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Abstract

Throughout the study of curvature homogeneous Riemannian and
pseudo-Riemannian manifolds, many homogeneity conditions have been
introduced imposing different restrictions on the model space of a mani-
fold. In this paper we investigate the curvature characteristics of general-
ized Dunn manifolds under a variety of these homogeneous model spaces
including the weak, homothety, variable, and the “regular” curvature ho-
mogeneity conditions. The Dunn manifolds have already been shown to
provide a rich family of curvature homogeneous examples in the higher-
signature, pseudo-Riemannian setting and by creating the generalizing
form we can further explore other homoegeneity types.

1 Introduction

Let (M, g) denote a pseudo-Riemannian manifold of signature (p, q) equipped
with a Levi-Civita connection, ∇, and let TM and T ∗M be the tangent bundle
on M and its dual. Similarly, let gp, TpM and T ∗pM denote the metric, tangent
bundle, and dual evaluated at a point p ∈M .

Definition 1.1. If X,Y, Z,W ∈ TpM are vector fields, then we can define the
Riemannian curvature operator, R ∈ TM ⊗ (T ∗M)3, as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Additionally, we can define the Riemannian curvature tensor, R ∈ ⊗4(T ∗M)
using the metric, g, as

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

We also define ∇iR ∈ ⊗4+iT ∗M for i ∈ N as the ith covariant derivative of R
and following previous notation, Rp denote the curvature tensor evaluated at a
point p ∈M .

The curvature operator and tensor wholly determine the curvature of a man-
ifold and thus is the primary objects of study when looking at curvature homo-
geneity.
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When Singer pioneered the study of curvature homogeneity in 1960 [8], he
introduced the notion of a curvature homogeneous manifold in terms of the
Riemannian curvature tensor:

Definition 1.2. A manifold, (M, g), is k-curvature homogeneous if for any
points, p, q ∈ M and i = 0, 1, ..., k there exists a linear isomorphism Φpq :
TpM → TqM such that:

Φ∗pqgq = gp and Φ∗pq∇iRq = ∇iRp

If M is k-curvature homogeneous, we say that M is CHk, and if it is also the
case that M is CHk but not CHk+1, then M is properly CHk.

The manifolds central to this paper, the Dunn family of manifolds [5] ,Mf ,
were created to allow greater flexibility in signature, primarily motivated by the
rigid signature restrictions of previously existing example families in the higher
signature setting [1].

Definition 1.3 (Mf Manifolds). Let M := R3k+2 be a Euclidean space wtih
a coordinate basis {u0, ..., uk, v0, ..., vk, s1, ..., sk} and F := {f1(u1), ..., fk(uk)}
be a collection of smooth functions such that fi(ui) + 1 6= 0 for all ui. Then we
can define the metric, gF , on the coordinate frame as:

gF (∂u0 , ∂ui) = 2fi(ui)si,

gF (∂ui , ∂vj ) = δij ,

gF (∂ui
, ∂ui

) = −2u0si,

gF (∂si , ∂si) = εi .

If Mf := (R3k+2, gF ), then Mf is a pseudo-Riemannian manifold with signature
(k + 1 + a, k + 1 + b); where a+ b = k is a choice of signs for εi.

The initial examination of these manifolds was primarily concerned with
curvature homogeneity in the “regular” sense, introduced by Singer, showing
that:

Theorem 1.4. Let (M, g) =Mf for a fixed family of functions, F , such that
f ′i(ui) + 1 6= 0 for all i, then:

(a) Mf is CH0

(b) Mf is locally indecomposable at every point.

(c) If f ′′i (ui) 6= 0 for any i = 0, ..., k then Mf is not CH2

(d) Mf is generalized plane wave and thus Ricci Flat and VSI

We will build off these manifolds, generalizing them by introducing a second
collection of functions, giving more flexibility in choosing the defining functions.

Definition 1.5 (Mδ Manifolds). Define M as in Definition 1.3 and let

H := {hi(ui) i = 1, ..., k

}
F := {fi(ui)
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be two independent collections of smooth functions. Then define the metric, gδ,
as having the following non-zero entries:

gδ(∂u0
, ∂ui

) = 2fi(ui)si,

gδ(∂u0
, ∂si) = hi(ui),

gδ(∂u0
, ∂v0) = 1,

gδ(∂ui
, ∂ui

) = −2u0si,

gδ(∂si , ∂si) = εi,

gδ(∂ui
, ∂vi) = 1.

If Mδ := (M, gδ), then Mδ is pseudo- Riemannian with the same choice of sig-
nature as Mf in Definition 1.3.

Remark. This “generalized” family is so called because it allows much more
flexibility in choosing the defining sets of functions F andH. Instead of imposing
the restrictions for curvature homogeneity directly on the fi(ui) for each i, the
restriction is instead imposed on a new function

δi =
εi
2

[h′i(ui)− 2fi(ui)].

This means that for any chosen collection, F , we have another potentially infinite
number of choices for H that still exhibit the same curvature characteristics.

It is obvious that the original Dunn manifolds described in Definition 1.3 are
a subset of Mδ, but it is still unclear if the two families are distinctly different
as they might still be isomorphic.

2 Preliminiaries

Since Springer’s introduction of curvature homogeneity, many authors have
conducted work on classifying curvature homogeneous manifolds but this also
prompted the introduction of new homogeneity conditions.

The work of Kowalski and Vanz̆urová [6, 7] proposed a generalization of
curvature homogeneity which preserves the curvature operator instead of the
curvature tensor, called curvature homogeneity of type (1,3). This property
was later renamed in [4], whose notation we will use.

Definition 2.1. A manifold, (M, g) is variable homothety k-curvature homo-
geneous, or VCHk, if for every i = 0, ..., k there exists a homothety (an isom-
etry followed by a dilation), hi : TpM → TqM for every p, q ∈ M such that
h∗i∇iRq = ∇iRp.

This prompted the study of a special case of this property, by Garćıa-Ŕıo
et. al. [3] where the curvature operator is preserved at all levels by a single
homothety.

Definition 2.2. A manifold, (M, g) is homothety k-curvature homogeneous, or
HCHk, if there exists a homothety, h : TpM → TqM for every p, q ∈ M such
that h∗∇iRq = ∇iRp for all 0 ≤ i ≤ k.

Central to the study of curvature homogeneous manifolds are model spaces
which provide the primary tool with which to differentiate sub-classes in a family
of manifolds. We will be adopting the notation used in [2].
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Definition 2.3. Let V and V ∗ be a finite-dimensional real vector space and its
dual and 〈·, ·〉 be a symmetric, nondegenerate, bilinear form.
An element A0 = Aabcd ∈ ⊗4V ∗ is said to be an algebraic curvature tensor if
for all a, b, c, d, e ∈ V it satisfies:

Aabcd = Acdab
Aabcd = −Abacd = −Aabdc
Aabcd +Aadbc +Aacdb = 0

Similarly, A1 = Aabcd;e ∈ ⊗5V ∗ is an algebraic covariant derivative curvature
tensor if it satisfies:

Aabcd;e = Acdab;e
Aabcd;e = −Abacd;e = −Aabdc;e
Aabcd;e +Aadbc;e +Aacbd;e = 0
Aabcd;e +Aabec;d +Aabde;c = 0

These structures are clearly analoguous to R and ∇R and thus we can extend
them naturally to define Ai ∈ ⊗4+iV ∗ as the ith algebraic covariant derivative
curvature tensor following the symmetries of ∇iR.

The tuple, (V, 〈·, ·〉, A0, A1, ..., Ak) is a curvature k-model and we say a mani-
fold (M, g) can be k-modeled by a given model space if there exist isomorphisms
such that at every point, p ∈M ,

(TpM, gp, Rp, ...,∇kRp) ∼= (V, 〈·, ·〉, A0, ..., Ak).

In other words, there exists an isometry Γ : TpM → V such that for x, y ∈ TpM :

〈Γ∗x,Γ∗y〉 = gp(x, y) and Γ∗Ai = ∇iR for 0 ≤ i ≤ k.

In [2], Dunn and McDonald reformulated and summarized the homogeneity
conditions in terms of the model spaces. Here we will also introduce the concept
of weak curvature homogeneity:

Theorem 2.4. Let M = (M, g) be a smooth pseudo-Riemannian manifold,
then

(a) M is weak k-curvature homogeneous, or WCHk, if and only if it can
be k-modeled by

Wk = (V,A0, ..., Ak)

(b) M is CHk if and only if can be k-modeled by

Mk = (V, 〈·, ·〉, A0, ..., Ak)

(c) M is VCHk if and only if there exist smooth, positive functions, ϕi,
for every 0 ≤ i ≤ k such that M can be k-modeled by

Vk = (V, 〈·, ·〉, ϕ0A
0, ..., ϕkA

k)

(d) M is HCHk if and only if there exists a smooth, positive function,
λ, such that M can be k-modeled by

Hk = (V, 〈·, ·〉, λA0, λ
3
2A1, ..., λ

1
2 (k+2)Ak).
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In the rest of this paper, we will establish the following curvature properties
of the generalized Dunn manifolds, Mδ:

Theorem 2.5. Let (M, g) = Mδ ∈Mδ as in Definition 1.5 for fixed collections
of smooth functions, F and H, and δi = εi

2 [h′i(ui)− 2fi(ui)] then:

(a) Mδ is never flat for any collections F and H.

(b) Mδ is CH0.

(c) CH0 and WCH1 imply CH1.

(d) Mδ is locally symmetric if δi = 0 or δ′i = 1
2

(e) If δi is constant, then Mδ is CH1.

Considering variable curvature homogeneity we find:

Theorem 2.6. Consider Mδ as in Theorem 2.5, then Mδ is VCH1 if it is CH0,
not locally symmetric, and one of the following is true:

(1) δ′i = 1 and (εiδi) > 0.

(2) δ′i 6= 1, δ′′i = 0, and (εiδi) > 0.

(3) δi is a non-linear solution to the differential equation

δiδ
′′
1 = 2εi(δ

′
i − 1)(2δ′i − 1) and (δ′′i

δ′i−1
|δ′i−1|

) > 0.

(4) For some positive function, ϕ1, δi is a non-linear solution to the
differential equation 2δiεi(δ

′
i − 1)(2δ′i − 1)− δ2i δ′′i εi = ±ϕ1δ

′′
i (δ′i − 1)

with δ′′i > 0.

Finally, we find the following results when examining the homothety curva-
ture homogeneous examples in the manifold family:

Theorem 2.7. Consider a manifold Mδ as in Theorem 2.5, then Mδ is HCH1

if one of the following is true:

(1) δ′i = 1.

(2) δi is linear but δ′i 6= 1.

(3) δi is a non-linear solution to the differential equation:

δiδ
′′
1 = 2εi(δ

′
i − 1)(2δ′i − 1)

(4) For some fixed, positive function ϕ1, δi is a non-linear solution and
to the differential equation:

2δiεi(δ
′
i − 1)(2δ′i − 1)− δ2i δ′′i εi = ±ϕ1δ

′′
i (δ′i − 1)

5



3 Geometry of Mδ

We begin our discussion of curvature by computing the Riemannian curvature
tensor and its first and second covariant derivatives.

Lemma 3.1. Let {∂u0 , ..., ∂uk
, ∂v0 , ..., ∂vk , ∂s1 , ..., ∂sk} be the coordinate basis

of TM and for convenience, adopt the notation hi = hi(ui) and fi = fi(ui) and
define δi := εi

2 [h′i − 2fi].

(a) The nonzero coordinate covariant derivatives are

∇∂u0
∂ui

= ∇∂ui
∂u0

= δi∂si − hiδiεi∂v0 − si∂vi ,
∇∂u0

∂si = ∇∂si∂u0
= −δiεi∂vi ,

∇∂ui
∂si = ∇∂si∂ui

= δiεi∂v0 − u0∂vi ,
∇∂ui

∂ui
= εiu0∂si + (2f ′isi − hiεiui − si)∂v0 .

(b) Up to symmetry, the non-zero curvature tensor entries are

R0(i) = R(∂u0
, ∂ui

, ∂u0
, ∂ui

) = δ2i εi,

Rs(i) = R(∂u0
, ∂ui

, ∂ui
.∂si) = δ′i − 1.

(c) Up to symmetry, the non-zero first covariant derivative curvature
tensor entries are

∇R0(i) = ∇R(∂u0
, ∂ui

, ∂u0
, ∂ui

; ∂ui
) = 2δiεi(2δ

′
i − 1),

∇Rs(i) = ∇R(∂u0
, ∂ui

, ∂ui
, ∂si ; ∂ui

) = δ′′i .

Proof. Lemma 3.1 follows from direct calculation of the Christoffel symbols,
curvature tensor, and curvature operators as defined in Section 1, and will be
omitted for brevity.

For our discussion of curvature homogeneity, it will be necessary to find a
normalizing basis for our manifolds, Mδ.

Definition 3.2. Define a change of basis such that for each 1 ≤ i ≤ k,

u0 := b00∂u0 + b0v0∂v0 +
∑k
j=1 b0sj∂sj ,

ui := bii∂ui
+ bisi∂si + bivi∂vi ,

v0 := bv00∂v0 ,

vi := bv0i∂vi ,

si := εibsii∂si + bsv0∂v0 +
∑k
j=1 ∂vj

Lemma 3.3. For convienience of notation, assume all formualtions are given
for a fixed 1 ≤ i ≤ k such that R0 = R0(i) and Rs = Rs(i). Then under the
change of basis described in Definition 3.2,

(a) the non-zero curvature tensor entries are:

R̄0 = R(u0, ui, u0, ui) = b2iib00[b00R0 − 2b0siRs],

R̄s = R(u0, ui, ui, si) = b2iib00bsiiεiRs.
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(b) Similarly, the non-zero covariant derivative curvature tensor entries
are:

∇R̄0 = ∇R(u0, ui, u0, ui;ui) = b3iib00[b00∇R0 − 2b0si∇Rs],
∇R̄s = ∇R(u0, ui, ui, si;ui) = b3iib00bsiiεi∇Rs.

4 Curvature 0-Models

This section is dedicated to examining the curvature characteristics of Mδ at
the 0-model level where we will establish assertions (a) and (b) of Theorem 2.5.

Lemma 4.1. Mδ = (R3k+2, gδ) cannot be zero-modeled by (V, 〈·, ·〉, 0).

Proof. Even under a change of basis, R̄ is identically zero only if both R0 and
Rs = 0. Suppose R0 = 0, then δi = 0 for all i. If Rs = 0, then δ′i = 1
which would imply that δi = ui + c for some constant, c. This of course is a
contradiction, so R0 and Rs cannot be simultaneously zero.

Remark. Lemma 4.1 is equivalent to showing that no members of Mδ are
isomorphic to flat, Euclidean space. This also proves assertion (a) of Theorem
2.5.

To establish the CH0 condition, we can use assertion (a) of Theorem 2.4 to
show that through a change of basisMδ can be made to have constant curvature
tensor entries.

Definition 4.2. Let M0n be the family of constant curvature 0-model spaces,
such that M0n = (R3k+2, 〈·, ·〉, Rn) and the inner product and curvature tensors
have only the following non-zero entries:

〈u0, v0〉 = 1,

〈ui, vi〉 = 1

〈si, si〉 = 1

R1 := {R̄0 = 0, R̄s = 1}
R2 := {R̄0 = 1, R̄s = 0}
R3 := {R̄0 = 1, R̄s = 1}

Notice that M0n ⊂M0, thus if Mδ
∼= M0n then it is CH0.

Lemma 4.3. If Mδ ∈Mδ, then Mδ can be zero-modeled by M0n for some n.

Proof. Since we want a normalizing basis such that we make gδ ∼= 〈·, ·〉, we es-
tablish the following relations from Definition 3.2:

bsv0 =
−bsii(b00hi + b0si)

b00

b0v0 =
1

2b00

k∑
j=1

b20si + 2hib00b0si

bis =
−4biifisi
b0si + b00

bivi = 2u0si −
bis

2

2bii

bsvi =
bisbsii
bii

bvii =
1

bii

bv00 =
1

b00
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If each coefficient is set in terms of b00, bsii , bii, and b0si as above, one can verify
through direct calculation that the metric will only have the following non-zero
entries:

gδ(u0, v0) = 1, gδ(ui, vi) = 1, gδ(si, si) = 1.

From Lemma 3.3 we can use the remaining, undefined coefficients to fit R into
our model space.

We will start by dividing the manifolds Mδ into three cases.
First suppose that Rs 6= 0 and R0 6= −2Rs, and let:

b0si =
R0

2Rs
, b00 = 1, bii =

1√
bsiiεiRs

, bsii = εisign(Rs).

This will leave R̄0 = 0 and R̄s = 1, then this branch of Mδ
∼= M01 .

Now, suppose instead the Rs = 0 and R0 = −2Rs. These correspond to
those δi which satisfy the Riccati equation δ′i + 1

2δ
2
i εi − 1 = 0. In this case let

bsii and bii be defined as in the previous case but instead let b00 and b0si be
such that

b00 + b0si = −1

2
bsiiεi.

With this basis, R̄0 = 1 and R̄s = 1 and clearly, Mδ
∼= M03 .

Lastly, consider the case in which Rs = 0. From assertion (a) of Theorem
2.5, we know that R0 cannot also be zero. These manifolds correspond to those
linear δ′i = 1. To show that this case is also CH0, let us adjust our basis by
setting

b00 = 1, b0si = 0, bii =
1√
bsiiR0

, bsii = sign(R0).

Plugging these in will show that R̄0 = 1 and R̄s = 0 showing that Mδ
∼= M02 ,

showing the last case.
This also proves assertion (b) of Theorem 2.5.

Remark. Although it makes little difference for the purposes of this paper,
with the isometry invarients outlined by Dunn in [1] it can be shown that M01

and M03 are equivalent model spaces.

5 Curvature 1-Models

This section will provide the main examination into the curvature characteristics
of theMδ family of manifolds which at the 1-model level begin to exhibit a more
diverse series of examples under different curvature homogeneity conditions.

The nature of the homogeneity types in the Dunn manifold reveals a nested
pattern, with more restrictive conditions such as regular curvature homogeneity
implying all the more general conditions as well. Because of this, it is the most
natural to begin with the least restrictive, WCH1 and moving inward.
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Proof of Theorem 2.5 (c). Consider a manifold Mδ ∈ Mδ such that it is CH0.
Then by Lemma 4.3, there exists a change of basis, outlined in Definition 3.2,
such that the curvature tensor is constant. If the manifold is also WCH1, then
exist a set of coefficients, {b00, bii, bsii , b0si} such that the first curvature tensor
is also constant. Using the relations for the rest of the coefficients found in the
proof of Lemma 4.3 the same set of coefficients can be used to normalize the
metric , makin the manifold also CH1.

Definition 5.1. Let (M, g) be a pseudo-Riemannian manifold, then the follow-
ing are equivalent:

1. M is locally symmetric

2. ∇R is identically zero.

3. There exist isomorphisms such that (TM, g,R,∇R) ∼= (V, 〈·, ·〉, A0, 0)

Proof of Theorem 2.5 (d). Assume δi = 0 or δ′i = 1
2 then by direct calculation

it can be seen that both ∇Rs and ∇R0 are identically zero, thus Mδ is locally
symmetric.

Similar to the method used to prove the CH0 condition, we must define
seperate model spaces for different branches of manifolds.

Definition 5.2. Let V1n,m be the family of variable homothety 1-models such
that V1n,m = (R3k+2, 〈·, ·, 〉, ϕ1Rn, ϕ2∇Rm) for positive functions ϕ1 and ϕ2

and with the inner product, curvature tensor and its covariant derivative hav-
ing only the following non-zero entries:

〈u0, v0〉 = 1
〈ui, vi〉 = 1
〈si, si〉 = 1

R1 = {R̄s = 0, R̄0 = 1}
R2 = {R̄s = 1, R̄0 = 0}

∇R1 = {∇R̄0 = 0,∇R̄s = 1}
∇R2 = {∇R̄0 = 1,∇R̄s = 0}
∇R3 = {∇R̄0 = 1,∇R̄s = 1}

To prove the variable homothety curvature homogeneity condition, we will
show that any manifold, Mδ that is CH0 but not locally symmetric can be
1-modeled by some V1n,m .

Remark. It may be the case that many of these model spaces are equivalent
and a more elegant proof exists, however without a well-defined notion of a
homothety curvature invariant to differenciate model spaces from point to point,
there is no way of proving whether or not we need to consider all these model
spaces.

Proof of Theorem 2.6. First consider those manifolds with δ′i = 1. Then since
by assumption they are CH0, using the notation of Definition 3.2 and Lemma
3.3 we have:

R̄s = 0

R̄0 = b2iib
2
00R0

∇̄Rs = 0

∇̄R0 = b3iib
2
00∇R0
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By setting, the coefficients similar to as they were in proof of Lemma 4.3 (b)
with:

bsii = sign(R0), bii =
1√
bsiiR0

, b0si = 0, b200 = ϕ1

where ϕ1 some positive, real-valued function, the non-zero curvature tensor
entries become:

R̄0 = ϕ1 and ∇R̄0 = ϕ1
∇R0

(bsiiR0)3/2
.

If we define ϕ2 = ∇R̄0 as above, ϕ2 will also be positive if we assume (εiδi) > 0,
showing VCH1 under V11,2 .

For the rest of the cases we will be assuming that δ′i 6= 1, and since all
manifolds in this family are CH0, R̄0 = 0 and b00 remains our only free variable.
Because of this we will always be setting ϕ1 = b00.

First let us consider the case of a linear δi with δ′′i = 0 for all i but not
locally symmetric. With this condition, both ∇Rs and ∇R̄s are zero and we
have:

R̄s = ϕi and ∇R̄0 = ϕ2
1

∇R0

(bsiiεiRs)
3/2

Here we set ϕ2 = ∇R̄0 which will be positive only if (εiδi) > 0, and the manifold
is VCH1 under V12,2 .

Next consider the case in which ∇R̄0 is zero, in other words R0∇Rs =
Rs∇R0 or δi is a non-linear solution to the second order differential equation
δiδ
′′
1 = 2εi(δi − 1)(2δi − 1). In this case, we have:

R̄s = ϕ1 and ∇R̄s = ϕ1
bsiiεi∇Rs

(bsiiεiRs)
3/2

Letting ϕ2 = ∇R̄s will give us the second function we need for VCH1 under

V12,1 which will be positive if (δ′′i
δ′i−1
|δ′i−1|

) > 0.

Lastly, we consider in which neither ∇R̄0 or ∇R̄s are zero. Unlike the other
two cases which encompassed an infinite family of model spaces for any choice
of positive functions ϕ1, this case has the restriction that ∇R̄0 = ∇R̄s and thus
if ϕ1 = b00, we get the relations:

Rs∇R0 −R0∇Rs = ϕ1(bsiiεiRs)∇Rs
or by substituting back to make it in terms of δi,

2δiεi(δ
′
i − 1)(2δ′i − 1)− δ2i δ′′i εi = ±ϕ1δ

′′
i (δ′i − 1).

If we assume that ϕ1 is a positive function such that there exists a non-linear
δi that satisfies the above differential equation, then we can simply let

ϕ2 = ϕ1(bsiiεiRs)∇Rs = Rs∇R0 −R0∇Rs
which will be positive if δ′′i > 0.

Of course which positive functions will allow a non-llinear solution to exist,
if any, is unclear; however, if there does exist one, we have shown that if δ′′i > 0,
we can define a positive ϕ2 that will be sufficient to be 1-modeled by V22,3 .
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Now we will look into the HCH1 condition by use of its connection to the
variable homothety curvature condition.

Definition 5.3. Let H1n,m
be the family of homothety 1-models such that for

a positive real-valued function, λ, H1n,m = (R3k+2, 〈·, ·〉, λRn, λ3/2∇Rm) with
the inner product and curvature tensor entries defined as in Definition 5.2.

Lemma 5.4. If a manifold Mδ ∈Mδ, is VCHk then it is HCHk.

Proof. This family of manifold poses a special property in regards to VCH1 in
that the two positive functions, ϕ1 and ϕ2, are already related. Because of this,
by imposing the usual relations for homothety 1-homogeneity namely, λ = ϕ1

and λ3/2 = ϕ2, we find λ as the square of a ratio of the two ϕ’s.
For the V11,2 case, if δ′i = 1 for all i, we can make it H11,2 if we set

λ =
(∇R0)2

(bsiiR0)3
.

Next, consider the case in which δ′i 6= 1 and δ′′i = 0, the V12,2 case. If we set

λ =
(bsiiεiRs)

3

(∇R0)2

we find it is HCH1 under H12,2 as well. The V12,1 case, with a δi which is a
nonlinear solution to δiδ

′′
1 = 2εi(δ

′
i− 1)(2δ′i− 1) can be shown to be HCH1 with

H12,1 by setting

λ =
(∇Rs)2

(bsiiεiRs)
3

=
(Rs)

2(∇R0)2

(R0)2(bsiiεiRs)
3
.

The final case, in which δi is a nonlinear solution to monsterous differential
equation described in the previous proof, then setting

λ = (Rs)
2(∇Rs)2

will work to show HCH1 under H12,3 .

Remark. Lemma 5.4 shows that any manifold considered in Theorem 2.6, those
which are VCH1 are also HCH1, but in so doing, we eliminated the sign restric-
tions. This effectively loosened the restrictions on possible δi’s or choices for εi’s.
However it is unclear whether the set of homothety curvature 1-homogeneous
manifold is larger than the set of variable homothety curvature 1-homogeneous
ones, since there exists potentially infinitely many choices for positive functions,
ϕ1 that will work.

The following section is dedicated to finding those manifolds which are CH1,
however because it involves solving very non-linear differential equations, it will
not be comprehensive. In fact, we will only be able to consider the case of a
constant δi.
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Proof of Theorem 2.5 (d). Assume that δi is a constant. The δ′i and δ′′i are zero,
so consider the H12,2 model space. CH1 is equivalent to being HCH1 under the
same model space with a constant λ. Thus, set λ = a for some positive constant,
a.

Then, we get:
a4δ2i (2δ′i − 1)2 = |δ′i − 1|3.

Since δ′i = 0, we get,

δi =
1

2

√
a = A

which is a positive constant. Equivalently, we can find when ∇R̄0 is identically
constant, meaning

2δiεi(2δ
′
i − 1) = b|δ′i − 1|3/2

Solving for δi we find:
δi = −2εib = B

Where B can be any constant.

Remark. The rationale behind showing the existance of CH1 manifolds from
constant δi’s using both the homothety curvature 1-solutions as well as directly
from the basis is to show that although intuitively it would seem that CH1 is
just a special case of HCH1, there is actually quite the loss of information and
solving for constant homothety 1-curvature homogeneous manifolds will infact
not give all of the curvature 1- homogeneous manifolds.

6 Open Questions

1. All proofs in this paper were done on a case by case basis in regards to
the model spaces because we lack a well-defined notion of of a homothety
isometry invariant. Such an object would serve to differentiate model
spaces from point to point, and it’d be easier to definitively say if two
manifolds are isomorphic to each other. The author conjectured that such
an invariant would be a generalization of Singer invariants, necessarily
also containing the solutions to regular curvature homogeneous manifolds
within the family however the nature of the homothety solutions only
revealing an very restrictive set of CH1 solutions, it seems unlikely.

2. The formulation of Mδ seems to be a generalization of the original Dunn
manifolds as defined in [1] however it is unknown if the two families are
still isomorphic to each other. Also, the structure group of theMδ family
is mostly a mystery at this point. More insight would possibly allow the
creation of a new isometry invariant.

3. Exploration into higher order model spaces and exploring the different
curvature conditions on those would aid in potentially defining a homo-
thety invariant but also in finding a Singer-type number for homothety
homogeneity, that is, a positive integer kp,q such that if a manifold is
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homothety curvature kp,q-homogeneous, then it it necessarily homothety
homogeneous.

4. The nested relationship between the curvatue homogeneity conditions ex-
hibited byMδ brings up the question of if it is possible to create manifolds
such that certain conditions are satisfied but others are not. For example,
VCH but not HCH, or HCH but not CH, or vice versa?

7 Acknowledgements

The author would like to thank Dr. Corey Dunn for his unyielding guidance and
enthusiasm through the duration of this project. Additionally, the contributions
of Dr. Rolland Trapp proved invaluable to the research process and writing of
this paper. This research would not have been made possible without the joint
funding and support from the National Science Foundation through grant DMS-
1461286 and Califonia State University, San Bernardino.

References

[1] Dunn C,, A New Family of Curvature Homogeneous Pseudo-Riemannian
Manifolds, Rocky Mountain J. Math, 39, (2009), no. 5, 1443-1465

[2] Dunn C., McDonald C., Singer invariants and various types of curvature
homogeneity. Ann. Glob. Anal. Geom. 45, 303-317 (2014)
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