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Abstract

The purpose of this research is to examine the properties of constant vector curvature (cvc(�)) on
model spaces of three-dimensions in the Lorentzian setting. Constant vector curvature(�) on three
dimensional model spaces in the Riemannian setting is already known to be well-defined and it is
possible to find the value of � given the curvature tensor values. [3] Results from this research prove
that Lorentzian model spaces in three-dimensions in which you can diagonalize the Ricci tensor with
respect to the metric has cvc(�) for some �.
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1 INTRODUCTION AND BACKGROUND

As three dimensional beings, is it possible to intrinsically determine the the curvature of the surface we
inhabit? Differential geometry is a branch of mathematics that uses methods of linear algebra and calculus
to study the geometric properties of topological spaces that locally resemble Euclidean space known as
manifolds. If a metric for a given manifold is known it is possible to study to the curvature of that space.

Let 〈·, ·〉 be a symmetric bilinear form on a finite dimensional real vector space V . Assume 〈·, ·〉 is non-
degenerate, hence given a nonzero vector v ∈V , there is some vector w in V such that 〈v, w〉 �= 0. We can
then choose an orthonormal basis {ei } for V so that

〈ei ,e j 〉 =






−1 if i = j ,

1 if i = j ,

0 if i �= j .

Let δi = 〈ei ,ei 〉. Let p be the number of i ’s such that δi =−1 and let q be the number of i ’s such that δi = 1.

Remark. p +q = di mV .

Definition 1.1. The signature of a metric is defined to be (p, q).

Remark. A vector in V is said to be spacelike if δi = 1, timelike is δi =−1 and lightlike if δi = 0. A lightlike
vector is sometimes also refered to as degenerate or null. The zero vector is null, hence a time or spacelike
vector will be non-degenerate.

If p = 0 then 〈·, ·〉 is positive definite and the model space is defined to be Riemannian. If p = 1 there is one
timelike direction and the manifold is defined to be Lorentzian.

Definition 1.2. Let x, y, z, w ∈V where V is a finite-dimensional real vector space. An algebraic curvature

tensor is a function R : V ×V ×V ×V →R that measures the curvature of a manifold at a single point and
satisfies the following equalities:

1. R(x, y, z, w) =−R(y, x, z, w)

2. R(x, y, z, w) = R(z, w, x, y)

3. R(x, y, z, w)+R(y, z, x, w)+R(z, x, y, w) = 0.

The first property means that R is skew-symmetric in the variables (x, y) and (z, w). The second property
means that R is symmetric in the pairs (x, y) and (z, w). And the third is the first Bianchi identity. [1]

Definition 1.3. Let 〈·, ·〉 be an inner product on V and R be an algebraic curvature tensor. Then M =
(V ,〈·, ·〉) is called a model space.

Remark. A manifold observed at a single point is an object known as a model space.

Definition 1.4. Let M = (V ,〈·, ·〉,R) be a model space where v, w ∈ V . And let π be a non-degenerate 2
plane equal to span{v, w}. The sectional curvature denoted as k(π) is defined to be

k(π) = R(v, w, w, v)
〈v, v〉〈w, w〉−〈v, w〉2 .

Remark. The sectional curvature of a 2 plane is independent of the basis chosen for V .
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Definition 1.5. Let M = (V ,〈·, ·〉,R) be a model space. If for all non-degenerate 2 planes, π, it follows that
k(π) = � then M is said to have constant sectional curvature � denoted as csc(�).

Definition 1.6. Let M = (V ,〈·, ·〉,R) be a model space. If for all v ∈ V where v �= 0 there exists a vector
w ∈V such that k(span{v, w}) = � then M is said to have constant vector curvature � denoted as cvc(�).

Constant sectional curvature implies constant vector curvature. Constant vector curvature is less stringent
condition for a model space in comparison with constant sectional curvature, consequently constant
vector curvature more common.

In differential geometry, constant vector curvature is a fairly new area of study in the realm of curvature
conditions on manifolds. The limited research of this topic has been studied previously in 2013 by Kelci
Mumford and in 2014 by Albany Thompson. Mumford proved that model spaces of three dimensions with
a positive definite inner product which have cvc(�), that such constant vector curvature � is well-defined.
The following year, Thompson proved that not only does every model space in three dimensions with
a positive definite inner product have cvc(�) for some �, but that you can find the value of � given the
curvature tensor values. Additionally, Thompson addressed some cases with stronger curvature condi-
tions such as constant sectional curvature and extremal constant vector curvature. Extremal constant
vector curvature is a property of a model space with cvc(�) such that � is a bound on all of the sectional
curvature tensor values. Results discovered by Mumford and Thompson provided much of the motivation
for this research in which we will similarly study the condition of constant vector curvature, but under the
Lorentzian setting.

The difference between this research and the past research done is that we will be working with an
inner product in the non-positive definite case. It should be noted that we will be working with a metric of
signature (1,2) and assuming that there exists an orthonormal basis with respect to the inner product that
diagonalizes the Ricci tensor. These conditions allow us to study a Lorentzian model space and assume
there are three nonzero curvature entries, which include R1221, R1331 and R2332.

Remark. The Ricci tensor is independent of the basis chosen for V . [2]

Note that in this paper we will refer to e1 as the timelike vector and e2,e3 as the spacelike vectors.

2 RESULTS

Theorem 2.1. Let M = (V ,〈·, ·〉,R) be a three-dimensional Lorentzian model space and let {e1,e2,e3} be an

orthonormal basis on V with respect to 〈·, ·〉. And let R1221 = α, R1331 = β, R2332 = γ such that α > β ≥ γ,

γ≥ 0. If M has cvc(�), then �=−α.

Proof. Let v = xe1 + ye2 + ze3 and w = ae1 +be2 + ce3 where x, y, z, a,b,c ∈R. And consider the following
cases.
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Case 1: Let v = e1. Then,

k(span{v, w}) = R(e1, w, w,e1)
〈e1,e1〉〈w ,w〉−〈e1,w〉2

= R(e1, ae1 +be2 + ce3, ae1 +be2 + ce3,e1)
〈e1,e1〉〈ae1 +be2 + ce3,ae1 +be2 + ce3〉−〈e1,ae1 +be2 + ce3〉2

= R(e1,be2,be2,e1)+R(e1,ce3,ce3,e1)
(−1)(−a2 +b2 + c2)− (a2)

= b
2

R1221 + c
2

R1331

−b2 − c2

= αb
2 +βc

2

−b2 − c2 .

Now solving for � we get,

αb
2 +βc

2

−b2 − c2 = �

αb
2 +βc

2 =−�b
2 −�c

2

b
2(α+�)+ c

2(β+�) = 0.

Thus, � ∈ [−β,−α].

Case 2: Let v = e2. Then,

k(span{v, w}) = R(e2, w, w,e2)
〈e2,e2〉〈w ,w〉−〈e2,w〉2

= R(e2, ae1 +be2 + ce3, ae1 +be2 + ce3,e2)
〈e2,e2〉〈ae1 +be2 + ce3,ae1 +be2 + ce3〉−〈e2,ae1 +be2 + ce3〉2

= R(e2, ae1, ae1,e2)+R(e2,ce3,ce3,e2)
(1)(−a2 +b2 + c2)− (b2)

= a
2

R2112 + c
2

R2332

−a2 + c2

= αa
2 +γc

2

−a2 + c2 .

Now solving for � we get,

αa
2 +γc

2

−a2 + c2 = �

αa
2 +γc

2 =−�a
2 +�c

2

a
2(α+�)+ c

2(γ−�) = 0.

And combing the two cases gives us, � ∈ [−α,−β]∩ [(−∞,−α]∪ [γ,∞)] = {−α}.
Therefore, if M has cvc(�) it must be cvc(−α).

Theorem 2.2. Let M = (V ,〈·,·〉,R) be a Lorentzian model space where di m(V ) = 3 and let {e1,e2,e3} be an

orthonormal basis with respect to the inner product and such that R1221 = α,R1331 = β,R2332 = γ where

β>α> γ, γ≥ 0 then if M has cvc(�) then �=−β.
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Proof. Case1: Let v = e1. Then,

k(span{v, w}) = R(e1, w, w,e1)
〈e1,e1〉〈w ,w〉−〈e1,w〉2

= R(e1, ae1 +be2 + ce3, ae1 +be2 + ce3,e1)
〈e1,e1〉〈ae1 +be2 + ce3,ae1 +be2 + ce3〉−〈e1,ae1 +be2 + ce3〉2

= R(e1,be2,be2,e1)+R(e1,ce3,ce3,e1)
(−1)(−a2 +b2 + c2)− (a2)

= b
2

R1221 + c
2

R1331

−b2 − c2

= αb
2 +βc

2

−b2 − c2 .

Now solving for � we get,

αb
2 +βc

2

−b2 − c2 = �

αb
2 +βc

2 =−�b
2 −�c

2

b
2(α+�)+ c

2(β+�) = 0.

Thus, � ∈ [−β,−α].

Case 2: Let v = e2. Then,

k(span{v, w}) = R(e2, w, w,e2)
〈e2,e2〉〈w ,w〉−〈e2,w〉2

= R(e2, ae1 +be2 + ce3, ae1 +be2 + ce3,e2)
〈e2,e2〉〈ae1 +be2 + ce3,ae1 +be2 + ce3〉−〈e2,ae1 +be2 + ce3〉2

= R(e2, ae1, ae1,e2)+R(e2,ce3,ce3,e2)
(1)(−a2 +b2 + c2)− (b2)

= a
2

R2112 + c
2

R2332

−a2 + c2

= αa
2 +γc

2

−a2 + c2 .

Now solving for � we get,

αa
2 +γc

2

−a2 + c2 = �

αa
2 +γc

2 =−�a
2 +�c

2

a
2(α+�)+ c

2(γ−�) = 0.

And combing the two cases gives us, � ∈ [−β,−α]∩ [(− inf,−α]∪ [γ, inf)] = [−β,−α].
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Case 3: Let v = e3. Then,

k(span{v, w}) = R(e3, w, w,e3)
〈e3,e3〉〈w ,w〉−〈e3,w〉2

= R(e3, ae1 +be2 + ce3, ae1 +be2 + ce3,e3)
〈e3,e3〉〈ae1 +be2 + ce3,ae1 +be2 + ce3〉−〈e3,ae1 +be2 + ce3〉2

= R(e3, ae1, ae1,e3)+R(e3,be2,be2,e3)
(1)(−a2 +b2 + c2)− (c2)

= a
2

R3113 +b
2

R3223

−a2 +b2

= βa
2 +γc

2

−a2 + c2 .

Now solving for � we get,

βa
2 +γc

2

−a2 + c2 = �

βa
2 +γc

2 =−�a
2 +�c

2

a
2(β+�)+ c

2(γ−�) = 0.

And combing the three cases gives us, � ∈ [−β,−α]∩ [(−∞,−β]∪ [γ,∞)] = {−β}. Therefore, if M has cvc(�)
it must be cvc(−β).

The above theorems can be used as a method to narrow down what the value of � must be if the model
space does infact have cvc(�) and such that α>β≥ γ or β>α≥ γ, whichever is largest. Now we will look
at a model space and prove that it has cvc(�) and given the curvature values we will be able to find the
value of �.

Theorem 2.3. Let M = (V ,〈·, ·〉,R) be a three-dimensional Lorentzian model space and let {e1,e2,e3} be an

orthonormal basis on V with respect to 〈·, ·〉 and let R1221 =α, R1331 =β, R2332 = γ such that α>β≥ γ then

M has cvc(−α).

Proof. Case 1: If v is the form of v = xe1 + ye2 where one or both x, y is nonzero. In this case, choose w to
be any vector so that span{v, w} = span{e1,e2}.Thus,

k(span{e1,e2}) = R(e1,e2,e2,e1)
〈e1,e1〉〈e2,e2〉−〈e1,e2〉2

= α

(−1)(1)− (0)2

=−α.

Case 2: If v = xe1 + ye2 + ze3 with z �= 0, we scale v so that z = 1 and consider the vector w =
ae1 +be2 + ce3. Then x, z �= 0 or y, z �= 0 are accounted for by the following, so if v = xe1 + ye2 + e3 let
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w =
�

γ+α
α−βe1 +e2. Hence,

k(span{v, w}) = R(v, w, w, v)
〈v, v〉〈w, w〉−〈v, w〉2

=
αx

2 +αγ+α
α−β y

2 +βγ+α
α−β −2α

�
γ+α
α−βx y +γ

(−x2 + y2 +1)(− γ+β
α−β )− ( γ+αα−βx2 + y2 −2

�
γ+α
α−βx y)

=
α(x

2 + γ+α
α−β y

2 −2
�

γ+α
α−βx y + γ+β

α−β )

−x2 − γ+α
α−β y2 +2

�
γ+α
α−βx y − γ+β

α−β

=−α.

3 CONCLUSION

Given a Lorentzian model space in three-dimensions in which the Ricci tensor is diagonalized with respect
to the inner product such that R1221 > R1331 ≥ R2332, then that model space must have cvc(�) for some �.
Additionally, if the values of the curvature tensor are known then it is possible to find the value of �.

4 OPEN QUESTIONS

• Under the condition in three dimensions in which the Ricci tensor is not necessarily diagonalized,

what can we conclude about the constant vector condition?

• Is a Lorentzian model space of higher dimensions cvc anything? If so, what conditions must hold to

make this true?
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