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Abstract

This paper is meant to establish basic background knowledge for incoming REU

students to be able to work on hyperbolic fully augmented links. Then it dwells into

some new results dealing with a generalaztion of Purcell’s method of viewing fully

augmented links through triangulations. It wraps up with possible future topics for

students to be able to research.
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1 Knots

Imagine a piece of vertical string laid flat out on a table from top to bottom. Jumble it
all up, then glue the end points together. There is a chance you are knot imaginative and
your result looks just like a circle lying on the table know. What you have created is the
uknot. If however you have managed to cross this little guy all around there is a good
chance you do not have the unknot. Either way, what you have just created is known as
a knot. At certain points the knot will overlap itself (unless you just have a circle). We
call these points crossings. In the figure drawn below you should be able to identify three
crossings.

We say that knots are equivalent to one another if they can bend and twist without breaking
to form one another. More technically this means there exists a homeomorphism (bijective,
bicontinous function, wiki topology for more info) between the knots. Notice how this
allows for wildly different looking representations of the same knot. For example we could
create an uknot with one thousand crossings. These different represantations are called
the diagrams of the knots.

If you were to pick a point on the knot and trace the rest of the knot out, starting and
ending at that point, you will notice that you go over and under the knot at the crossings.
If there exists a diagram of a knot such that you alternate between going, once over, once
under, once over, etc., then the knot is said to be alternating. It is important to realize
that alternating knots can have non-alternating diagrams, the converse of this statement
is false. Notice how the previously drawn knot is alternating. Can you manage to find a
diagram of it that is not alternating?

Knots are not where knot theory ends, however. When you think about more than one
closed path at a time (multiple knots) then what you are thinking about are links. Links
play just as heavy a role in knot theory as knots. It should be noted that even if two knots
are not intertwined together, if you think about them together in the same diagram, then
they together, still form a link. In the remaining paper, if I am not to explicitally state
knot or link, it is safe to assume I will be talking about both. Finally all previously stated
vocab (excluding the uknot) for knots also applies to links in an intuitive fashion.
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2 Invariants

If a women was to emerge from a forest with a wolf over her shoulder and hand you two
tangled messes following with a question of, “are these knots the same or are they different,”
what would you do? Sans the wolf lady, this is one of the most important questions in
knot theory. How do you distinguish knots? Attempts at answering it has resulted in
invariants. We have already covered one invariant, alternating knots. Knowing a knot
is alternating allows one to distinguish it from all non-alternating knots. This is what
invariants do, if you say one knot has one invariant and another knot lacks that invariant,
then they cannot be the same knot. A concrete definition of invariants is overly technical
and does not aid intuition, so I shall emit it here.

There are other invariants for knots such as arc index, stick number, linking number,
jones polynomial, twist number, and hyperbolic volume. Hyperbolic volume and twist
number will be of special intrest for this paper.

3 Hyperbolic Volume

Knots are often broken up into three categories; hyperbolic, satelite, and torus. Out
of these three only hyperbolic have well defined hyperbolic volume. What is hyperbolic
volume you ask? Before going through that one must first understand what is meant by
S
3.
S
3 refers to the three sphere (sphere in three dimensions). A sphere in this context is

the boundary of a ball. For example the following circle along with its interior is a 2-ball
(red and green), while its boundary (green) is a 1-sphere.

The analogue of this will be a four dimensional ball, B4, along with its three dimensional
boundary, S

3. Thinking about the boundary of anything four dimensional is not easy.
Luckily S

3 can also be thought of as the upper half of R3 with ∞ , or simply, H3. This
space does not use the usual euclidean metric, instead it takes on a hyperbolic metric.
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You now have the tools to be able to understand the basics of hyperbolic volume.
Suppose you are given a hyperbolic link, L. If you were to look at S

3 − L the resulting
structure will be a hyperbolic polyhedra with finite volume. This is the volume associated
to our link L.

4 Braids

There are certain representations of knots that can be thought of as vertical strings that
connect to themselves, these are known as braids. Any knot can be represented in a braid
form. We will specifically discuss three braids in this section.

Three braids can be constructed by placing three vertical strands flat from top to
bottom.

Figure 1: captiontest

Then taking a strand and placing it over an adjacent strand. For example we could
take the first strand and cross it over the second (σ1). See figure 1 (this is a test)

There are also three more crossings we can make; the second over the first (σ−1
1 ), the

second over the third (σ2), and the third over the second (σ−1
2 ). It should be noted that

some identify taking a strand under its right neighbor as σn instead of σ−1
n . Along with

the identity (σ0
1) these over lappings form a group. Using products of these operations,

words, you can describe any three braid. It has been shown that all three braids can be
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formed with the words:
(σ1σ2)

3nσa1
1 σb1

2 σa2
1 ...σ

aj
1 σ

bj
2 ,

where n, a, b ∈ Z.
Once the braids are formed they may be made into their corresponding links by attach-

ing bottoms to tops.

Of course, there also exist n braids. The algebras on these braids is extended canoni-
cally, where any n braid can be described using words consisting of: (σ−n+1

1 ),...,(σ0
1),...,(σ

n−1
1 ).

5 Twists

Links often form twists. A twist is intuitively just a sequence of crossings between two
strands. In the following diagram the two circled regions are twists, for every region we
add one to something called the twist number, thus we say the diagram has twist number
two.

A more rigorous way to define twists is through bigons. A bigon is the region that is
formed between two crossings. Notice how the top twist has a sequence of three bigons
while the bottom only has one. Twists are formed by maximal sequences of bigons. That
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is to say, if you look at the section of the top twist that has a sequence of just two bigons,
then you will not be looking at the whole twist because the sequence can be made bigger.

Note however, that this definition can be tricky at times. If it is the case that a twist
has only one crossing, then there will be no bigons. In this scenario the twist can be
thought of as a sequence of zero bigons. We call this a half twist, contrary to a possible
interpretation, it still adds one to the twist number.

There exist representations of knots called twist reduced diagrams. They are diagrams
which have the smallest number of twists for any represantation of a knot. We say that
the twist number of the knot is the twist number of its twist reduced diagram. The twist
number of a knot is an invariant, not the twist number of a diagram.

There is a notion of generalized twists as well. This is were we look at crossings of
more than two strands. Notice how the braid word (σ1σ2)3 describes such a twist.

By removing the middle strand, we derive a twist.

Thus we define general twists to be twists with excessive strands in the center. We
can have twists of any number of strands greater than one. General half twists and bigons
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extend in an obvious manner.

6 Augmentation

Augmenting is a process in which crossings in twists are removed and replaced with a ring
(there is an inverse to this process known as dehn filling). Augmenting assumes a twist
reduced diagram. If the twist is comprised in an odd number of half twists then then all
but one is removed, if the twist is comprised of an even number, then all half twsts are
removed. After this a ring is placed around the place of removed half twists. This idea can
be more easily communicated through diagrams. Note how the following diagram’s first
twist has an even number of half twists, and the remaining twists have an odd number.

We perform augmentation in the previously described way, deleting all half twists on
the first twist and all but one on the remaining two, then add rings.

This completes the augmenting process. Augmenting changes the link, it necessarily
increases its hyperbolic volume. We call the resulting link fully augmented. One may
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further remove the remaining crossings without change to the volume.

The original link is refered to as a child and the fully augmented link, once all crossings
are removed, its parent.

Just like twists, we can generalize augmentation. To do this we simply apply the same
rules to links with general twists. We look at how many generalized half twists the twists
are comprised of, then remove all but one, if odd, or all, if even. The resulting link is a
generalized fully augmented link.

7 Polyhedral Decomposition

As mentioned previously there is a hyperbolic polyhedra associated with a hyperbolic link.
The following is a step by step process showing how to decompose the borromean rings
into two ideal regular octehedra. Begin by placing added circles perpindicular to the plane,
leaving the remaining part of the link parallel to the plane.
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Now we have that the link is symmetric about the plane. Since we are looking S
3 without

the link, which can be thought of as R3 with ∞, we now cut off the bottom half of the link
and only focus on the top. Eventually we will view the bottom half again, but since it will
be the same as the top we need not think about it. So currently we have the upper half of
R
3 with ∞ without the top half of the borromean rings.

Imagine our remaining link as being completely rigid, and covered with a black ink. Now
Imagine that you’re a giant with a balloon and you’re floating somewhere high up in R

3.
The balloon you have is magical, for you have traded it for your family’s cow, thusly, it
will never pop. You, being a smart mathematician, blow it bigger and bigger until it covers
all of the upper half of R3. Then you shrink it back down into a reasonable sized giant
balloon such that it fits in your giant size hands. As you analyze the balloon you notice
its surface is covered in ink.
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Parts of the link that were above the plane imprint pill shaped regions. Notice how the
white space in these regions is identified in R

3, but not on the balloon. As the balloon
was blown up over these parts of the link it eventually creased and touched itself in these
regions. Then as the balloon was shrunk back the balloon unfolded and created two regions
instead of one. The following pictures are meant to isllustrate a section of the balloon that
approaches these parts of the link; the first picture shows the balloon being just above the
link, the next shows the expanding of this part of the balloon until it touches itself, and
finally the balloon retracts and the creation of the pill like regions is shown.

!"#$%&'()%*#+",-

!"#$%&'()%./(0#

!"#$%&'()%1,%&'(,2

!"#$%&'()%*#+",-

!"#$%&'()%./(0#

!"#$%&'()%1,%&'(,2

!"#$%&'()%*#+",-

!"#$%&'()%./(0#

!"#$%&'()%1,%&'(,2

We can think of the seemingly additional edges that these pill regionas have as being the
boundary of R3 that lives directly under the vertical parts of the link. For conviniences
sake, let us refer to them as additional edges.

You now have been told that your balloon has the ability to mold into isotopic shapes,
for the man whom was traded your cow found it to be exceptional. With your newfound
ability, you shrink all parts of the balloon covered in ink, besides the additional edges, into
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singularities. As you do this the additional edges stretch outwards towards the singularities.

As an estute geometer, you see that this is in fact an octehedran. Once the octehedran
made from the same process using the bottom half of R3 is included the process of polyhe-
dral decomposition is complete. This is the main process used for finding the hyperbolic
polyhedra. It may not be clear yet, why these polyhedra are hyperbolic. This will be
covered later on.

An intresting property that the resulting polyhedra will always have is that they can
be checkerboard colored.

Note how the colored part of the polyhedra corresponded to the region bounded by the
additional edges. Amazingly, this will be the case no matter what link you are decomposing!

This process is rather cumbersome. We will eventually see many more ways to get the
same polyhedra from augmented links. I’d like to show now a method that is simply a
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sped up process of the recently shown method.
For every perpindicular circle add five vertices to the plane, connect them so that each

pair of five vertices creates two triangles.

Then identify points if they are connected they represent components of the link that were
the same.

Once you’ve done this with all vertices the result should be the same as before, an octahe-
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dron.

Finally, there is an analogous process one can take to find the polyhedra of hyper-
bolic generalized fully augmented links. Things can become somewhat strange here. The
following is a detailed example to illustrate a possible problem that can occur. It is the
decomposition of the parent of three braids with words, (σ1σ2)3nσa

1σ
b
2. We begin the same

way; cut off the bottom half of the link, blow up a balloon, analyze ink stains, shrink ink
excluding additional edges.
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Notice the bigonal regions that form where pairs of vertices have multiple edges. When
this happens, we simply identify the two edges together. The resulting graph will be the
polyhedra lying in the upper half plane. Finish up in the same way as before and you are
done.

You should be able to construct a quicker way to do this that is similiar to the quick
method for fully augmented links that was shown earlier. The checkboard coloring for
these polyhedra remains.

8 Circle Packings and Triangulations

If you are familiar with graph theory, you may be familiar with circle packing. If you’re
not, it’s a collection of connected circles in the plane. The circle packing theorem states
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that for every simple, connected, planar graph there exists an circle packing whose nerve
is isotopic to the graph. A nerve of a circle packing is the graph resulting from replacing
a circle with a vertex and points of tangency with edges.

It’s been shown by Purcell[1] that if you begin with any triangulation of the plane (this
assumes no two triangles share more than one edge) and put a dimer on the triangulation,
then the circle packing whose nerve is that triangulation is associated to a hyperbolic fully
augmented link. Furthermore, every hyperbolic fully augmented link is realizable in this
manner. I will demonstrate how to see the associated link with either directly from the
triangulation, or from the circle packing.

First begin with your triangulation, then choose a dimer. A dimer is a coloring of a
tesselation such that every facet has exactly one boundary component colored.

After this construct the dual of the triangulation, this means replace facets with vertices
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and vertices with facets.

Place circles that are perpendicular to the plane around colored edges.

Place directed figure eight’s over colored edges. Then label the edges that are hit by the
figure eight in order.
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Now identify the vertices that are matched by colored edges. After this you will have
a four valent graph. Split the vertices such that it is two valent and that the edges of the
vertices have the same numbering from the figure eight.

!

!

!

!

"

"

"

"

The procedure is now complete! The triangulation corresponded to the Borromean
rings.
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Now create the circle packing of the original triangulation.

These circle packing are representing the hyperbolic polyhedral structure of the links com-
plement. In the polyhedra decomposition section we went over splitting of the link to
create a hyperbolic structure. Here in order to get back to the link, we must do the reverse
process. Let us assume that the current circle packing represents the polyhedra that comes
from the upper half of R3 . Reversing the process starts by smoothing the colored vertices
out towards circles, then splitting each vertex back into line segments.

Finally identify sides opposite the colored edge, then do the same for the circle packing
on the bottom half of R3, and then glue the resulting structures where they meet at the
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plane.

Once again we see the result being the Borromean rings. So, cool beans I guess.

9 Why Are These Polyhedra Hyperbolic?

I’m glad you asked, first though, let us ask why polyhedra we think of everyday are eu-
clidean. Imagine a tetrahedran, and choose any two points, either on it or in it. If the
tetrahedran is truly euclidean, you will be able to draw a line between these two points.
We know a line as the shortest distance between two points. The only reason we about
lines being the shortest distance is because we use the euclidean metric. If instead we
were to use a hyperbolic metric, the shortest distance would become euclidean arcs. So
a tetrahedran would be hyperbolic is there was a circular arc on/in the tetrahedran that
connected any two points, on/in the tetrahedran.

!"#$%&'()*
+',-(.'&-()

!"#$%&'()*+
,$-%./$0%.1

When a surface of n-dimensions contains lines like these in a metric M we say it’s totally
geodisic in M . So if our polyhedra have totally geodisic hyperbolic surfaces we know it’s
hyperoblic. Let’s go back to our circle packing, which recall, represents the structure of the
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complement. Specifically let’s consider the circle packing of the Borromean rings. Think of
the circles as being the equator of hemispheres that are cut in half by the plane. Consider
the top half of R3. Then connect vertices on hemispheres with hyperbolic lines.

The resulting structure will be a hyperbolic polyhedran due to process of construction.
Here it is a hyperbolic octahedran. This process can always be done on our hyperbolic
fully augmented links because they correspond to circle packings. One may wonder how
to get circle packings for other links...

10 Extending Circle Packings and Triangulations

Given any three mutually tangent circles, there exists a unique circle, up to Mobius trans-
formation, that lay tangent to all three.

Together these four circles create six points of tangency.

Lemma 1. Choose any four points of tangency such that each circle contains two, then
there exists a circle, C, that contains these four points. Furthermore, C meets the four
circles at angles of π/4.
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Proof. Let three circles lay tangent to one another in the plane.

Pair two circles together.

Send the point of tangency between the focused pair to infinity. We refer to, for sake
of clarity, the circles based on their placement; TOP , MID, and BOT .
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Construct a square, S, with perimeter four times the diameter ofMID, and two vertices
on points of tangency of MID. Circumscribe a circle, C, about S. Note that the center of
C is on MID. Construct a circle, C �, which is tangent to TOP and BOT at the vertices
of S not on MID.

By construction, C � is the unique circle that is tangent to TOP , MID, and BOT .
Furthermore, since C was circumscribed about a square, it meets TOP , MID, BOT , and
C � at angles of π/4.

This lemma will allow us to begin to describe generalized fully augmented links using
circle packings. Suppose you are given some triangulation with a dimer. If we choose any
edge that is not colored, the two triangles that it is a part of will look one of these two.
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We call the edge on the left a connector and the edge on the right a splitter. We refer
to the diagrams as connector and splitter diagrams, respectively. For now we focus on
the connector. Add additonal edges to colored edges, place vertices in the middle of these
additional edges, then color the connector.

This process is referred to as adding a connector.
The circle packings whose nerves are triangulations with a modified dimer have useful

properties for understanding hyperbolic generalized fully augmented links.

Theorem 2. Every triangulation with an added connecter corresponds to a hyperbolic
generalized fully augmented link, furthermore, this link has exactly the volume of two regular
ideal hyperbolic octehedra plus the volume of the link which corresponded to the original
dimer.

Proof. Construct an arbitrary triangulation of the plane with a dimer such that there exists
a connecter diagram in it. Focus on the connecter diagram, construct its circle packing.
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Construct the two unique circles that lay tangent to three of the four circles. Label the
following points of tangency as in the diagram.

!

" #
$

"%#%
$%

&

&%

Lemma 1 tells us that points 2,3,4 (2’,3’,4’) and 1 must lay on a circle. This allows for the
original triangular face on the polyhedra with vertices 1,2,5 (1’,2’,5’) to be pushed down on
its edges at the two points 3,4 (3’,4’). The resulting addition will be a hyperbolic pyramid
of the square. Since this takes place four times in total, twice on the upper half of R3 and
twice on the bottom, we get four times the volume of this structure added onto our original
polyhedra.

Lemma 1 also tells us that the square face will have dihedral andgles of π/4, so in total we
will have the same angles that would correspond to four halfs of regular ideal octehedran.
Thus this process corresponds to adding two octehedran to the original volume. Further-
more since we only locally changed part of the structure and kept it hyperbolic, the whole
structure itself must remain hyperbolic. Color 1. Take the nerve of the new circle packing,
erase the edges that correspond to unlabeled points of tangency in the local picture. The
resulting structure will be a triangulation with an added connecter.
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What’s great about these guys is you can view the corresponding link of the triangula-
tion with an added connector the same way as you could a normal triangulation. Simply
take the dual! Perhaps even cooler is the fact that if you can see the adding of a connecter
directly on a link. The following illustrates just this.

A connecter diagram in a link looks locally like two circles and three vertical lines. The
first circle has a disk which is punctured by the first two lines, the second circle has a disk
which is punctured by the second two. The first circle is placed above the second. Adding
a connecter takes the three lines and cuts them where they lie in between the two circles.
Then the far left line from the top circle is attached to the far right line of the bottom. The
middle line on the top circle is connected its closest neighbor on the right, then the middle
line on the bottom is connected to the remaining line. Finally a perpendicular circle is
placed around the threelines in between the two circles.

We have now begun our transcending into an unexplored world of relationships between
tesselations of the plane and generalized fully augmented links.

11 Creating Three Braids*

This will be an extra result after REU. The conjecture is that a specific class of dimers
on triangulations associated with octehedral hyperbolic fully augmented links give rise to
all three braid parents once a connecter edge is added. Since adding a connecter edge
adds an octehedral amount of volume we gain the corallary that all three braid parents are
octehedral.

12 Splitter Edges*

This will be an extra result after REU. The conjecture is that by adding a splitter edge a
fully augmented link can be turned into a hyperbolic generalized fully augmented link in
which volume is preserved.
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The following is a local example of what happens to a link when a splitter edge is added.
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13 Tesselations*

This will be an extra result after REU. The conjecture is that the idea of triangulations for
fully augmented links was just a subset of possible tesselations of the plane that correspond
to generalized augmented links. If a tessalation of the plane has the property that its dual
is a simple, connected, planar graph in which all vertices are of degree at least three and
there exists a perfect matching on the graph such that matched vertices are of the same
degree then in an analagous fashion to purcell, one can construct the generalized fully
augmented link from the tesselation. The matching will corespond to the dimer in the
tesselation.

The following is an example of the tesselation conjecture.
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14 Open Questions

Here I enumerate some possible avenues of research for the future. I give a rating of
difficulty based on my intuition.

1. *May constitute open questions at the time of REU 2016, though I hope to be able
to prove them by then.

2. Using the idea of tesselations for generalized augmented links, is it possible to extend
connecter and splitter edges in an intuitive way? If so, what is the change to volume?
[Easy]

3. I’ve intuition that non-simple graphs (duals of non standard tesselations with bigonal
like regions) somehow play a role in finding generalized augmented links. When are
they allowable? What kind of graphs do they produce? [Medium]

4. It is well known, thanks to C. Adams, that all thrice punctured disks are totally
geodisic. Is it possible to say when, in a generalized fully augmented link, an n-
punctured sphere is totally geodisic? I suggest starting with looking at four punctured
spheres. I feel the answer may be able to be found out by looking at patterns of
tessselations of the plane. [Hard]

5. Purcell found all triangulations of the plane that lead to octehedral fully augmented
links. Is it possible to find this when using square tesselations of the plane? Pentag-
onal tessalations of the plane? A general tesselation on the plane? [Medium]

6. Is it possible to use dehn fillings on generalized fully augmented links to give bounds
of volumes of children of specific parents? [Medium]

7. I’m not quite certain about this one so ask Dr.Trapp about the volume conjecture.
Apparently this would give a really juicy paper if you could do stuff with it. [Hard]

8. Notice how in the example of tesselations of the plane, the tesselations is completely
symmetric about the dimer. Attempt to find patterns of these special constructions.
What can be said about there links? [Easy]

9. How do belt sums play into the idea of tessalations of the plane? [Medium]

10. Where is the wizard? [Impossible]
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