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Abstract. In this paper, we generalize a result on the possible dimensions of
the kernel of a linear combination of a particular type of canonical algebraic

curvature tensors. We then introduce a new framework for viewing canonical

algebraic curvature tensors, using the wedge product, which allows us to give
shorter and more transparent proofs of some basic facts about these tensors.

1. Background

1.1. Model Spaces. Given a pseudo-Riemannian manifold (M, g), together with
its Levi-Civita connection ∇, the Riemann curvature tensor R is a C∞(M,R)-
multilinear map on vector fields, defined by the formula

R(X,Y, Z,W ) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W )

for smooth vector fields X,Y, Z,W on M . Such a tensor field associates to each
p ∈M a tensor Rp ∈ ⊗4T ∗pM satisfying the following symmetries:

(1) Rp(x, y, z, w) = −Rp(y, x, z, w)

(2) Rp(x, y, z, w) = Rp(z, w, x, y)

(3) Rp(x, y, z, w) +Rp(y, z, x, w) +Rp(z, x, y, w) = 0.

An algebraic curvature tensor on a vector space V is a tensor R ∈ ⊗4V ∗ which sat-
isfies properties (1)-(3). A triple M0 = (V, 〈·, ·〉, R), where V is a finite-dimensional
real vector space, 〈·, ·〉 is a non-degenerate inner product on V , and R is an al-
gebraic curvature tensor on V is called a model space (or a zero model space, to
distinguish it from a model space which is also equipped with tensors that mimic
the symmetries of covariant derivatives of the Riemann curvature tensor). A weak
model space Mw

0 = (V,R) lacks an inner product.
Immediately, we can see that each point p on a pseudo-Riemannian manifold

(M, g) gives a model space (TpM, gp, Rp). Gilkey [2] has shown that (1)-(3) are a
“universal” list of the symmetries of the Riemann curvature tensor, in the following
sense: Given any model space M0 = (V, 〈·, ·〉, R), there exists a pseudo-Riemannian
manifold (M, g) and a point p ∈ M at which the model space (TpM, gp, Rp) is
isomorphic to M0 (that is, there is a vector space isomorphism ` : TpM ∼= V which
also preserves the inner product and algebraic curvature tensor).

Some common definitions involving model spaces include the following:
1
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Definition 1.1. Let R be an algebraic curvature tensor on V . The kernel of R is
defined as

kerR = {x ∈ V : R(x, y, z, w) = 0 for all y, z, w ∈ V }.

Remark 1.1. Using the symmetries of R, it is easy to show (see [3]) that this
definition of kernel is not biased towards the first slot, in the sense that

kerR = {y ∈ V : R(x, y, z, w) = 0 for all x, z, w ∈ V }
= {z ∈ V : R(x, y, z, w) = 0 for all x, y, w ∈ V }
= {w ∈ V : R(x, y, z, w) = 0 for all x, y, z ∈ V }.

Definition 1.2. Let Mw
0 = (V,R) be a weak model space. We say that Mw

0 de-
composes over two subspaces V1, V2 ⊂ V if

(1) V = V1 ⊕ V2, and
(2) For all x1, y1, z1, w1 ∈ V1 and all x2, y2, z2, w2 ∈ V2,

R(x1 + x2, y1 + y2, z1 + z2, w1 + w2) = R(x1, y1, z1, w1) +R(x2, y2, z2, w2).

We denote this criterion by writing R = R1 ⊕R2).

Remark 1.2. It is also straightforward to show, using the symmetries of R (see
[3]) that the following are equivalent:

(a) R = R1 ⊕R2.
(b) R(v1, v2, v3, v4) = 0 whenever vi ∈ V1 and vj ∈ V2 for some i, j ∈ {1, 2, 3, 4}.
(c) R(x1, x2, y, z) = 0 whenever x1 ∈ V1 and x2 ∈ V2.

Definition 1.3. A model space M0 = (V, 〈·, ·〉, R) decomposes over V1, V2 ⊂ V if
the weak model space Mw

0 = (V,R) decomposes over these subspaces and V1 ⊥ V2

(that is, 〈v1, v2〉 = 0 for all v1 ∈ V1, v2 ∈ V2).

1.2. Canonical Algebraic Curvature Tensors. Given a symmetric bilinear form
φ ∈ S2(V ∗), we can define an algebraic curvature tensor Rφ on V via

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

Fiedler [1] and Gilkey [2] have shown that, letting A(V ) denote the vector space of
all algebraic curvature tensors on V ,

A(V ) = span{Rφ : φ ∈ S2(V ∗)}.

2. A Result on the Kernel of Linear Combination of Canonical
Algebraic Curvature Tensors

Given a weak model space Mw
0 = (V,R), the structure group GMw

0
of Mw

0 is
defined to be

GMw
0

= {A ∈ GL(V ) | A∗R = R},
whereA∗R is the pullback ofR byA, defined byA∗R(x, y, z, w) = R(Ax,Ay,Az,Aw).
It is easy to verify that GMw

0
is in fact a group.

The following analysis reduces the study of the structure group of an algebraic
curvature tensor R to more basic questions: Given A ∈ GMw

0
, we know that kerR

is an invariant subspace of V under A, because

R(Ax, y, z, w) = A∗R(x,A−1y,A−1z,A−1w) = 0
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for any x, y, z, w ∈ V . And since A is invertible, the restriction A|kerR is in fact
an isomorphism. So if we take a basis β = {ε1, . . . , εk, η1, . . . , ηl} for V so that
η1, . . . , ηk is a basis for kerR, then the matrix of A with respect to β has the form

Aβ =

[
Ā 0
C N

]
,

where Dunn, Franks, and Palmer [3] have shown that:

(1) Ā is in GM̄w
0

, where M̄w
0 = (V̄ , R̄) is the model space with V̄ = V/ kerR,

and R̄ satisfies R̄(πx, πy, πz, πw) = R(x, y, z, w) for all x, y, z, w ∈ V (where
π : v 7→ v + kerR is the natural projection).

(2) N ∈ GL(kerR).

(3) There are no restrictions on C.

So, understanding the structure group of R amounts in large part to under-
standing its kernel. Hence the next theorem investigates the possible dimensions
of ker(Rφ ± Rψ), for φ, ψ ∈ S2(V ∗) in order to start gaining an understanding of
kerR and thus of GMw

0
in general. First, a lemma:

Lemma 2.1. Up to a sign change, every linear combination R = aRφ + bRψ of
canonical algebraic curvature tensors, where a, b 6= 0, can be written as Rφ̃ + δRψ̃
for some φ̃, ψ̃ ∈ S2(V ∗) and δ ∈ {−1, 1}.

Proof. Up to a sign change of R, we may assume a > 0. Set

φ̃ =
√
aφ

ψ̃ =
√
|b|ψ

δ = b/|b|.

It is then immediate from the definition that Rφ̃ + δRψ̃ = aRφ + bRψ.
�

This theorem is a generalization of a result of Strieby [4]:

Theorem 2.2. Let V be an n-dimensional vector space (n ≥ 3), φ a non-degenerate
inner product on V with signature (p, q), and ψ a symmetric bilinear form on V .
Suppose further that β = {e1, . . . , en} is an orthonormal basis for V which also
diagonalizes ψ. That is, the matrices φβ = (φ(ei, ej))ij and ψβ = (ψ(ei, ej))ij are
given by

φβ =



ε1 0
. . .

εp
εp+1

. . .

0 εp+q


, ψβ =

λ1 0
. . .

0 λn



(where ε1, . . . , εp = +1 and εp+1, . . . , εp+q = −1). Let R = Rφ + δRψ, where
δ ∈ {−1, 1}. Furthermore assume that kerR 6= 0; that is, that there exists v =∑
crer ∈ kerR and an index l with cl = 1. Then
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(1) There exists a non-zero real number λ such that the diagonal entries of ψβ
have the following form:

λi =

{
εiλ i 6= l

−δ/λ i = l
.

(2) R = 0 only if δ = −1, λ = ±1, and φ = λψ.
(3) If R 6= 0, then kerR = span{el}.

In particular, given such φ, ψ, and R, the only possible dimensions of kerR are 0,
1, and n.

Proof. Recall that Rφ(x, y, z, w) = φ(x,w)φ(y, z)−φ(x, z)φ(y, w), and similarly for
Rψ. We observe that for any i 6= l we have, since v ∈ kerR,

0 = R(v, ei, ei, el)

= φ(v, el)φ(ei, ei) + δψ(v, el)ψ(ei, ei)

=
∑

ciφ(ei, el)φ(ei, ei) + δ
∑

ciψ(ei, el)ψ(ei, ei)

= εlεi + δλlλi.

So

λlλi = −εlεiδ. (1)

Now, for any j ≤ i and i, j 6= l, we either have εi = εj or εi = −εj . In the first case,
we have the two equations

λlλi = −εlεiδ
λlλj = −εlεiδ,

which can be subtracted to yield

λl(λi − λj) = 0.

But since λlλi = −εlεiδ 6= 0, we know that λl 6= 0, and so λi = λj for εi = εj .
Similarly, if εi = −εj , then we have

λlλi = −εlεiδ
λlλj = εlεiδ,

which yields

λl(λi + λj) = 0,

meaning that λi = −λj for εi = −εj . Hence if we set λ = λi for i = 1, . . . , p (or
λ = −λi for i = p+ 1, . . . , p+ q), we have that

λi =

{
εiλ i 6= l

−εlδ/λ i = l
,

which completes the proof of the first claim.
Now we are ready to analyze R. First we note that Rijkm = 0 unless there are

exactly two distinct indices, and also entries of the form Riijj are zero. Thus the
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only curvature entries we need to consider are those of the form Rijji for i 6= j,
i, j 6= l; and those of the form Rilli for i 6= l. For the latter, we observe that

Rilli = R(ei, el, el, ei)

= φ(ei, ei)φ(el, el) + δψ(ei, ei)ψ(el, el)

= εiεl + δλiλl

= εiεl + δεiλ
(−εl)δ
λ

= εiεl − εiεl
= 0.

And for the former, we have

Rijji = φ(ei, ei)φ(ej , ej) + δψ(ei, ei)ψ(ej , ej)

= εiεj + δλiλj

= εiεj + δεiλεjλ

= εiεj
(
1 + δλ2

)
.

So assume R = 0. Then Rijj = εiεj
(
1 + δλ2

)
= 0 for all i 6= j, i, j 6= l. Since

εi, εj 6= 0, we have

1 + δλ2 = 0.

So, δ = −1 and λ = ±1. It thus follows from claim (1) that if λ = 1 then ψ = φ,
and if λ = −1 then ψ = −φ, which proves the second claim.

So assume R 6= 0. By the preceding analysis, there exist i, j with i 6= j, i, j 6= l
such that Rijji 6= 0. And since the values of such Rijji differ only by a sign, we
know that in fact Rijji 6= 0 for every i 6= j and i, j 6= l. Using this, we can show
that kerR = 〈el〉. Let w =

∑
brer ∈ kerR. Then for any i 6= l, we can choose

j 6=, i, l (since dimV ≥ 3), and we have

0 = R
(∑

brer, ej , ej , ei

)
=
∑

brRrjji

= biRijji.

Since Rijji 6= 0, we conclude that bi = 0, and since i 6= l was arbitrary, this means
that w = blel ∈ 〈el〉, which proves the third claim.

�

3. Canonical Algebraic Curvature Tensors as Wedge Products

In this section, we introduce a superficially different definition of the object Rφ
for φ ∈ S2(V ∗), in order to give simpler and more transparent proofs of some
basic facts about these canonical algebraic curvature tensors. First, we recall two
standard definitions:

Definition 3.1. Given a symmetric bilinear form φ ∈ S2(V ), the kernel of φ is
defined as

kerφ = {x ∈ V : φ(x, y) = 0 for all y ∈ V },
and the rank of φ is defined as rkφ = dimV − kerφ.



6 ADAM WILLIAMS

Lemma 3.1. Let φ ∈ S2(V ∗). For each x ∈ V , φ induces a linear map φx : V → R
defined by

φx(y) = φ(x, y)

for all y ∈ V . Then the map Φ : x 7→ φx from V to its dual V ∗ is linear, and

ker Φ = kerφ

and

rk Φ = rkφ.

Proof. Observe that

ker Φ = {x ∈ V : φx = 0}
= {x ∈ V : φx(y) = 0 for all y ∈ V }
= {x ∈ V : φ(x, y) = 0 for all y ∈ V }
= kerφ.

The fact that rk Φ = rkφ then follows from the rank-nullity theorem.
�

Recall some common definitions: Given vector spaces V and W , a map M :
V k →W is multilinear if the map v 7→M(v1, . . . , vi−1, v, vi+1, . . . , vk) is linear for
every i = 1, . . . , k and every (v1, . . . , vi−1, vi+1, . . . , vk) ∈ V k−1. A multilinear map
A is called alternating if for every permutation σ ∈ Sk and every v1, . . . , vk ∈ V ,
we have

A(vσ(1), . . . , vσ(k)) = sgn(σ)A(v1, . . . , vk)

(in the case of real vector spaces, this is equivalent to the condition thatA(v1, . . . , vk) =
0 whenever vi = vj for some i 6= j).

Now we recall the linear algebraic construction of the wedge product of vectors:
Given a finite-dimensional real vector space V , one can construct a certain real
associative algebra containing V , known as the exterior algebra of V and denoted
Λ(V ). The multiplication operation (α, β) 7→ α ∧ β on Λ(V ) is called the wedge
product (or exterior product), and can be described intuitively as the “most general
alternating product of vectors.” The most useful formal interpretation of this intu-
ition for our purposes is the following: The vector space Λ(V ) can be decomposed
as a direct sum

Λ(V ) =

∞⊕
k=0

Λk(V ),

where Λk(V ) is a
(

dimV
k

)
-dimensional vector space spanned by vectors of the form

v1 ∧ · · · ∧ vk for v1, . . . , vk ∈ V , and satisfying the following universal property: For
every real vector space W and every alternating, multilinear map A : V k → W ,
there exists a unique linear map ` : Λk(V ) → W such that the following diagram
commutes,

Λk(V )

V k

∧k
6

A
- W

`
-

where ∧k denotes the map (v1, . . . , vk) 7→ v1 ∧ · · · ∧ vk.
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The following two results are well-known facts about the exterior product of
vectors, but are proved here for the sake of completeness:

Lemma 3.2. Let V be an n-dimensional vector space and Λ(V ) its exterior algebra.
Then for every natural number k and every v1, . . . , vk ∈ V , v1 ∧ · · · ∧ vk = 0 if and
only if v1, . . . , vk are linearly dependent.

Proof. Suppose that v1, . . . , vk are dependent. Then for some index j and scalars
ai we have

vj =
∑
i6=j

aivi.

We then apply the alternating and multilinear properties of the wedge product to
conclude

v1 ∧ · · · ∧ vk = v1 ∧ · · · ∧ vj−1 ∧

∑
i6=j

aivi

 ∧ vj+1 ∧ · · · ∧ vk

=
∑
i 6=j

aiv1 ∧ · · · ∧ vj−1 ∧ vi ∧ vj+1 ∧ · · · ∧ vk

= 0.

For the second direction, we prove the contrapositive: Suppose v1, . . . , vk are
linearly independent. Then we claim that there exists an alternating, multilinear
form A : V k → R such that A(v1, . . . , vk) = 1. To construct one such form, we can
extend v1, . . . , vk to a basis v1, . . . , vn for V and define A on this basis by

A(vi1 , . . . , vik) =

{
sgn(σ) i1 = σ(1), . . . , ik = σ(k) for some σ ∈ Sk
0 else

and extending mutlilinearly to the rest of V k. Then A : V k → R is alternating,
with A(v1, . . . , vk) = 1.

Now, by the universal property of the exterior power Λk(V ), there exists a linear
map ` : V k → Λk(V ) such that `(x1∧· · ·∧xk) = A(x1, . . . , xk) for all (x1, . . . , xk) ∈
V k. In particular, `(v1 ∧ · · · ∧ vk) = 1 6= 0, and since ` is linear, this implies
v1 ∧ · · · ∧ vk 6= 0, which is what we wanted to show.

�

Lemma 3.3. Let V1 and V2 be vector subspaces of V , and suppose that for all
v1 ∈ V1 and all v1 ∈ V2, v1 ∧ v2 = 0. Then either V1 = 0 or V2 = 0 or V1 and V2

are the same one-dimensional subspace of V .

Proof. Assume V1 6= 0 and V2 6= 0. Then there exists v1 6= 0 in V1. Then, for every
non-zero v2 ∈ V2, v1 ∧ v2 = 0, so v1 and v2 are dependent by the previous Lemma.
So v2 ∈ span{v1}. Since v2 was an arbitrary non-zero vector in V2, we conclude
V2 ⊂ span{v1}. Since V2 6= 0 by assumption, this means V2 = span{v1}.

Note that we took an arbitrary non-zero v1 ∈ V1 and showed that V2 = span{v1}.
Now, in particular, v1 is a non-zero vector in V2, and so we can apply a symmetric
argument to conclude that V1 = span{v1} as well, which proves the claim.

�

Now we are ready to give the ‘new’ definition of Rφ for φ ∈ S2(V ∗):
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Definition 3.2. For a symmetric, bilinear form on a vector space V , define Rφ :
V 2 → Λ2(V ∗) by

Rφ(x, y) = φy ∧ φx.

In order to see why this new definition of Rφ is equivalent to the old one, we
make use of the canonical isomorphism

Λk(V ∗) ∼= Altk(V,R),

where Altk(V,R) is the vector space of alternating k-multilinear forms A : V k → R.
This isomorphism is given by letting α1 ∧ · · · ∧ αk ∈ Λk(V ∗) act on V k via

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) =
∑
σ∈Sk

sgn(σ)α1(vσ1
) · · ·αk(vσ(k)).

Hence we can view Rφ(x, y) as an alternating bilinear form on V , and by the above
formula, for any z, w ∈ V we have

Rφ(x, y)(z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

Lemma 3.4. The following definitions

(a) kerRφ = {x ∈ V : Rφ(x, y) = 0 for all y ∈ V }.
(b) Let Mw

0 = (V,Rφ) be a weak model space with algebraic curvature tensor Rφ.
Then we say Mw

0 decomposes into two subspaces V1, V2 ⊂ V if V = V1 ⊕ V2

and for every v1 ∈ V1 and v2 ∈ V2, Rφ(v1, v2) = 0.
(c) Let M0 = (V, 〈·, ·, 〉, Rφ) be a model space with algebraic curvature tensor Rφ.

Then we say M0 decomposes into two subspaces V1, V2 ⊂ V if Mw
0 = (V,Rφ)

decomposes into V1 and V2 and V1 is perpendicular to V2 with respect to 〈·, ·〉.
agree with the old definitions, in the sense that

(1) kerRφ = {x ∈ V : Rφ(x, y)(z, w) = 0 for all y, z, w ∈ V }.
(2) Rφ(v1, v2) = 0 whenever v1 ∈ V1, v2 ∈ V2 if and only if Rφ = (Rφ)1⊕(Rφ)2.

Proof. The equivalence is immediate from the definitions.
�

We use these facts to give a new proof of a result of Gilkey [2]:

Theorem 3.5. Let φ ∈ S2(V ∗), and assume rkφ ≥ 2. Then

(1) If the model space Mw
0 = (V,Rφ) decomposes over V1 and V2, then either

V1 ⊂ kerφ or V2 ⊂ kerφ.
(2) If φ is non-degenerate, then the model space Mw

0 = (V,Rφ) is indecompos-
able.

(3) If 〈·, ·〉 is an inner product on V and kerφ is totally isotropic, then the
model space M0 = (V, 〈·, ·〉, Rφ) is indecomposable.

(4) kerRφ = kerφ.

Proof. Proof of (1): Suppose Mw
0 decomposes into V1 and V2. Then whenever

v1 ∈ V1 and v2 ∈ V2, we have Rφ(v1, v2) = φv2 ∧ φv1 = 0. That is for any
α1 ∈ Φ[V1] = {φv1 | v1 ∈ V1}, α2 ∈ Φ[V2], we have α1 ∧ α2 = 0. By Lemma 3.3,
this implies that either Φ[V1] = 0 or Φ[V2] = 0, or Φ[V1] and Φ[V2] are the same
1-dimensional subspace of V ∗. The latter case is a contradiction: since V1 +V2 = V
by assumption and Φ is linear,

dim Φ[V ] = dim Φ[V1 + V2] = dim(Φ[V1] + Φ[V2]) = dim Φ[V1] = dim Φ[V2] = 1,
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which contradicts the fact that rkφ = rk Φ ≥ 2. So either Φ[V1] = 0 or Φ[V2] = 0,
in which case V1 ⊂ kerφ or V2 ⊂ kerφ (since kerφ = ker Φ).

Proof of (2): This follows immediately from (1), since φ is non-degenerate if and
only if kerφ = 0.

Proof of (3): This follows from (1) as well: First we claim that if V = V1 ⊥ V2

is a non-trivial orthogonal decomposition of V with respect to 〈·, ·〉, then it cannot
be the case that V1 or V2 is totally isotropic. To see this, suppose V1 was totally
isotropic. Since the decomposition is nontrivial, there is a non-zero vector v1 ∈ V1.
Since V1 ⊥ V2, we know that v1 ⊥ v2 for all v2 ∈ V2. And since V1 is totally
isotropic, v1 ⊥ v′1 for all v′1 ∈ V1. Since any v ∈ V can be written as v′1 + v2 for
v′1 ∈ V , v′2 ∈ V2, we have 〈v1, v〉 = 〈v1, v

′
1〉+ 〈v1, v2〉 = 0 for all v ∈ V . So the inner

product is degenerate, which contradicts our assumption. So we can conclude that
neither V1 nor V2 is totally isotropic in the decomposition. Hence V1, V2 6⊂ kerφ,
so Rφ 6= R1 ⊕R2.

Proof of (4): If x ∈ kerφ, then φx = 0, which immediately implies Rφ(x, y) = 0.
So let x ∈ kerRφ. Then φy ∧ φx = 0 for every y ∈ V . Since rkφ ≥ 2, there exist
y, z ∈ V with φy and φz linearly independent. Since φy ∧ φx = 0, φx and φy are
dependent by Lemma 3.2. Hence, since φy is non-zero, φx is a scalar multiple of
φy: There exists a ∈ R with φx = aφy. Similarly, φx and φz are dependent and
φz 6= 0, so there is b ∈ R with φx = bφz. So

φx − φx = 0,

which means

aφy − bφz = 0.

Since φy are φz are independent, this implies a = b = 0, and so φx = 0, which
means x ∈ kerφ.

�

4. Open Questions

(1) The case where a symmetric form ψ can be orthogonally diagonalized with
respect to an arbitrary non-degenerate inner product is very special. How-
ever, It is known that, given a Lorentzian inner product φ (i.e. φ has
signature (n−1, 1) and a symmetric bilinear form ψ on V , ψ can always be
diagonalized outside of a subspace of dimension at most 3 [5]. Can we use
this information to understand the possible dimensions of ker(Rφ + δRψ)
for Lorentzian φ? In particular, can we apply the method used for diag-
onalized symmetric forms in this project to understand what happens on
the “diagonalized” subspace, and then proceed case-by-case through all of
the possible forms ψ can take outside of this subspace?

(2) It is a well known fact [2] about canonical algebraic curvature tensors that
if φ, ψ ∈ S2(V ∗) and rkφ ≥ 3 and Rφ = Rψ, then φ = ±ψ. Gilkey’s proof
involves choosing a very special basis for V and calculating the values of Rφ
and Rψ on certain tuples of basis elements. Can we give a basis-independent
proof using wedge products?

(3) Fiedler [1] and Gilkey [2] have also shown that

A(V ) = span{Rφ : φ ∈ Λ2(V ∗)},
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where Rφ for an anti-symmetric form φ ∈ Λ2(V ∗) is an algebraic curvature
tensor given by

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w)− 2φ(x, y)φ(z, w)

for x, y, z, w ∈ V . Can such a tensor be represented as a wedge product, and
can we use that representation to prove the analogous version of Theorem
3.5 for these canonical ACTs?

(4) Canonical algebraic covariant derivative curvature tensors model the sym-
metries of the covariant derivative ∇R of the Riemann curvature tensor,
and take the form ∇Rφ,ψ for φ ∈ S2(V ∗), ψ ∈ S3(V ∗), where

∇Rφ,ψ(x, y, z, w; s) = φ(x,w)ψ(y, z, s)+φ(y, z)ψ(x,w, s)−φ(x, z)ψ(y, w, s)−φ(y, w)ψ(x, z, s)

for x, y, z, w, s ∈ V . Such a tensor can be represented as a sum of wedge
products

∇Rφ,ψ(x, y, z, w; s) = (φw ∧ ψzs + φz ∧ ψws) (x, y),

where ψuv ∈ V ∗ is the map t 7→ ψ(u, v, t). Can the wedge product method
be used to analyze the kernels of these tensors?

(5) If R = Rφ+δRψ and R = R1⊕R2, does this imply that Rφ = (Rφ)1⊕(Rφ)2

and Rψ = (Rψ)1 ⊕ (Rψ)2? IE, if Rφ+δRψ is decomposable, must Rφ and
Rψ be decomposable over the same subspaces?

(6) It follows from Lemma 3.2 that if Rφ and Rψ are linearly dependent, then
the vectors φx, φy, ψx, ψy are linearly dependent for every x, y ∈ V (al-
though the converse is not true). Are wedge products a useful tool for
studying linear dependence of sets of ACTs in general?
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