
Linear Dependence of Algebraic Curvature Tensors with

Associated Chain Complexes

David Williams

August 11, 2015

1 Introduction

Definition 1. Let V be a real, finite-dimensional vector space. Let R : V 4 → R be a
multilinear function. Then, we call R an algebraic curvature tensor if it satisfies the
following properties:

1. R(x, y, z, w) = −R(y, x, z, w)

2. R(x, y, z, w) = R(z, w, x, y)

3. R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0

We call the last property the Bianchi Identity. We denote the vector space of all algebraic
curvature tensors on V as A(V ).

In an inner product space, there is a natural way to construct an algebraic curvature
tensor from the inner product.

Theorem 1. Let V be a vector space with positive-definite inner product φ. Then,

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w)

is an algebraic curvature tensor.

We can extend this construction to certain linear operators and matrices on V as
follows.

Definition 1. Let V be a vector space with positive-definite inner product φ. Let τ be a
bilinear form on V. Let A : V → V be a linear operator. Then, we say that the following
are canonical algebraic curvature tensors of symmetric build:

RSA(x, y, z, w) = φ(Ax,w)φ(Ay, z)− 7φ(Ax, z)φ(Ay,w)

RSτ (x, y, z, w) = τ(x,w)τ(y, z)− τ(x, z)τ(y, w)
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Additionally, we say that the following are canonical algebraic curvature tensors
of anti-symmetric build:

RΛ
A(x, y, z, w) = φ(Ax,w)φ(Ay, z)− φ(Ax, z)φ(Ay,w)− 2φ(Ax, y)φ(Az,w)

RΛ
τ (x, y, z, w) = τ(x,w)τ(y, z)− τ(x, z)τ(y, w)− 2τ(x, y)τ(z, w)

This idea of building an algebraic curvature tensor out of a matrix or bilinear form
is central to our study the tensors themselves. Throughout this paper, we will say two
canonical algebraic curvature tensors RA and RB have the ”same build” if A and B are
either both symmetric or both antisymmetric.

By citeDiroff , we have that RSA, R
S
τ ∈ A(V ) ⇐⇒ A = A∗ and τ is a symmetric form.

Similarly, we have that RΛ
A, R

Λ
τ ∈ A(V ) ⇐⇒ A = −A∗ and τ is an anti-symmetric form.

This justifies our use of the phrase ”algebraic curvature tensor” in the second definition.
It is important to note that if RA is an algebraic curvature tensor, then RλA is also

an algebraic curvature tensor for λ ∈ R, with RλA(x, y, z, w) = R(λAx, λAy, z, w) =
λ2R(Ax,Ay, z, w) = λ2RA by the multilinearity of R. Thus, if {Rλ1A1 , ..., RλkAk

} is
a linearly dependent set, so is {RA1 , ..., RAk

} for λi ∈ R. Therefore, when we pick
coefficients for a linear dependence equation, we will only choose ±1, as any positive
scalar multiple of ±1 can be ”absorbed” into the operator in the subscript.

We wish to consider when a set of canonical algebraic curvature tensors (of either
build) is linearly independent. When the build of a particular tensor is unimportant
or unknown, we may omit the superscript: RA or Rτ . Furthermore, we will assume
throughout that V denotes a real, finite-dimensional vector space, so that M is a sym-
metric operator on V if and only if M = M∗, and M is an antisymmetric operator on V
if and only if M = −M∗.

To place restrictions on our different sets of tensors, we borrow an idea from algebraic
topology: the chain complex. For our purposes, we will consider only complexes of
operators that all act on the same vector space.

Definition 1. Let V be a vector space, and let A1, ..., Ak : V → V be linear operators
on V. If ImAi ⊂ KerAi+1 for 1 ≤ i ≤ k − 1, then we call D = (A1, ..., Ak) a chain
complex, and we write

A1 Ai Ai+1 Ak
V −→ ... −→ V −→ ... −→ V

If D1, ...Dl are chain complexes, we call E = ∪li=1Di a compound chain complex
and we write

2



A1 Ai Ai+1 Ak
V −→ ... −→ V −→ ... −→ V

B1 Bi Bi+1 Bk
V −→ ... −→ V −→ ... −→ V

...

T1 Ti Ti+1 Tk
V −→ ... −→ V −→ ... −→ V

We will study linearly dependent sets of algebraic curvature tensors constructed from
a set of operators which satisfy a chain complex. Studying the operator from which an
algebraic curvature tensor was built can give us information about the tensor itself, by
the following result.

Theorem 1. Let V be a real, finite-dimensional vector space, and let A : V → V be an
operator on V. Then,

1. If RkA ≤ 1, then RA = 0

2. If RkA ≥ 2, then KerRA = KerA

Thus, a chain complex structure also gives us information about the algebraic cur-
vature tensors constructed from the operators. Depending on the assumptions involved,
we may be able to put bounds on the dimension of the vector space as well.

For a given compound chain complex with a linear dependence equation, We wish to
combine the information derived from a the complex with our knowledge about tensor
behavior. To that end, we introduce an operation which allows for some convenient
results.

Definition 1. Let A, B be operators on a real, finite-dimensional vector space V, and
let RA be the canonical algebraic curvature tensor built from A. Then, we define pre-
composition by B, denoted B∗RA, by the following

B∗RA(x, y, z, w) = RA(Bx,By,Bz,Bw) = R(ABx,ABy,Bz,Bw)

= R(B∗ABx,B∗ABy, z, w) = RB∗AB(x, y, z, w)

It follows readily from this construction that for symmetric or anti-symmetric oper-
ators A and B, if BA = 0, then A∗RB = B∗RA = 0. In working with chain complexes
and associated linear dependence equations, it is often the case that a tensor will vanish
under precomposition by a certain operator. We make use of this result to reduce the
number of terms in our linear dependence equation.

Since a chain complex with a single base vector space is similar in construction to a
directed graph, we also use some basic techniques from graph theory to help us classify
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chain complexes. For a compound chain complex on a vector space V, we wish to
associate each instance of V with a distinct vertex and associate the operators on V to
maps between vertices that preserve the component complexes. To allow for a unique
association between a compound chain complex and a directed graph, we need notions
of a source and a sink.

Definition 1. Let G be a finite directed graph. We call a vertex v ∈ G a source if v
receives no edges in G. We call v a sink if v sends no edges in G.

Since it is possible that in a compound chain complex, there are many different
”sources” (in the way that different component complexes may begin with different
operators) and different ”sinks” (in the way that different compononet complexes may
end with different operators), in our complex-to-graph injection, we map each ”source”
space to the same vertex and each ”sink” space to the same vertex. This gives a unique
graphic representation for each compound chain complex, and restricts the kinds of
graphs we need to consider for our purposes.

2 Previous Work

The association of a chain complex to a linear dependence equation for algebraic cur-
vature tensors was previously studied in citeElise. Notable results are reproduced here
without proof.

Lemma 1. If A,B are symmetric or antisymmetric operators with ImB ⊂ KerA or
ImA ⊂ KerB, then

B ∗RA = RB∗AB = R±BAB = RBAB = 0

This is a corollary to THEOREM3, and the connecting bridge between linear depen-
dence of algebraic curvature tensors and compound chain complexes.

Theorem 1. Let A,B,C,D be operators on V with RkA,RkB,RkC,RkD ≥ 4. Suppose
RA + α1RB + α2RC + α3RD = 0 and the operators satisfy the chain complex

A B C D A
V −→ V −→ V −→ V −→ V −→ V

Then, we have

1. RA and RC have the same build, and A3C = ±ACAC = AC3

2. RB and RD have the same build, and BD = ±BDBD = BD3

Theorem 1. Let A,B1, ..., Bk be operators on vector space V such that 0 = RA +∑
αiRBi. Suppose the operators fit one of the following compound chain complexes:

A Bi
V −→ V −→ V
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Bi A
V −→ V −→ V

For symmetric or antisymmetric A, RA = 0. For antisymmetric A, if the sequence
is exact for some Bi, then Bi is invertible.

These results were achieved through precomposition by the operator A and use of
LEMMA4.1. Following are some other previous results that we will reference.

Lemma 1. CITEELISE If A = ±A∗ is an operator on V and p, k ∈ N, then

RkA = p ⇐⇒ RkAk = p

The backwards direction was proven in CITEELISE. To show the forward direction,
first assume A is symmetric. Diagonalize A, so that Ak is diagonalized as well. Then
RkA is the number of nonzero diagonal entries of A and RkAk is the number of nonzero
diagonal entries of Ak. So if A = [aij ] and A3 = [âij ], then for all i,

âii = a3
ii

So, âii = a3
ii = 0 ⇐⇒ aii = 0. Therefore, the number of nonzero diagonal entries of A3

is exactly the same as the number of nonzero diagonal entries of A.

Lemma 1. CITEGILKEY If A,B are operators on V with RA = RB, then A = ±B if

1. A, B are symmetric and RkA ≥ 3

2. A, B are antisymmetric

Lemma 1. CITEDIAZANDDUNN CITETREADWAY If A,B are operators on V with
RkA ≥ 3,

1. if A,B are symmetric, then RSA 6= −RSB

2. if A,B are antisymmetric, then RΛ
A 6= −RΛ

B

Lemma 1. CITETREADWAY CITELOVELL Let A be an antisymmetric operator on
V with RkA ≥ 4. If B is a symmetric operator on V, then

RΛ
A 6= ±RSB

For convenience, we combine the previous three lemmas for the following result:

Corollary 1. Suppose A,B are symmetric or antisymmetric operators on V with RkA ≥
3 and we have

RA = ±RB
Then, RA and RB have the same build, RA = RB, and

A = ±B
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3 Motivation

The primary problem I have studied follows. Let A,B,C,D be symmetric or antisym-
metric operators on V with RkA,RkB,RkC,RkD ≥ 3. Suppose these operators satisfy
the compound chain complex

A C D
V −→ V −→ V −→ V

B D
V −→ V −→ V

Together with this diagram, we associate the linear dependence relationship RA +
α1RB + α2RC + α3RD = 0. Examination begins by precomposing this equation with
each of A,B,C,D in order to achieve four new linear dependence equations:

RA3 + α1RABA + α3RADA = 0

RBABα1RB3 + α2RBCB = 0

α2RCBC + α3RC3− = 0

RDAD + α3RD3 = 0

We omit tensors which are identically 0 by LEMMA4.1. Note that each of our new
equations has fewer terms than our original equation. Intuitively, we have traded working
with simple matrices and many tensors for working with more complicated matrices and
fewer tensors. This is the convenience of precomposition, and we are especially interested
in cases where we are left with two-term equations, such as

RC3 = −α1α2RCBC

RD3 = −α3RDAD

By LEMMA7 and LEMMA10, we have that RkC3, RkD3 ≥ 3, and thus

1. RD3 and RDAD have the same build and α3 = −1

2. RC3 and RCBC have the same build and α1 = −α2

With a result we will develop later, it can be shown further that RA, RD must have
the same build and RB, RC must have the same build. Additionally, we note the following
about the complex

1. If A is invertible, then C = 0.

2. If B is invertible, then D = 0.

3. If C is invertible, then A = D = 0, and RC = ±RB.
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4. If D is invertible, then B = C = 0, and RA = ±RD.

5. We can rewrite our equation to achieve RA = −α1RB + α1RC + RD. Thus,
KerA = KerRA = Ker(−α1RB + α1RC + RD) ⊂ KerRB ∩KerRC ∩KerRD =
KerB ∩KerC ∩KerD. We could rearrange terms to show something similar for
KerB,KerC,KerD.

From this examination, some natural questions arise:

1. How much information about operators does a chain complex encode?

2. For a linear dependence equation with a chain complex, does reducing the number
of terms by precomposition yield more information about the operators?

3. For a given number of operators, how many chain complexes are possible?

In this paper, I will begin to answer all of these questions. My hope is to lay a strong
foundation for the study of chain complexes with linear dependence equations of algebraic
curvature tensors, and to motivate deeper study in the field.

4 Compound Chain Complexes and Their Operators

We want to study compound chain complexes in general, especially with respect to
operators. Given a chain complex, we want to decide what kinds of operators could
satisfy. We take a kernel-based approach, so that an operator splits the vector space V
into two parts: the image of A and the kernel of A. The following result justifies this
perspective.

Lemma 1. Let A = ±A∗ be an operator on V. Then,

ImA ∩KerA = {0}

Proof by contradition. Suppose we have a nonzero v ∈ ImA ∩ KerA. Let B =
{v, e1, ..., em−1} be a basis for ImA. Then,

{Av,Ae1, ..., Aem−1}

is a spanning set for ImA2. But Av = 0 by assumption, so B′ = {Ae1, ..., Aem−1} is also
a spanning set for imA2. Thus,

RkA2 = dim(ImA2) < dim(ImA) = RkA

But this is a contradiction to LEMMA7, so no such v exists.

Theorem 1. Let D = (A1, ..., Ak) be a chain complex relating k operators on an n-
dimensional vector space V. Suppose that Ai = ±A∗i for 0 ≤ i ≤ k. Then, we may
assume without loss of generality that

U = ∩ki=0kerAi = {0}

.
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Proof. Suppose there exists v ∈ U such that v 6= 0. Define

V̄ = V/U

π : V → V̄ given by π(v) = v + U for all v ∈ V
π∗R = R̄ so that π∗R(x, y, z, w) = R̄(x+ U, y + U, z + U,w + U)

Āi : V̄ → V̄ such that π(Aiv) = Āi(v + U) for all v ∈ V

We need to verify that the above is well-defined and simplifies our chain complex so that
Ū =

⋂k
i=0KerĀi = {0}.

By THEOREM3.01 that for RA 6= 0, KerRA = KerA, and so U ⊂ KerRA. Let
x1, x2 ∈ V such that x1 + U = x2 + U . Then,

x1 − x2 ∈ U
=⇒ RA(x1 − x2, y, z, w) = 0

=⇒ RA(x1, y, z, w) = RA(x2, y, z, w)

=⇒ R̄A(x1 + U, y + U, z + U,w + U) = R̄A(x2 + U, y + U, z + U,w + U)

So, R̄ is well-defined for R on V. Also, we have

x1 − x2 ∈ U ⊂ kerAi
=⇒ Ai(x1 − x2) = 0

=⇒ Ai(x1) = Ai(x2)

=⇒ π(Aix1) = π(Aix2)

=⇒ Āi(x1 + U) = Āi(x2 + U)

for all 0 ≤ i ≤ k. So Āi is well-defined.
We now need to show that the new operators satisfy the original chain complex.

Since the information encoded by a chain complex is a containment of the images of
some operators in the kernels of others, it is sufficient to show that ImĀi ⊂ KerĀj for
ImAi ⊂ KerAj . Fix such i, j and let v + U ∈ imĀi so that Āi(u+ U) = v + U . Then,

v −Aiu ∈ U ⊂ KerAj
=⇒ Aj(v −Aiu) = 0

=⇒ Ajv = AjAiu = 0 since ImAi ⊂ KerAj
=⇒ Āj(v + U) = π(Ajv) = π(0) = 0 + U
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Thus, our new operators satisfy the same chain complex on V̄ that our original
operators satisfied on V . We also have that if v + U ∈

⋂k
i=0KerĀi, then

v + U ∈
k⋂
i=0

Kerπ(Ai)

=⇒ π(Aiv) = 0 + U for i ≤ k
=⇒ Aiv ∈ U ⊂ KerAi for i ≤ k
=⇒ Aiv ∈ KerAi ∩ ImAi = {0} for i ≤ k

by LEMMA12. Finally, to guarantee that RkĀi = RkAi, let v = Aiu be nonzero
for some i ≤ k. Since ImA ∩ U ⊂ ImA ⊂ KerA = {0} by LEMMA12, v /∈ U . Thus,
v + U = π(v) = π(Aiu) = Āi(u+ U), and so v + U ∈ Im(Āi).

This result is very convenient, because it allows us to assume for every chain complex
that the intersection of the kernels of all operators is trivial. In other words, dimV can
be assumed to be only large enough to meet our assumptions, and no larger.

Putting restrictions on dimV is generally a tedious process in which one must consider
the interrelated kernels of all operators in the complex. However, assuming that the
kernels have a trivial intersection gives us some leverage when considering how the
kernels interact. The following result is especially nice in cases when dimV ≤ 5.

Theorem 1. Let A1, ..., Ak be operators on a vector space V such that {RA1, ..., RAk} is
a properly linearly dependent set. Suppose that

⋂k
i=1KerRAi = 0, and let v be a vector

such that v is in the kernels of k-1 of the Ai’s. Then, v = 0.

Proof. Since {RA1 , ..., RAk
} is a properly linearly dependent set, RAi 6= 0 =⇒

RkAi ≥ 2 for all i by LEMMA3.01. Thus, KerRAi = KerAi and so
⋂k
i=1KerAi = {0}.

Furthermore, we can choose α1, ..., αk all nonzero such that

k∑
i=1

αiRAi = 0

Now let v be a vector such that v is in the kernels of k-1 of the Ai’s. Fix j such that
v ∈ KerAi for i 6= j. We can now rewrite the linear dependence equation
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− αjRAj =

j−1∑
i=1

αiRAi +
k∑

i=j+1

αiRAi

=⇒ RAj = − 1

αj
(

j−1∑
i=1

αiRAi +

k∑
i=j+1

αiRAi)

=⇒ RAj(v, y, z, w) = − 1

αj
(

j−1∑
i=1

αiRAi(v, y, z, w) +

k∑
i=j+1

αiRAi(v, y, z, w))

= − 1

αj
(

j−1∑
i=1

0 +
k∑

i=j+1

0)

= 0

for all y, z, w ∈ V . Thus, v ∈ KerRAj =⇒ v ∈ KerAj . But by choice of v, we now

have v ∈
⋂k
i=1KerRAi = {0} by assumption. So v = 0.

5 Precomposed Linear Dependence Equations

The process of precomposition by a symmetric or antisymmetric operator is key to our
study of chain complexes and the linear dependence of canonical algebraic curvature
tensors. The equations that result from precomposition are often simpler at the tensor
level, but the operators from which the tensors are built are often much more compli-
cated. However, because we can often reduce our equations to 2 or 3 nontrivial terms,
we can begin to apply previous knowledge to derive matrix equations.

The following result justifies our use of precomposition to form new canonical alge-
braic curvature tensors.

Lemma 1. Let A = αA∗ and B = βB∗ for some α, β = 1,−1. Then, we have

(ABA)∗ = βABA

Proof. By properties of adjoints, we have

(ABA)∗ = A∗B∗A∗ = (αA)(βB)(αA) = α2βABA = βABA

since α2 = 1.
As a corollary to the above, precomposing a canonical algebraic curvature tensor by

a symmetric or antisymmetric operator produces another canonical algebraic curvature
tensor of the same build. This allows us to apply previous results to tensors that have
undergone precomposition.
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Theorem 1. Let A,B be operators on a vector space V such that A = A∗, B = ±B∗
and 3 ≤ RkB ≤ RkA. Let A = [aij ] and B = [bij ]. Suppose that

RA3 = ±RABA
RB3 = ±RBAB

We choose a basis for V such that A is diagonal. Then, we have that for distinct
i, j ≤ dimV ,

aii = ajj, or

bij = bji = 0

Proof. By COROLLARY11, we have that B = B∗, RA3 = RABA and RB3 = RBAB.
Also,

βA3 = ABA for some β = 1,−1

ηB3 = BAB for some η = 1,−1

=⇒ βA3B = ABAB = ηAB3

=⇒ A3B = γAB3 for γ = βη

Thus with diagonalized A, we have

A =



λ1 0 . . . . . . 0

0
. . . 0

λh
... 0

...

0
. . .

0 . . . . . . 0



=⇒ A3 =



λ3
1 0 . . . . . . 0

0
. . . 0

λ3
h

... 0
...

0
. . .

0 . . . . . . 0


where h = RkA. Let B3 = [b̃ij ]. Thus, from the above relation, we have
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A3B =



λ3
1b11 λ3

1b12 . . . λ3
1b1h 0 . . . 0

λ3
2b21 λ3

2b22
...

...
. . .

λ3
hbh1 . . . λ3

hbhh
...

0 0
...

. . .

0 . . . 0


= [λ3

i bij ]

= γAB3 = γ



λ1
˜b11 λ1

˜b12 . . . λ1
˜b1h 0 . . . 0

λ2
˜b21 λ2

˜b22
...

...
. . .

λh ˜bh1 . . . λh ˜bhh
...

0 0
...

. . .

0 . . . 0


= γ[λib̃ij ]

Since B,B3 are symmetric matrices, we have that bij = bji and b̃ij = b̃ji for all i, j.
Thus, for distinct i, j we have

λ3
i bij = γλib̃ij and λ3

jbji = γλj b̃ji

=⇒ λ2
i bij = γb̃ij = γb̃ji = λ2

jbji since λk 6= 0 for all k ≤ m
=⇒ (λ2

i − λ2
j )bij = 0

=⇒ λi = ±λj or bij = bji = 0 for distinct i, j

This result is very nearly sufficient to show commutativity for symmetric A,B given
our assumptions. For diagonalized A, we have AB = [aiibij] and BA = [bijajj ]. Thus,
in order for A,B to commute, we must have

aiibij = ajjbij

for all i, j. This is true for our matrices except in the case where aii = −ajj . Thus,
we can force commutativity if we assume that A has only positive (or only negative)
eigenvalues.

We wish to extend this result to antisymmetric A,B. This is nontrivial, since anti-
symmetric matrices cannot be diagonalized. They can, however, be block-diagonalized
with 2-by-2 blocks down the diagonal with zeros elsewhere. Each of these blocks must
be a scalar multiple of
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M =

[
0 1
−1 0

]
We’ll now formalize a process by which we use M to ”diagonalize” an antisymmetric

operator. First, we must show that a block partitioning on an antisymmetric matrix
preserves the antisymmetric properties of the matrix.

Lemma 1. Suppose B is a 2n-by-2n antisymmetric matrix over V. Suppose we express
B = [bij ] as a block matrix, so that

B =


B11 B12 . . . B1,n

B21 B22 B2,n
...

. . .
...

Bn,1 Bn,2 . . . Bn,n


where

Bij =

[
b2i−1,2j−1 b2i−1,2j

b2i,2j−1 b2i,2j

]
Then, for all i, j, we have

Bij = −(Bji)
T

Proof. Let 1 ≤ i, j ≤ n. Then,

b2i−1,2j−1 = −b2j−1,2i−1

b2i,2j−1 = −b2j−1,2i

b2i−1,2j = −b2j,2i−1

b2i,2j = −b2j,2i

Thus, we have

Bij =

[
b2i−1,2−1 b2i,2j−1

b2i−1,2j b2i,2j

]

=

[
b2i−1,2j−1 b2i−1,2j

b2i,2j−1 b2i,2j

]T
= −

[
b2j−1,2i−1 b2j−1,2i

b2j,2i−1 b2j,2i

]T
= −BT

ji

This directly shows that an antisymmetric operator on an even-dimensional V re-
tains antisymmetry under block-partitioning. If n = dimV is odd instead, then we can
augment the matrix representation of B by one row and one column, and fill all the new
entries with zeroes. This new (n+1)-by-(n+1)matrix is antisymmetric, so we can apply
LEMMA19 to it.

We now extend the result from THEOREM18 to antisymmetric operators.
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Theorem 1. Let A = [aij ], B = [bij ] be n x n antisymmetric matrices on a real, finite-
dimensional vector space V. Let RkA ≥ RkB ≥ 4. Suppose A, B satisfy the following
relationship:

A3B = αAB3

for some α ∈ {1,−1}. Choose a basis for V so that A is block-diagonalized:

A =


A11 0 . . . 0

0
. . . 0

...
... 0 Ah,h 0
0 . . . 0 0


where 2h = RkA and

Aii =

[
0 λi
−λi 0

]
= λiM

where

M =

[
0 1
−1 0

]
Then, for distinct indices i, j, we have

λi = ±λj, or

bij =bji = 0

Proof. We partition B as a block matrix, so that B = [Bij ], where

Bij =

[
b2i−1,2j−1 b2i−1,2j

b2i,2j−1 b2i,2j

]
and similarly B3 = [B̃ij ]. Note that since RkB ≤ RkA, bij = 0 for i ≥ 2h or j ≥ 2h.

Thus, Bij = [0] for i ≥ h or j ≥ h.
By hypothesis, we have

A3B = αAB3

for some α ∈ {1,−1}. So,

A3B =


A3

11B11 . . . A3
11B1,h 0 . . .

...
. . .

A3
h,hBh,1 . . . A3

h,hBh,h 0 . . .

0 0
...

. . .

 = [A3
iiBij ]
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= αAB3 = α


A11B̃11 . . . A11

˜B1,h 0 . . .
...

. . .

Ah,h ˜Bh,1 . . . Ah,h ˜Bh,h 0 . . .
0 0
...

. . .

 = α[AiiB̃ij ]

So, for distinct indices i, j we have

A3
iiBij = αAiiB̃ij and A3

jjBji = αAjjB̃ji

=⇒ λ3
iM

3Bij = αλiMB̃ij and λ3
jM

3Bji = αλjMB̃ji

=⇒ λ2
iM

2Bij = αB̃ij and λ2
jM

2Bji = αB̃ji

since M4 = I and λk 6= 0 for k ≤ h. But by LEMM19, we have

B̃ij = −B̃ji
T

and so

λ2
iM

2Bij = αB̃ij = −αB̃ji
T

= −λ2
j (M

2Bji)
T

=⇒ −λ2
iBij = (−λ2

j )(−Bji)T since M2 = −I
=⇒ −λ2

iBij = −λ2
jBij

by LEMMA19. So, we have

Bij = 0 or λi = ±λj

6 Questions

7 Projects for Further Study

1. For n ≥ 5, classify directed graphs of n edges/operators that can be associated
with some chain complex. Impose a linear dependence on the operators in the
chain complex, and don’t consider graphs which force any operator to be 0 (these
are not useful for our purposes). For valid graphs on n ≥ 4 edges/operators, form
the hierarchy of graphs from least restrictive to most restrictive. For example,
on 4 edges/operators, there are 14 valid graphs, some of which are stricter than
others. Which ones are the least strict? Which are the most strict? If we start
with a graph which is not very strict and impose more containment relationships
on the images and kernels of the operators, what other graphs can we derive?
What are the possible restriction paths we could take from a least-strict graph to
a most-strict graph? Answer these questions for 4 ≤ n ≤ 10 edges/operators.
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2. For a set of CACT’s which is known to be linearly dependent, consider what other
conditions are necessary for us to conclude that a chain complex structure must
exist on the underlying operators. This is intended to fit Elise’s and my work
with chain complexes into the greater discussion about linearly dependent sets of
ACT’s, since satisfying a chain complex structure seems to be a strong condition.
Other problems along this vein are: For an ACT R, how does chain complex
analysis interact with our knowledge about ν(R), η(R), and µ(R)? For a given
vector space V, can we use our knowledge about A(V ) to restrict the kinds of
possible chain complexes on V? Some of my work is very similar to the work that
other REU students have done, and I think there are ways to combine my methods
and theirs to acquire a fuller toolbox for analyzing ACT’s.

3. Find classes of solutions for common relationships found in chain complexes, such
as

RA3 + αRABA + δRACA = 0

for A, B, C symmetric or anti-symmetric and for α, δ ∈ {1,−1}. Examine these
equations as matrix polynomials and also as systems of equations, probably with
very many unknowns. This seems like a very tedious problem that may involve
heavy use of CAS, but getting information about the the properties or entries of
these matrices could help us characterize the solutions to a given chain complex.
Partitioning this problem into cases based on rank assumptions seems to be the
most logical way to progress.

4. Reexamine the work Elise and I have done with the new assumption that all se-
quences are exact. This has the effect of making every containment assumption
an equality assumption instead. How does this change the number of valid graphs
on 4 or more operators/edges? Are the solutions to matrix equations more readily
derived? Are the linear dependence equations easier to work with? Many cases
should become trivial, and nontrivial examples seem like they should simplify im-
mensely. With exact sequences, is it possible to make concrete statements about
sets of higher numbers of tensors?

5. Use homology theory to dissect the kernels of operators in chain complexes, and
determine if there is a clear connection between homologies and operators. For
sequences that are necessarily not exact, there is potential variance in the size of
the operator’s image. Just as I was able to draw many conclusions by examining
the kernels of the operators, it might be possible to derive new conclusions by
studying the homologies of the operators. Additionally, it should be noted that
my assumption that the intersection of the kernels of the operators is trivial is
equivalent to assuming that the intersection of the homologies of the operators is
trivial in the chain complex.

6. The convenient (and restrictive) property of a chain complex is that if A imme-
diately precedes B in complex, BA = 0. This is certainly sufficient to show that
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RABA = 0 = RBAB, but it is not necessary. A less restrictive (and so more plau-
sible) condition is to require that RkABA ≤ 1 ≤ RkBAB, which is necessary to
show RABA = 0 = RBAB. For a given A, define the flattening of A, denoted
F(A), to be the set of matrices such that RkABA ≤ 1 ≥ RkBAB. For a given
A, what kind of set is F(A)? Is it ever a group? An abelian group? Which el-
ements B ∈ F (A) satisfy ImA ⊂ KerB? Furthermore, when we use this new
condition to form pseudo-chain-complexes, how does this change the properties of
the operators? Are the implications similar or different from the results on normal
chain complexes? How does this new assumption affect the matrix equations and
graphcial classifications?

7. Consider more abstract graph-theoretic properties of the directed graphs that are
derived from chain complexes? If the graphs of two chain complexes are duals
of each other, is there any connection to the complexes themselves? Is there a
canonical/logical flow on the edges of a directed graph which corresponds somehow
to the operators on the underlying chain complex? Also, it seems that the number
of valid graphs which contain no directed cycles is fairly low for every number of
operators. Why is this? Is there any way to ”replace” a directed cycle in a graph
with a non-cycle construct that maintains the linear dependence of the operators?
Consider the polarization formula and matrix splitting, as well as Elise’s identity
and other identities for tensors and matrices.

8. For symmetric matrix A and anti-symmetric matrices C, D find general forms or
classifications for the products C3D,CD3, C3A, CA3, A3C, AC3, ABAB, ACAC,
CACA, CDCD. These operators appear frequently in working with precomposed
ACT’s, but their properties are tedious to determine in general.

9. Reexamine my work by restating my results in terms of the images and ranks of
operators rather than kernels and nullities. How does this change the underlying
assumptions about our operators? Does this make any of my results more intuitive?
Less intuitive?

10. Given operators A, B on V, find relations for ImAB,RkAB,KerAB,NlAB in
terms of ImA,RkA,KerA,NlA, ImB,RkB,KerB, and NlB.

11. Determine whether the work Elise and I have done holds for cases in which some
the ranks of the operators are exactly 2.I often avoided studying cases in which
the ranks of the operators were exactly 2, as there were few previous results that
applied to them. Do my results still hold? Do Elise’s?

12. Let M be defined as follows.

M =

[
0 1
−1 0

]
This matrix is notable because it allows us to express an antisymmetric block-
diagonal matrix as a diagonal block matrix. Additionally, M has several properties
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that are very similar to the imaginary number i: M2 = −I for example, and
M = −M3. I have a hunch that by studying M alongside antisymmetric matrices,
there may be a way to express antisymmetric matrices in a more convenient way.
By my proof of RESULTHERE, we know that there exists a function φ which
associates a block-diagonal antisymmetric matrix with a unique diagonal matrix.
Ideally, we would be able to expand Dom(φ) to all antisymmetric matrices and
Im(φ) to all symmetric matrices so that φ is a bijection. If such a φ is found, many
previous results (including mine) could be simplified to just the symmetric case,
and we would have a new tool with which to study canoncial algebraic curvature
tensors.
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