the Tutte polynomial of a connected graph G = (V,E). Let
T be the set of all maximal subtrees of G. Label the edges of G 1, 2, . . . , |E|, and let l(e) denote
the label of edge e. For any T ∈ T , edge e is said to be

• internally active with respect to T if e ∈ T and l(e) ≤ l(f) for all f with endpoints in
both components of T − e,
• externally active with respect to T if e 6∈ T and l(e) ≤ l(f) for all f in the unique curcuit

of T + e,
• inactive otherwise.

See Figure 8 to avoid confusion.

For T ∈ T , define i(T ) to be the number of edges which are internally active with respect to T
and e(T ) to be the number of edges which are externally active with respect to T . Then the Tutte
Polynomial of G is

T [G](x, y) =
∑
T∈T

xi(T )ye(T ).
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Figure 8. A planar graph with edges labeled 1, 2, . . . , 7, with maximal subtree T
consisting of the orange edges. Edges 1, 6 are internally active with respect to T
while edge 2 is externally active with respect to T . Edges 3, 4, 5, 7 are inactive with
respect to T .

If G is the disjoint union of graphs G1, G2, we say T [G](x, y) = T [G1](x, y) · T [G2](x, y). We do
not prove that the Tutte polynomial is independent of the original choice of edge labelings; see
e.g. [Bo],[Ka] for a more thorough definition of this polynomial.

2. Relation between the three-variable bracket and Tutte polynomial

2.1. Expressing the coefficients of the three-variable bracket explicitly with the Tutte
polynomial.

Theorem 2.1. Let D be a reduced, alternating diagram of non-split link L, with B-graph
G = (V,E). Then

〈L〉(A,B, d) =
∞∑
k=0

dk

(
k∑

i=0

A|V |−1−2i+kB|E|−|V |+1+2i−k

i!(k − i)!
∂kT [G](1, 1)

∂xi∂yk−i

)
.

We need some new notation: given an (embedded) planar graph H = (VH , EH), let k(H) be the
number of connected components of H. Let f(H) = |EH | − |VH |+ 1 + k(H) be the number of
faces of H (i.e. the number of regions into which H divides the plane).

Lemma 2.2. To each state s of D, associate the spanning (i.e. including every vertex) subgraph
Gs = (Es, V ) of G where Es consists of exactly the edges corresponding to A-smoothings of s.
Then |s| = f(Gs) + k(Gs)− 1.

Proof of Lemma 2.2. Let sB be the all-B-smoothing state of D. Then f(GsB ) = 1, k(GsB ) = |V |,
so f(GsB ) + k(GsB )− 1 = |V | = |sB| as desired. We proceed inductively. Suppose the claim holds
for a state s and that s′ differs from s only at crossing c, where s has a B-smoothing and s′ an
A-smoothing. Let e ∈ E be the edge corresponding to c; then e is not in Gs and Gs′ = Gs + e
(where of course by Gs + e we mean (Es + e, V )).
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If two distinct loops of s meet at c, then these two loops are not distinct in s′ and e has endpoints
in distinct components of Gs. Then

f(Gs′) + k(Gs′)− 1 = f(Gs) + (k(Gs)− 1)− 1 = |s| − 1 = |s′|,
as desired. If in s a loop meets itself at c, then distinct loops in s′ meet at c and e has endpoints
in once component of Gs. Then

f(Gs′) + k(Gs′)− 1 = (f(Gs) + 1) + k(Gs)− 1 = |s|+ 1 = |s′|,
as desired. �

Let 〈D〉jk refer to the coefficient of AjBc(D)−jdk in 〈D〉. Referring to the definition of the

three-variable bracket, we see that 〈D〉jk is the number of states s of D so that a(s) = j and

|s| = k + 1. Associating a state s to a spanning subgraph Gs of G as in Lemma 2.2, we find 〈D〉jk
is therefore the number of spanning subgraphs of G that have j edges, i components, and
k + 2− i faces for some i.

In fact, i is determined by j and k: any such subgraph can be formed by removing i− 1 edges E−
from some maximal subtree T of G and then adding k+ 1− i edges, each of whom have endpoints
in only one component of T − E−. Therefore, j = |V | − 2i+ k + 1. In particular, when

|V |+ k + 1− j is odd, then 〈D〉jk = 0. We will show now that when |V |+ k + 1− j is even, then

〈D〉jk =
∑
T∈T

(
i(T )

i− 1

)(
e(T )

k + 1− i

)
,

by showing that given a labling of E, a spanning subgraph with j edges, i components, and
k + 2− i faces can be formed uniquely by removing i− 1 internally active and adding k + 1− i
externally active edges to some maximal subtree of G.

For the next two lemmas, we assume that the edges of G are labeled 1, 2, . . . , |E|. We denote the
labeling of edge e by l(e).

Lemma 2.3. Let G′ be a spanning subgraph of G that has j edges, i components, and k + 2− i
faces. Then there exists a maximal subtree T of G, edges e1, . . . , ei−1 which are internally active
with respect to T , edges f1, . . . , fk+1−i which are externally active with respect to T , so that
T − e1 − · · · − ei−1 + f1 + · · ·+ fk+1−i = G′.

Proof of Lemma 2.3. If i > 1, let e1 be the edge between distinct components of G′ with least
labeling. For m = 2, . . . , i− 1, let em be the edge between distinct components of
G′ + e1 + · · ·+ em−1 of least labeling. If i < k + 1, let f1 be the edge in a cycle of G′ with least
labeling. For m = 2, . . . , k − i+ 1, let fm be the edge in a cycle of G′ − f1 − · · · − fm−1 of least
labeling. Then G′ + e1 + · · ·+ ei−1 − f1 − · · · − fk−i+1 is a maximal subtree of G with respect to
which each em is internally active and each fm is externally active. �

Lemma 2.4. Let G′ be a spanning subgraph of G that has j edges, i components, and k + 2− i
faces. Then there exists at most one maximal subtree T of G so that there exist edges e1, . . . , en
which are internally active with respect to T , edges f1, . . . , fm which are externally active with
respect to T , so that T − e1 − · · · − en + f1 + · · ·+ fm = G′.
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Proof of Lemma 2.4. By lemma 2.3, there exists some maximal subtree T of G, internally active
edges e1, . . . , ei−1, externally active edges f1, . . . , fk+1−i so that
T − e1 − · · · − ei−1 + f1 + · · ·+ fk+1−i −G′. Choose ea, fa as in lemma treeexists.

Suppose T ′ is a maximal subtree of G so that for some e′1, . . . , e
′
n which are internally active with

respect to H and some f ′1, . . . , f
′
m which are externally active with respect to T ′,

G′ = T ′ − e′1, · · · − e′n + f ′1 + · · ·+ f ′m. If n == 0, take {e′i} = ∅; similarly if m = 0 take {f ′i} = ∅.
We will show that T ′ = T, {e′i} = {ei}, {f ′i} = {fi}.

Note that since the e′i, f
′
i are all active, each f ′i must have endpoints in one component of

T ′ − e′1 − · · · − e′n. Therefore, since k(G′) = i, f(G′) = k + 2− i, we have n = i− 1,m = k − i+ 1
as desired.

Each e′a has endpoints in distinct components of G′, so l(e′i) ≥ l(e1) for all a. But e1 has endpoints
in distinct components of H − e′a for some a; since e′a is internally active we find e1 = e′a. Without
loss of generality, take e1 = e′1. Then for i > 1, e′i has endpoints in distinct components of G′ + e1,
so l(e′i) ≥ l(e2). Similarly, since each e′i is internally active we find e2 = e′a for some a ≥ 2;
without loss of generality we take a = 2. Continue inductively to find {e1, . . . , en} = {e′1, . . . , e′n}.

Each f ′a is included in a cycle of G′, so l(f ′a) ≥ l(f1) for all i. Every cycle of G′ includes some f ′a,
so in particular for some a, f ′a is included in a cycle containing f1. Then by the definition of
externally active, l(f ′a) ≤ l(f1), implying l(f ′a) = l(f1), so f ′a = f1. Without loss of generality take
f1 = f ′1. Now for a ≥ 2, each f ′a is included in a cycle of G′ − f1, so l(f ′a) ≥ n(f2). Again, every
cycle of G′ − f1 includes some f ′a with a ≥ 2, so in particular for some a ≥ 2, f ′a is included in a
cycle containing f2. Again by definition of externally active, l(f ′a) ≤ l(f2), implying l(f ′a) = l(f2),
so f ′a = f2. Without loss of generality take f2 = f ′2. Continue inductively to find
{f1, . . . , fk−a+1} = {f ′1, . . . , f ′k−a+1}. �

We continue to our main proof.

Proof of Theorem 2.1. Let G′ be a spanning subgraph of G which has j edges, i components, and
k − i+ 2 faces. As previously mentioned, if |V |+ k + 1− j is odd then no such subgraph exists.

With lemmas 2.3 and 2.4 we have shown that G′ can be formed uniquely by removing i− 1
internally active and adding k − i+ 1 externally active edges to some maximal subtree of G.
Moreover, as a scholium of Lemma 2.4, removing i− 1 internally active and adding k − i+ 1
externally active edges to/from any maximal subtree of G will result in a spanning subgraph of G
which has i components and k − i+ 2 faces (and thus necessarily j edges). Therefore,

〈D〉jk =
∑
H∈T

(
i(H)

i− 1

)(
e(H)

k − i+ 1

)

=
1

(i− 1)!(k − i+ 1)!

∂kT [G](1, 1)

∂xi−1yk−i+1
.
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Thus,

〈L〉(A,B, d) =
∞∑
k=0

∞∑
j=0

〈D〉jkA
jBc(D)−jdk

=
∞∑
k=0

k+1∑
i=1

(
1

(i− 1)!(k − i+ 1)!

∂kT [G](1, 1)

∂xi−1yk−i+1

)
A|V |+1−2i+kB|E|−|V |−1+2i−kdk

=

∞∑
k=0

dk

(
k∑

i=0

A|V |−1−2i+kB|E|−|V |+1+2i−k

i!(k − i)!
∂kT [G](1, 1)

∂xiyk−i

)
.

�

Remark 2.5. Given a split alternating link L, call the split components L1, . . . , Ln. Then
〈L〉(A,B, d) =

∏n
i=1〈Li〉(A,B, d), so we may apply theorem 2.1 to find 〈L〉(A,B, d) in terms of

the Tutte polynomials of the B-graphs of its split components (i.e. the connected components of
the B-graph of L.)

2.2. Taylor series and non-split links.
Given a reduced, alternating, non-split link L whose B-graph for some diagram is G = (V,E),

〈L〉(A,B, d) =

∞∑
k=0

dk

(
k∑

i=0

A|V |+k−2i−1B|E|−|V |−k+2i+1

i! · (k − i)!
∂kT [G](1, 1)

∂xi∂yk−i

)

= A|V |−1B|E|−|V |+1
∞∑
k=0

(
k∑

i=0

(dA−1B)i(dAB−1)k−i

i! · (k − i)!
∂kT [G](1, 1)

∂xi∂yk−i

)
= A|V |−1B|E|−|V |+1T [G](dA−1B + 1, dAB−1 + 1).

Moreover, if L is split with split components L1, . . . , Ln whose B-graphs are
G1 = (V1, E1), . . . , Gn = (Vn, En), then

〈L〉(A,B, d) =
n∏

i=1

〈Li〉(A,B, d)

=

n∏
i=1

(
A|Vn|−1B|En|−|Vn|+1T [Gn](dA−1B + 1, dAB−1 + 1)

)
= A|V |−k(G)B|E|−|V |+k(G)T [G](dA−1B + 1, dAB−1 + 1).

3. Chromatic and Flow polynomials

We have shown explicitly how to obtain 〈L〉 from T [G](x, y), where L is an alternating link and G
its B-graph. Much information about G is captured in T [G](x, y), so is therefore captured in 〈L〉.
We now investigate what information a specialization of T [G](x, y) captures information about L,
understanding that all such information is then contained in 〈L〉.
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Figure 9. Left to right: a graph with chromatic polynomial x(x− 1)(x− 2)2 and
flow polynomial (x− 1)(x− 2), a 3-coloring of the graph, a nowhere-zero 3-flow on
the graph.

3.1. Definitions.
Given a graph G = (V,E), an n-coloring of G is a map f : V → {0, . . . , n− 1} so that for any
e ∈ E with endpoints v1, v2, f(v1) 6= f(v2). The chromatic polynomial pG(x) of G is a polynomial
in Z[x] so that for any n ∈ Z+, pG(n) is the number of n-colorings of G (see Fig. 9 for a small
example). We do not give a proof of the existence of or the general method of computing pG(x),
see instead [Bo] for a deeper exposition. However, pG(x) is a specialization of T [G](x, y) along the

axis y = 0, with pG(x) = (−1)|V |−k(G)xk(G)T [G](1− x, 0).

An n-flow on G is a map f : E → {0, . . . , n− 1} so that for some choice of orientations of each
edge in E and for all v ∈ V , the sum of labelings of each edge directed into v is equal to the sum
of labelings of each edge directed out of v mod n (see Fig. 9). A nowhere-zero n-flow is an n-flow
in which f(e) 6= 0 for all e ∈ E. The flow polynomial qG(y) of G is a polynomial in Z[y] so that
for any n ∈ Z+, qG(n) is the number of nowhere-zero n-flows on G. Again we refer the reader to
[Bo] for a deeper exposition, and simply accept that the flow polynomial is a specialization of the

Tutte polynomial along the axis x = 0, with qG(y) = (−1)|E|−|V |+k(G)T [G](0, 1− y).

Thus, when G is the B-graph of a reduced alternating link L,

pG(x) = (−1)|V |−k(G)xk(G)T [G](1− x, 0)

= (−1)|V |−k(G)xk(G)A−|V |+k(G)(Ax1/2)−|E|+|V |−k(G)〈L〉(A,Ax1/2,−x1/2)

= (−1)|V |−k(G)x(−|E|+|V |+k(G))/2〈L〉(1, x1/2,−x1/2)(1)

qG(y) = (−1)|E|−|V |+k(G)T [G](0, 1− y)

= (−1)|E|−|V |+k(G)A−|V |+k(G)(Ax−1/2)−|E|+|V |−k(G)〈L〉(A,Ax−1/2,−x1/2)

= (−1)|E|−|V |+k(G)x(|E|−|V |+k(G)/2〈L〉(1, x−1/2,−x1/2).
We may denote pG(x), qG(y) by pL(x), qL(y) respectively when L is alternating.

Remark 3.1. Given a connected planar embedded graph G = (V,E), label the edges of G
1, 2, . . . , |E|. This naturally induces a labeling of E∗, where G∗ = (V ∗, E∗). Maximal subtrees of
G are in 1-1 correspondence with maximal subtrees of G∗, where T ∈ G corresponds to the
maximal subtree T ∗of G∗ including exactly the edges not corresponding to those in T . For e ∈ T ,
the edges in G between the components of T − e correspond exactly the edges in G∗ forming the
circuit in T ∗ + e∗, where e∗ is the edge corresponding to e. That is, an edge of G is internally
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Figure 10. A diagram of the unknot whose three-variable polynomial does not
agree with any chromatic polynomial as prescribed by Equation (1).

active with respect to T if and only if its corresponding edge in G∗ is externally active with
respect to T ∗. Therefore,

T [G](x, y) = T [G∗](y, x).

Thus, we find a relationship between the chromatic and flow polynomials of G:

pG(x) = (−1)|V |−1xk(G)T [G](1− x, 0)

= (−1)|V |−k(G)xk(G)T [G∗](0, 1− x)

= (−1)|V |−k(G)−|E∗|+|V ∗|−k(G∗)xqG∗(x)

= xqG∗(x).

Rather than studying the chromatic and flow polynomial of a graph G, we will usually study the
chromatic polynomials of G and G∗.

Remark 3.2. Note that the relation between chromatic polynomial and three-variable bracket in
Equation (1) cannot be easily adapted to apply to non-alternating links; we provide an example
(Fig. 10) for which the right-hand expression does not yield a valid chromatic polynomial for any
graph. The three variable polynomial for the diagram of the unknot in Figure 10 is
〈D〉3(A,B, d) = A3 + 3a2Bd+AB2d2 + 2AB2 +B3d, so 〈D〉3(1, x1/2,−x1/2) = 1 + x, so the above
expression would yield pG(x) = ±(xn + xn−1) for some x. Since pG(x) 6= xm for any m, G must
include some edge; but this implies (x− 1)|(xn + xn−1), which does not hold. Therefore, no such
graph G exists.

Remark 3.3. Let G = (V,E) be a multigraph with no loops and G̃ = (V, Ẽ) the underlying
simple graph (i.e. parallel edges replaced with one edge). Then two vertices in G are connected if

and only if they are connected in G̃. Therefore, f : V → {0, 1, . . . , n− 1} is an n-coloring of G if

and only if it is an n-coloring of G̃, so pG(x) = pG̃(x).

3.2. Skein relations for the chromatic and flow polynomials.
Let L be a non-split link L with B-graph G. Recall (or see [Bo]) pG(x) satisfies the
contraction-deletion relation pG−e(x)− pG/e(x) for any edge e in G. Note that if e does not
correspond to a nugatory crossing in L, then G− e is the B-graph for the link obtained by
B-smoothing the crossing of L corresponding to e and G/e is the B-graph of the link obtained by
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A-smoothing at that crossing. Moreover, p◦(x) = x, and to avoid ambiguity we say
pL◦(x) = xpL(x). Therefore, the chromatic polynomial satisfies a nontrivial skein relation:

p (x) = p (x)− p (x) if is non-nugatory

p (x) = (x− 1)p (x)

p (x) = 0

pL◦(x) = xpL(x)

p◦(x) = x.

Since pL(x) is defined only for alternating links L, pL(x) does not satisfy the HOMFLY or

Kauffman skein relations. Moreover, the input of 〈L〉(1, x1/2,−x1/2) does not coincide with that
of the Jones polynomial specialization 〈L〉(A,A−1,−A2 −A−2) of the three-variable bracket for
any x.

The flow polynomial satisfies a similar relation, coming from the contraction-deletion relation
qG(y) = qG/e(y)− qG−e(y):

q (y) = −q (y) + q (y) if is non-nugatory

q (y) = 0

q (y) = (y − 1)q (y)

qL◦(y) = yqL(x)

q◦(y) = 1.

These skein relations illustrate how one may compute pL(x), qL(y) directly, rather than first
computing 〈L〉 or T [G](x, y). Because any nugatory crossing in a diagram D implies at least one
of pD(x), qD(y) is zero, computing pL(x) or qL(y) takes at most as many steps at computing 〈L〉,
and may take many fewer.

3.3. Chromatic polynomial yields twist number of alternating 3-braid link diagrams.
A 3-braid consists of three twisted strands (i.e. smooth embeddings of I t I t I) in S3 so that in
the projection onto the equatorial two-sphere, and for some choice of x-y coordinates locally
around the diagram, the only minima and maxima in y occur at the ends of strands (see Fig. 11).
A 3-braid link is the link formed by pairwise connecting the ends which are maxima in y to the
ends which are minima in y (again, see Fig. 11).

Theorem 3.4. Let D be a reduced, alternating 3-braid link with 2k > 1 twists, as in Figure 12.
Let GA, GB be the A- and B-graphs of D. Then 2k = −am − bn − log2(〈D〉(1, 1, 1)), where
pGA

(x) = am+1x
m+1 + amx

m + · · ·+ a0, pGB
= bn+1x

n+1 + bnx
n + · · ·+ b0.

Of course, the A-graph of a link diagram is formed in the same way as the B-graph, but
considering the all-A-smoothing state instead of the all-B-smoothing state.

Proof of Theorem 3.4. Figure 12 illustrates the B-graph of an alternating 3-braid link diagram D
with 2k > 1 twists. Taking D to have no nugatory crossings is equivalent to requiring k ≥ 2 or
n1, n2 > 1 .
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Figure 11. Left: A 3-braid. Right: A 3-braid link.

As stated in remark 3.3, a multigraph with no loops has the same chromatic polynomial as its
underlying simple graph. Therefore, the B-graph of L has chromatic polynomial equal to that of
the right-most graph in Figure 12. Let n =

∑
i n2i; note n > 2 We calculate the coefficient bn of

xn in pGB
(x) using the contraction/deletion relation, noting that any graph with n vertices yields

a coefficient of 1 and a graph with fewer than n vertices yields a coefficient of 0, and that G̃B has
n+ 1 vertices. We contract/delete along each edge meeting the central vertex in G̃ (see Fig. 12),
obtaining exactly k graphs with n vertices (one corresponding to each choice of exactly one
contraction) and one graph with n+ 1 vertices (corresponding to all deletions) that is a cycle of n
vertices and an isolated vertex, whose chromatic polynomial has coefficient −

(
n
1

)
= −n of xn.

Thus, the coefficient of xn is bn = −n− k. Let m =
∑

i n2i−1; note m > 2. By a similar argument,
the coefficient am of xm in pGA

(x) is am = −m− k. Therefore, −am − bn = 2k + c(L). That is,

2k = −am − bn − log2(〈L〉(1, 1, 1)).

�

3.4. Chromatic polynomial yields twist number of alternating 2-bridge link diagrams.
A 2-bridge link is a link with a diagram so that for some choice of x-y coordinates around the
diagram, the diagram has exactly two minima and two maxima in the y-direction (see Fig. 13).
Every 2-bridge link has a 2-bridge diagram that is alternating and whose twists alternate between
the center and left-hand side, as illustrated. We will refer to these diagrams as regular 2-bridge
diagrams.

Let D be a regular 2-bridge diagram with k ≥ 2 twists as in Figure ??. To avoid ambiguity in the
case of one-crossing twists, we say that if the B-graph is in the left format (orange) of Figure ??

then the center twists are A-twists; otherwise the left twists are A-twists. Let G̃ be the
underlying simple graph of G, the B-graph of D. 14 illustrates all possible forms of G̃. We note
that G̃ is a chain of cycles, with each cycle sharing an edge and two vertices with the one below
it. Moreover, if the A-twists (top to bottom) have length m1, . . . ,ml then the cycles (top to
bottom) have length c1, . . . , cl, where ci = mi + 2 except possibly c1 = m1 + 1 and/or cl = ml + 1.
Let Cr denote a cycle of length r, so

(2) pG(x) =

∏l
i=1 pCci

(x)

(x(x− 1))l−1
.
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Figure 12. Left to right: an alternating 3-braid diagram with 2k > 1 twists and
its B-graph GB, GB, the underlying simple graph (multi-edges replaced by a single

edge) G̃B of GB.

Figure 13. Two 2-bridge link diagrams.

It is well known that pCr = (x− 1)r + (−1)r(x− 1) = (−1)r(x− 1)(1− (1− x)r−1); computing
this inductively with the contraction/deletion relation is an easy exercise and is omitted.
Therefore, from Equation 2,

pG(x) =

∏l
i=1 pCci

(x)

(x(x− 1))l−1

=

∏l
i=1

(
(−1)ci(x− 1)(1− (1− x)ci−1)

)
(x(x− 1))l−1

= (−1)
∑

cix(x− 1)
l∏

i=1

1− (1− x)ci−1

x
.(3)

Remark 3.5. Suppose D is a regular 2-bridge link diagram with more than 1 twists and B-graph

G. Then from Equation 3, if pG(x) uniquely factors in Z[x] as pG(x) = ±x(x− 1)
∏l

i=1
1−(1−x)ci−1

x ,
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Figure 14. A regular two-bridge diagram and underlying simple graphs G̃A, G̃B of
its A- and B-graphs. The diagram has k ≥ 2 twists; on the left k is odd and on the
right k is even.

then we recover l (the number of A-twists in D) and the multiset {c1, . . . , cl}, where ci = ni + 2
except possibly c1 = n1 + 1 and/or cl = nl + 1. However, it is not obvious that pG(x) will factor in
the form of the right hand side of Equation 3 uniquely. Of course, if ci − 1 is prime then
(1− (1− x)ci−1)/x is irreducible in Z[x] by Eisenstein’s criterion at ci − 1.

Theorem 3.6. Let D be a regular 2-bridge link diagram with more than 1 twist and B-graph G.

Suppose a1, . . . , am ∈ Z+ with pG(x) = ±x(x− 1)
∏m

i=1
1−(1−x)ai

x . Then D has m A-twists.

Proof of Theorem 3.6. Suppose D has l A-twists. By Equation 3, there exist some c1, . . . , cl so

that f(x) = (−1)(
∑

ci)+l
∏l

i=1
1−(1−x)ci

x = (−1)(
∑

ai)+m
∏l

i=1
1−(1−x)ai

x . The degree d of f(x) is
therefore

l∑
i

(ci − 1) =
m∑
i

(ai − 1)(
l∑
i

ci

)
− l =

(
m∑
i

ai

)
−m.(4)

Moreover, the coefficient of d− 1 in f(x) is

(−1)(
∑

ci)+l
l∑

i=1

(
(−1)ci−1ci(−1)(

∑
j cj)−ci

)
= (−1)(

∑
ai)+m

m∑
i=1

(
(−1)ai−1ai(−1)(

∑
j aj)−ai

)
(−1)l

l∑
i=1

ci = (−1)m
m∑
i=1

ai(5)

Suppose l 6≡ m (mod 2). Then
∑

i ci = −
∑

i ai, so from Equation 4 we find 2
∑

i ci = l −m,
contradicting l 6≡ m (mod 2). Therefore, l ≡ m (mod 2). Equation 5 yields

∑
i ci =

∑
i ai, so

from Equation 4 we find l = m. Thus, m is the number of A-twists in D. �



RECOVERING LINK DATA FROM THE B-GRAPH OF AN ALTERNATING DIAGRAM 15

Figure 15. Checkerboard shade S2 with respect to a knot diagram D. All crossings
of D are labeled −1 or +1 as prescribed here.

Remark 3.7. If D is a regular two-bridge diagram with only one twist, then

(6) 〈D〉 =

{
Ac(D)

(
d− 1

d

)
+ (A+Bd)c(K)

d if D has an A-twist

Bc(D)
(
d− 1

d

)
+ (Ad+B)c(K)

d if D has a B-twist.

To avoid ambiguity in the case that D has one crossing, we say that such a diagram has an
A-twist if the B-graph is a cycle and a B-twist if the A-graph is a cycle (if both are cycles then
c(D) = 2 and the two expressions in Equation 6 agree).

4. Signature

4.1. Definition.
Given a knot K, the knot signature σ(K) can be calculated from any diagram of K. We aim to
recover σ(K) from 〈K〉. We first define the knot signature by showing how to calculate it from a
diagram of K, although this is not the usual definition (see [G] for further discussion and the
origin of this calculation). Let D be a diagram of K, and checkerboard shade S2 with respect to
D. Label each crossing ±1 as in Figure 15. Given a crossing c, call its label µ(c). Let G be the
checkerboard graph for D corresponding to the white (unshaded) regions (i.e. G has a vertex for
each white region and an edge for eachc rossing between adjacent white regions). Edges in G are
weighted ±1, according to the label of the corresponding crossing. Let L be the Laplacian matrix
for G. Then the Goeritz matrix Ĝ for D is the upper-left (n− 1)× (n− 1) minor of L, where L is
n× n. Orient D, and label each crossing of D as either Type I or Type II as in Figure 16. Let
µ =

∑
c Type II µ(c). Then

σ(K) = σ(Ĝ)− µ,
where σ(G) is the usual matrix signature. The fact that this sum is an invariant of the knot is
remarkable, and is proved in [G].

4.2. σ(Ĝ) for Alternating Knots.

Remark 4.1. Let D be an alternating knot diagram with some checkerboard shading. If the
white regions are enclosed by the loops of the all-B-smoothing state, then µ(c) = +1 for all
crossings c of D. If the white regions are enclosed by the loops of the all-A-smoothing state, then
µ(c) = −1 for all crossings c of D.
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Figure 16. Checkerboard shade S2 with respect to a knot diagram D and orient
D. All crossings of D are labeled Type I and Type II as prescribed here. Note that
this label does not depend on the choice of orientation pf D.

Theorem 4.2. Let D be an alternating knot diagram and Ĝ the Goeritz matrix for D
corresponding to checkerboard graph G = (V,E). Then σ(Ĝ) = |V | − 1 if µ(c) = +1 for all

crossings c of D, and σ(Ĝ) = −|V |+ 1 if µ(c) = −1 for all crossings c of D.

Proof of Theorem 4.2. If µ(c) = +1 for all c, then the white regions are enclosed by the loops of

the all-B-smoothing state, so G is the B-graph of D with all edges weighted +1. Then Ĝ is the
upper-left (|V | − 1)× (|V | − 1) minor of L, where L is the Laplacian of the B-graph.

If µ(c) = −1, then G is the A-graph of D with edges weighted −1. Then Ĝ is the upper-left
(|V | − 1)× (|V | − 1) minor of −L, where L is the Laplacian of the A-graph.

Diagonalize Ĝ to a matrix with n0 0s on the diagonal, n+ positive entries, and n− negative

entries. Since Ĝ is the upper left (|V | − 1)× (|V | − 1) minor of a Laplacian of G, an unweighted

graph, |det(Ĝ)| is the number of maximal subtrees of G (see e.g. [T]). Since D is a knot diagram,

G is connected, so | det(Ĝ)| > 0. That is, n0 = 0. for i = 0, 1, . . . , |V | − 1 let ∆i be the

determinant of the upper-left i× i minor of Ĝ. Since Ĝ is symmetric, n− is the number of sign

changes in the finite sequence 1 = ∆0,∆1, . . . ,∆n−1,∆n = det(Ĝ). Any upper-left minor of a
Laplacian will have positive determinant, by a generalization of the matrix-tree theorem [Mo,

Theorem 3.1]. Therefore,if µ(c) = +1 then Ĝ is positive-definite, so σ(G) = |V | − 1. If µ(c) = −1

then Ĝ is negative-definite, so σ(G) = −|V |+ 1 �

Remark 4.3. From theorem 4.2, we can obtain σ(Ĝ) from 〈D〉, when D is an alternating knot

diagram and Ĝ is the Goeritz matrix for D for some checkerboard shading. If µ(c) = +1 for all

crossings c then the one term in 〈D〉 of the form Bc(D)dj satisfies j = σ(Ĝ). If µ = −1 for all

crossings c then the one term in 〈D〉 of the form Ac(D)dj satisfies j = −σ(Ĝ).

4.3. Can we obtain µ from 〈D〉 when D is alternating?
If D is a knot diagram and we have already indicated how S2 is checkerboard shaded around D,
we write µD to designate µ for diagram D with that choice of shading.

Theorem 4.4. Let D, D̂ be reduced alternating diagrams of some knot K. Checkerboard shade
both diagrams so that the sign of all crossings in D, D̂ agree. Then µD = µD̂.
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Figure 17. Diagrams D and D̂ of a knot K, related by a flype.

Proof of Theorem 4.4. By the Tait Flyping Theorem [Me] it is sufficient to consider the case

when D, D̂ differ by a flype, as in Figure 17. Since the signs of crossings of D, D̂ agree, the
“unbounded” faces in Figure 17 are both shaded or both unshaded. Orient D, D̂ so that the
orientations of K,J agree between diagrams. Then the shadings and orientations in each copy of
K and J agree, so all crossings in K or J will have the same type in D and D̂. Moreover, the two
strands of the other crossing in D are both oriented in or both oriented out of J if and only if the
two strands of the other crossing in D̂ are both oriented in or both oriented out of J . Therefore,
the two crossings in D, D̂ which are not in J or K have the same type. Thus, µ is the same for D
as for D̂, so µ is invariant under flypes. Therefore, µ along with the choice of positive- or
negative-sign checkerboard shading is a reduced alternating knot invariant. �

Corollary 4.5. Let D, D̂ be reduced alternating diagrams of some knot K. Checkerboard shade
both diagrams so that the sign of all crossings in D, D̂ agree. Then σ(ĜD) = σ(ĜD̂), where

ĜD, ĜD̂ are the Goeritz matrices for D, D̂ correspondingly.

Proof of Corollary 4.5. We have σ(ĜD)− µD = σ(K) = σ(ĜD̂)− µD̂. Theorem 4.4 implies the
corollary. �

For the next remark, we must define the writhe of a knot diagram.

Given a knot diagram D, orient the diagram. We refer to a crossing c of D as “positive” or
“negative” according to Figure 18. This does not coincide with the definition of µ(c), so we admit
this to be poor notation. We write sgn(c) = 1 if c is positive and sgn(c) = −1 if c is negative.
Note sgn(c) is independent of the choice of orientation of D. The writhe of D is given by
w(D) =

∑
c sgn(c).

Remark 4.6. Let D be an alternating diagram with some checkerboard shading. If the white
regions correspond to the B-graph of G, then a crossing is of Type II if and only if it is positive;
otherwise a crossing is of Type II if and only if it is negative. In the first case
µD = (w(D) + c(D))/2 and in the second µD = (w(D)− c(D))/2.
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Figure 18. A positive crossing (left) and a negative crossing (right).

Thus, from Remark 4.6 we see that to obtain µ for an alternating link diagram, it is sufficient to
find the writhe of the diagram. This leads to the following vague conjecture.

Conjecture 4.7. Given an alternating knot diagram D with B-graph G, w(D) can be obtained
from G.

The B-graph and its planar embedding certainly determine w(D), since they together determine
D, but many planar graphs have distinct planar embeddings. Finding two alternating knot
diagrams with different writhes but whose B-graphs are isomorphic would provide a
counterexample, but so far no such pair has been found. Whitney’s Uniqueness Theorem [W]
states that any 3-connected planar graph has a unique embedding into S2, implying conjecture
4.7 holds true if G is 3-connected.

5. Is it possible to recover the homology of the double cyclic cover of S3

branched over L from 〈L〉 for alternating L?

We assume knowledge of undergraduate-level algebraic structures for this section.

Given a link L, let X2
L refer to the double cover of S3 branched over L.

Let L be an alternating link with diagram D. Checkerboard shade D so that the white regions
correspond to the B-graph G = (V,E) of D to obtain Laplacian L and Goeritz matrix Ĝ. Label
the vertices of G by v1, . . . , vn (where n = |V |) so that vn corresponds to the row and column

eliminated from L to form Ĝ. Then Ĝ is a presentation matrix for H1(X
2
L) as a Z-module (see

[L]).

Let m1, . . . ,mk be the invariant factors of H1(X2), so that H1(X2) ∼= Z/m1Z⊕ · · · ⊕ Z/mkZ and
1 6= m1| · · · |mk. The first elementary ideal of H1(X2) is | det(G)| = (m1 · · ·mk), while the second
is (m1 · · ·mk−1). Moreover, the second elementary ideal of H1(X2) is generated by the

determinants of all (n− 2)× (n− 2) minors of Ĝ (see [L, Def. 2]. Therefore, to recover mk it is
sufficient to recover the greatest common factor of these determinants.

Let Ĝi
j be the minor of Ĝ obtained by removing the row corresponding to vi and column

corresponding to vj . Assume i 6= j. By the all minors matrix tree theorem, | det(Ĝi
j)| is the
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number of spanning 2-tree forests in G which include vi, vj in one tree and vn in the other [Ch].

Therefore, 2| det(Ĝi
j)| = | det(Ĝi

i)|+ | det(Ĝj
j)| − | detLi,j

i,j |, since | detLi,j
i,j | is the number of

spanning two-tree forests in G in which vi, vj are in different trees. Note Ĝi
i = Li,n

i,n, Ĝ
j
j = Lj,n

j,n. Of

course, if i = j, then Ĝi
j = Li,n

i,n. Therefore,(
2 det(Ĝi

j) | i, j ∈ [n− 1]
)
⊂
(

det(Li,j
i,j) | i 6= j ∈ [n]

)
⊂ Z.

Given a 6= b ∈ [n], let G′ be the Goeritz matrix obtained by removing the row and column
corresponding to va from L. Then the 2nd elementary ideal of H1(X2) is generated by the

determinants of (n− 2)× (n− 2) minors of G′, including G
′a
a = La,b

a,b. Therefore,(
(det(Li,j

i,j) | i 6= j ∈ [n]
)
⊂
(

det(G
′i
j ) | i, j ∈ {1, 2, . . . , â, . . . , n}

)
=
(

det(Ĝi
j) | i, j ∈ [n− 1]

)
.

Moreover, we note Gi
i = Ĝi,n

i,n. Therefore,(
2 det(Gi

j) | i, j ∈ [n− 1]
)
⊂
(

det(Ĝi,j
i,j) | i 6= j ∈ [n]

)
⊂
(
det(Gi

j) | i, j ∈ [n− 1]
)
⊂ Z.

Thus,

2
(

det(Ĝi
j) | i, j ∈ [n− 1]

)
⊂
(

det(Li,j
i,j) | i 6= j ∈ [n]

)
⊂
(

det(Ĝi
j) | i, j ∈ [n− 1]

)
.

Thus, if
(

det(Li,j
i,j) | i 6= j ∈ [n]

)
= mZ, then either mk = | det(Ĝ)/m| or mk = 2|det(Ĝ)/m|. Of

course, mk|det(Ĝ), so if det(Ĝ) is odd then mk = | det(Ĝ)/m|. Similarly, since mk is the largest

invariant factor, if Ĝ is even and Ĝ/m is odd then mk = 2|Ĝ/m|. More generally, if 2i | Ĝ where

i > kn for some n but 2n - Ĝ/m, then mk = 2|Ĝ/m|.

The graphic interpretation of | det(Li,j
i,j)| is seemingly nicer than that of | det(Ĝi

j)| for i 6= j: recall

that | det(Li,j
i,j)| is the number of spanning 2-tree forests of G in which vi, vj are in different trees,

while |det(Ĝi
j)| is the number of spanning 2-tree forests in G which include vi, vj in one tree and

vn in the other. However, we have been unable to find det(Li,j
i,j) for some i 6= j with T [G](x, y),

nor any other graph polynomial.

Conjecture 5.1. For i 6= j, det(Li,j
i,j) can be found from T [G](x, y) or a related graph polynomial.

If Conjecture 5.1 holds true, then we can recover mk up to a factor of 2 from T [G](x, y).
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