
A Look at Constant Vector Curvature on Three-Dimensional

Model Spaces according to Curvature Tensor

Albany Thompson

September 16, 2014

Abstract

This paper proves that all model spaces in dimension three with positive definite
inner products have content vector curvature ε for some ε. This is done by classifying
the curvature tensor associated with the model space.

1 Introduction

The study of geometric properties of manifolds using the techniques and tools of calculus is
known as differential geometry. Manifolds are topological spaces that if viewed very closely
behave in a similar manner to Euclidean spaces. This is known as being locally Euclidean.
This study lends precision to the fields of physics, economics, and engineering.

One of the most studied geometric properties in this discipline is that of Riemann cur-
vature tensors, and more specifically the curvature of model spaces. An algebraic curvature
tensor is a function that measures the curvature of a manifold at a point.

Definition 1.1. Let x, y, z, w ∈ V . An algebraic curvature tensor R : V ×V ×V ×V → R
such that the following properties hold:

1. R is multilinear in every slot,

2. R(x, y, z, w) = −R(y, x, z, w),

3. R(x, y, z, w) = R(z, w, x, y),

4. R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

A manifold observed at a single point is an object known as a model space.

Definition 1.2. Let 〈·, ·〉 be an inner product on a vector space V and R be and algebraic
curvature tensor. Then M = (V, 〈·, ·〉, R) is called a model space.
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All inner products considered in this paper are positive definite. One way to describe,
classify, and study a model space is by its sectional curvature.

Definition 1.3. Let M = (V, 〈·, ·〉, R) be a model space and v, w ∈ V where φ is a two plane

equal to span{v, w}. The sectional curvature of φ is defined to be k(φ) = R(v,w,w,v)
〈v,v〉〈w,w〉−〈v,w〉2.

The sectional curvature of a 2-plane is independent of the basis chosen for V . If all of
the 2-planes of a model space have the same curvature then that model space has constant
sectional curvature.

Definition 1.4. Let M = (V, 〈·, ·〉, R) be a model space. M is said to have constant sec-
tional curvature ε (csc(ε)) if for all 2-planes, φ, we have k(φ) = ε.

A more specific way to study the sectional curvature of model spaces is by a measure
called constant vector curvature.

Definition 1.5. Let M = (V, 〈·, ·〉, R) be a model space. M is said to have constant vec-
tor curvature ε (cvc(ε)) if for all v ∈ V where v 6= 0 there exists a w ∈ V such that
k(span{v, w}) = ε.

While constant sectional curvature implies constant vector curvature it is rather rare
among model spaces. Constant vector curvature is a less stringent condition and therefore
more common, thus it merits study even though it is a weaker condition.

Theorem 1.6. Constant vector curvature is well-defined on model spaces in dimension
three with positive definite inner products.[5]

This paper will show by a combination of new and previously proven results that every
model space in three-dimensions with a positive definite inner product has constant vector
curvature(ε) for some ε. In some cases it can be proven that an even stronger result is true,
such as constant sectional curvature or extremal constant vector curvature.

Definition 1.7. Let M = (V, 〈·, ·〉, R) be a model space. M is said to have extremal
constant vector curvature ε (ecvc(ε)) if for all 2-planes φ it is the case that ε is a bound
on the sectional curvature tensor values.

This paper will consider all of the different cases for model spaces in three-dimensions
with positive definite inner products by looking at the qualities of the curvature tensor of a
model space. We will look at the number of symmetric forms associated with the curvature
tensor and the rank of these symmetric forms to classify all models spaces into a specific
category of constant vector curvature.

The area of constant vector curvature in differential geometry has been studied only
very sparingly. Most of the work in this area was done by Kelci Mumford in 2013. In her
paper she proves that constant vector curvature is well-defined and many other results that
we will rely upon heavily in this paper.
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2 Setting the Stage

Let V be a real vector space. We need to define some of the tools that we will be using
in this paper. The first of these is how to more simply calculate the curvature of a given
2-plane.

Lemma 2.1. Let M = (V, 〈·, ·〉, Rφ) be a 3-dimensional model space with e1, e2, e3 as an
orthonormal basis and a, b, c, x, y, z ∈ R. Then

[equ1]k(span{ae1+be2+ce3, xe1+ye2+ze3) =
R1221(ay − bx)2 +R1331(az − cx)2 +R2332(bz − cy)2

(a2 + b2 + c2)(x2 + y2 + z2)− (ax− by − cz)2
(1)

Another of the tools that we will be using is symmetric bilinear forms.

Definition 2.2. Let x, y, z ∈ V and a, b ∈ R. A symmetric bilinear form φ : V × V → R
such that the following properties hold true:

1) φ(ax+ by, z) = aφ(x, z) + bφ(y, z) (bilinearity),
2) φ(x, y) = φ(y, x) (symmetry).

We can use symmetric bilinear forms to define a special type of curvature tensor.

Definition 2.3. Let φ be a symmetric bilinear form and x, y, z, w ∈ V . A canonical
algebraic curvature tensor Rφ = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

It is important to note that Rφ is an algebraic curvature tensor.

Theorem 2.4. Let R be an algebraic curvature tensor in a three-dimensional vector space.
Then there exists either 1) exactly one symmetric bilinear form φ such that R = ±Rφ or 2)
exactly two distinct symmetric bilinear symmetric forms φ and ψ such that R = Rφ+Rψ.[1]

This result allows us to classify curvature tensors according the symmetric forms as-
sociated with them. One should note that there is more than one way to measure the
curvature of a model space.

Definition 2.5. Let M = (V, 〈·, ·〉, R) be a model space, v, w ∈ V and {e1, ..., en} be an
orthonormal basis for V. The Ricci tensor is a symmetric bilinear form (ρ) defined in the
following way:

ρ(v, w) =

n∑
i=1

R(v, ei, ei, w).

Note that the Ricci tensor is independent of the basis chosen for V. Also, that there is
a direct link between the curvature tensor and the Ricci tensor in dimension three.
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Theorem 2.6. There exists a basis that is orthonormal with respect to the inner product
and diagonalizes the Ricci tensor. [2]

The existence of this basis allows us to work with the Ricci tensor only in terms of its
eigenvalues.

Lemma 2.7. The Ricci tensor with eigenvalues {λi, λj , λk} completely determines the cur-
vature tensor in three-dimensions in the following way:

R(ei, ej , ej , ei) =
λi + λj − λk

2

[5]

This result allows us to limit the number of nonzero curvature tensor entries.

Lemma 2.8. There are only three possible nonzero entries of the curvature tensor in three-
dimensions. [5]

The curvature tensor and Ricci tensor and connected in both their composition and
number.

Theorem 2.9. Let M = (V, 〈·, ·〉, R) be a model space. Let {e1, e2, e3} be a basis that
orthonormal with respect to 〈·, ·〉 and also diagonalizes the Ricci tensor. Then,

||R(e1, e2, e2, e1), R(e1, e3, e3, e1), R(e2, e3, e3, e2)|| = ||spec(ρ)||.

[5]

This result gives us information that we can use to help us find the possible value of ε
for a model space.

Theorem 2.10. Let M = (V, 〈·, ·〉, R) be a model space. Let {e1, e2, e3} be an orthonormal
basis on V with respect to 〈·, ·〉, diagonalized the Ricci tensor and orders the curvature tensor
entries in the following way: R1221 ≥ R1331 ≥ R2332. If M has cvc(ε) then R1331 = ε. [5]

Along with knowing the possible value of ε we can also tell exactly when a model space
has ecvc(ε).

Theorem 2.11. Let M = (V, 〈·, ·〉, R) be a model space. M has ecvc(ε) if and only if
||spec(ρ)|| ≤ 2.[5]

The link between the curvature tensor and Ricci tensor gives us even more information
about the curvature tensor and its possible decomposition.

Theorem 2.12. Let M = (V, 〈·, ·〉, R) be a model space with ρ = {λ1, λ2, λ3}. R = Rφ+Rψ
iff λi + λj = λk for some i, j, k.[1]
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3 Case 1 (R = Rφ)

Lemma 3.1. Let M = (V, 〈·, ·〉, Rφ) be a three-dimensional model space. If Rank(φ) = 0
or 1 then M has csc(0).

Proof. If the Rank(φ) = 1 for a model space M = (V, 〈·, ·〉, Rφ) then φ is modeled by the
following matrix values:

φ =

∣∣∣∣∣∣
η 0 0
0 0 0
0 0 0

∣∣∣∣∣∣
The values of the curvature tensor are calculated below:
R1221 = φ11φ22 − φ122 = η · 0− 0 = 0
R1331 = φ11φ33 − φ132 = η · 0− 0 = 0
R2332 = φ22φ33 − φ232 = 0 · −0 = 0
If the Rank(φ) = 0 then η = 0 and the result is the same. Because all of the values of

the curvature tensor are zero then the curvature of any two-plane is 0. Thus, the model
space has csc(0).

�

Lemma 3.2. Let M = (R, 〈·, ·〉, Rφ) be a three-dimensional model space. If Rank(φ) = 2
then M has ecvc(0).

Proof. If Rank(φ) = 2 then φ is modeled by the following matrix:

φ =

∣∣∣∣∣∣
η1 0 0
0 η2 0
0 0 0

∣∣∣∣∣∣
The values of the curvature tensor are calculated below:
R1221 = φ11φ22 − φ122 = η1η2 − 0 = η1η2
R1331 = φ11φ33 − φ132 = η1 · 0− 0 = 0
R2332 = φ22φ22 − φ232 = η2 · 0− 0 = 0
||spec(ρ)|| = 2, thus by Theorems 2.8 and 2.9 M has ecvc(0).

�

It is at this point in my research that we begin to differ with Mumford’s results. While
her paper is meticulously written and contains many incredibly helpful and consequential
results, there is an error in the proof of her Theorem 7. On Page 25 of her paper in the
first paragraph of her proof she claims that one can assume without loss of generality that
φ(v, w) = 0. In this context this assumption cannot be made without loss of generality.
Because of this, her Theorems 7, 8, and 9 and her Lemma 19 cannot be accepted as true;
however, the rest of her paper stands up to scrutiny.
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Theorem 3.3. Let M = (V, 〈·, ·〉, R) be a model space where dim(V ) = 3 and let {e1, e2, e3}
be an orthonormal basis on 〈·, ·〉 that diagonalizes the Ricci tensor such that R1221 ≥
R1331 ≥ R2332 where R1331 = ε. If R = Rφ and ||spec(ρ)|| = 3 then M has cvc(ε).

Proof. Let φ =

∣∣∣∣∣∣
η1 0 0
0 η2 0
0 0 η3

∣∣∣∣∣∣
R1221 = φ11φ22 − φ212 = η1η2 − 0 = η1η2 = δ
R1331 = φ11φ33 − φ213 = η1η3 − 0 = η1η3 = ε
R2332 = φ22φ33 − φ223 = η2η − 3− 0 = η2η3 = τ
If ||{η1, η2, η3}|| < 3 it follows that ||spec(ρ)|| ≤ 2. If this is the case then the model

space has either ecvc(ε) if ||spec(ρ)|| = 2 or csc(ε) if ||spec(ρ)|| = 1. Thus, we assume that

||{η1, η2, η3}|| = 3. Let 0 6= v ∈ V where v = ae1+be2+ce3 and let w =
−
√

(δ−ε)(ε−τ)
ε−δ e1+e3.

Consider

k(span{v, w}) =
R(v, w,w, v)

〈v, v〉〈w,w〉 − 〈v, w〉2

Note that δ > ε > τ so w is well defined. We will consider the numerator and denominator
of this fraction separately.

Numerator of [?]:

R(v, w,w, v) =

R

(
ae1 + be2 + ce3,

−
√

(δ − ε)(ε− τ)

ε− δ
e1 + e3,

−
√

(δ − ε)(ε− τ)

ε− δ
e1 + e3, ae1 + be2 + ce3

)

= δ

(
b
√

(δ − ε)(ε− τ)

ε− δ

)2

+ ε

(
a+

c
√

(δ − ε)(ε− τ)

ε− δ

)2

+ τb2

=
δb2(δ − ε)(ε− τ)

(ε− δ)2
+ ε

(
a2 +

2ac
√

(δ − ε)(ε− τ)

ε− δ
+
c2(δ − ε)(ε− τ)

(ε− δ)2

)
+ τb2

=
−δb2(ε− τ)

ε− δ
+ ε

(
a2 +

2ac
√

(δ − ε)(ε− τ)

ε− δ
− c2(ε− τ)

ε− δ

)
+ τb2

= −δb2(ε− τ) + εa2(ε− δ) + 2εac
√

(δ − ε)(ε− τ)− εc2(ε− τ) + τb2(ε− δ)

= εa2(ε− δ) + 2εac
√

(δ − ε)(ε− τ)− εc2(ε− τ) + εb2(τ − δ)

= ε(a2(ε− δ) + 2ac
√

(δ − ε)(ε− τ)− c2(ε− τ) + b2(τ − δ))
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Denominator or [?]:

〈v, v〉〈w,w〉 − 〈v, w〉2 = 〈ae1 + be2 + ce3, ae1 + be2 + ce3〉〈
−
√

(δ − ε)(ε− τ)

ε− δ
e1 + e3,

−
√

(δ − ε)(ε− τ)

ε− δ
e1 + e3

〉

−

〈
ae1 + be2 + ce3,

−
√

(δ − ε)(ε− τ)

ε− δ
e1 + e3

〉2

= (a2 + b2 + c2)

(−√(δ − ε)(ε− τ)

ε− δ

)2

+ 1

−(−a√(δ − ε)(ε− δ)
ε− δ

+ c

)2

= (a2 + b2 + c2)

(
1− (δ − ε)(ε− τ)

(ε− δ)2

)
−

(
a2(δ − ε)(ε− τ)

(ε− δ)2
−

2ac
√

(δ − ε)(ε− τ)

ε− δ
+ c2

)

= (a2 + b2 + c2)

(
1− ε− τ

ε− δ

)
+
a2(ε− τ)

ε− δ
+

2ac
√

(δ − ε)(ε− τ)

ε− δ
− c2

= (a2 + b2 + c2)(τ − δ) + a2(ε− τ) + 2ac
√

(δ − ε)(ε− τ)− c2(ε− δ)

= a2(τ − δ + ε− τ) + 2ac
√

(δ − ε)(ε− τ) + c2(τ − δ − ε+ δ) + b2(τ − δ)

Combining these we get:

ε
a2(ε− δ) + 2ac

√
(δ − ε)(ε− τ)− c2(ε− τ) + b2(τ − δ)

a2(ε− δ) + 2ac
√

(δ − ε)(ε− τ)− c2(ε− τ) + b2(τ − δ)
= ε

This calculation satisfies every vector where b 6= 0, though if b = 0 v and w are linearly
dependent. In the case where a 6= 0 and b = 0 we choose w to be e1 with the same result.
In the case that b, c = 0 we choose w to be 1

ae3. Thus, every vector in V ca be paired with
another to form a 2-plane with sectional curvature ε.

Remark 3.4. The situation outlined above is similar in subsequent theorems. It is treated
the same way and thus we will not mention each time.

�

4 Case 2 (R = −Rφ)

Theorem 4.1. M = (V, 〈·, ·〉, R) has cvc(ε) iff Q = (V, 〈·, ·〉,−R) has cvc(−ε).
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Proof. If:
Let M = (V, 〈·, ·〉, R) have cvc(ε).
It follows that for all v 6= 0 ∈ V there exists a w ∈ V such that R(v, w,w, v) = ε.
Thus, −R(v, w,w, v) = −ε
Therefore, Q has cvc(−ε)
Only if:
Similar proof in other direction.

�

5 Case 3 (R = Rφ +Rψ)

If the ||spec(ρ)|| = 1 then R = Rφ for some φ. Thus, be begin our investigation in this
section with ||spec(ρ)|| = 2. M has ecvc(ε) if and only if ||spec(ρ)|| ≤ 2.[5]

Theorem 5.1. Let M = (V, 〈·, ·〉, R) where R = Rφ + Rψ, spec(ρ) = {λ1, λ2λ3}, and
||spec(ρ)|| = 3. If λ1 and λ2 have different signs then M has cvc(0).

Proof. By Theorem 2.12 R = Rφ + Rψ only when λ1 + λ2 = λ3 where λ1, λ2 6= 0. Thus,
R1221 = 0, R1331 = −λ1, R2332 = −λ2. By assumption λ1, λ2 have different signs. Let

0 6= v ∈ V where v = ae1 + be2 + ce3. Let w =
√
−λ1λ2
−λ1 e1 + e2. Note that by assumption

λ1 6= 0 and λ1 and λ2 have different signs thus w is well-defined.
Consider

R(v, w,w, v)

〈v, v〉〈w,w〉 − 〈v, w〉2
=

R
(
ae1 + be2 + ce3,

√
−λ1λ2
−λ1 e1 + e2,

√
−λ1λ2
−λ1 e1 + e2, ae1 + be2 + ce3

)
〈ae1 + be2 + ce3, ae1 + be2 + ce3〉

〈√
−λ1λ2
−λ1 e1 + e2,

√
−λ1λ2
−λ1 e1 + e2

〉
−
〈
ae1 + be2 + ce3,

√
−λ1λ2
−λ1 e1 + e2

〉2
Since our goal is to show that this fraction is equal to 0 we shall only examine the

numerator of this fraction.
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R(v, w,w, v) = R(ae1 + be2 + ce3,

√
−λ1λ2
−λ1

e1 + e2,

√
−λ1λ2
−λ1

e1 + e2, ae1 + be2 + ce3)

= −λ1
(
−c
√
−λ1λ2
λ1

)2

− λ− 2c2

= −λ1
(
−c2λ1λ2

λ21

)
− λ2c2

= λ1c
2 − λ1c2

= 0.

Thus, every vector in V can be paired with another to form a 2-plane with sectional
curvature 0.

�

Theorem 5.2. Let M = (V, 〈·, ·〉, R) where Rφ +Rψ and ρ = {λ1, λ2, λ3}. If λ1, λ2 have
the same sign M has cvc(−λ1).

Proof. By theorem 2.12 R = Rφ + Rψ only when λ1 + λ2 = λ3 where λ1, λ2 6= 0. Thus,
R1221 = 0, R1331 = −λ1, R2332 = −λ2. Let λ1, λ2 have the same sign and {e1, e2, e3} be a
basis for V that is orthonormal with respect to 〈·, ·〉. Let 0 6= v ∈ V where v = ae1+be2+ce3.

Let w =
−
√
λ1(λ2−λ1)
λ1

e1 + e3.
Consider

k(span{v, w}) =
R(v, w,w, v)

〈v, v〉〈w,w〉 − 〈v, w〉2
=

Numerator of [?]:

R(v, w,w, v) = R

(
ae1 + be2 + ce3,

−
√
λ1(λ2 − λ1)
λ1

e1 + e3,
−
√
λ1(λ2 − λ1)
λ1

e1 + e3, ae1 + be2 + ce3

)

= a2R1331 + 2ac

(√
λ1(λ2 − λ1)

λ1

)
R1331 + b2R2332 + c2

√
λ1(λ2 − λ1)

λ1

2

R1331

= −λ1(a+ c

(√
λ1(λ2 − λ1)

λ1

)2

− λ2b2

= −
(
a2λ1 + 2ac

√
λ− 1(λ2 − λ1) + c2(λ2 − λ1) + b2λ2

)
= −λ1

(
a2λ1 + 2ac

√
λ1(λ2 − λ1) + c2(λ2 − λ1) + b2λ2

)
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Denominator of [?]:

〈v, v〉〈w,w〉 − 〈v, w〉2

= 〈ae1 + be2 + ce3, ae1 + be2 + ce3〉〈
−
√
λ1(λ2 − λ1)
λ1

e1 + e3,
−
√
λ1(λ2 − λ1)
λ1

e1 + e3

〉

−

〈
ae1 + be2 + ce3,

−
√
λ1(λ2 − λ1)
λ1

e1 + e3

〉2

= (a2 + b2 + c2)

(−√λ1(λ2 − λ1)
λ1

)2

− 1

−(a(−√λ1(λ2 − λ1)
λ1

)
+ c

)2

= (a2 + b2 + c2)

(
λ2
λ1

)
− a2λ2

λ1
+ a2 +

2ac
√
λ1(λ2 − λ1)
λ1

= a2λ1 + 2ac
√
λ1(λ2 − λ1) + c2(λ2 − λ1) + b2λ2

Combining we have:

−λ1
(
a2λ1 + 2ac

√
λ1(λ2 − λ1) + c2(λ2 − λ1) + b2λ2

)
a2λ1 + 2ac

√
λ1(λ2 − λ1) + c2(λ2 − λ1) + b2λ2

= −λ1

Therefore, M has cvc(−λ1).
�

6 Conclusion

Every model space with a positive definite inner product in three-dimensions has cvc(ε)
for some ε. If the values of the curvature tensor are known then it is possible to find the
value of ε and in some cases the stronger results of extremal vector curvature or constant
sectional curvature. For every ε there exists a model space in 3-dimensions with cvc(ε) and
ecvc(ε) where ε can be either an upper or lower bound.

7 Open Questions

• Is constant vector curvature well defined in dimensions greater than 3 or when the
inner product of the model space is nondegenerate?

• To what extent to the eigenvalues of the Ricci tensor effect the cvc condition in higher
dimensions or other situations?
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